Human Ecology

, Volume 45, Issue 3, pp 417–424 | Cite as

Following the Signature of Quercus suber L. outside Its Climatic Range: Anthropogenic Distribution along Traditional Transhumance Routes

  • Guillermo Calonge-Cano
  • Jaime Madrigal-GonzálezEmail author
  • José María Ramos-Santos


Human activities and traditional land uses are recognized as major determinants of species distribution and landscape configuration worldwide (Vitousek et al.1997). This is particularly true in the Mediterranean Basin where a strong imprint of human activities over millennia on natural ecosystems has been recognized (Carrión et al.2007). One of the most important anthropogenic factors in this region is transhumance, spanning many centuries along traditional livestock droving routes (Hatfield and Davies 2006; for further details on transhumance in Spain see also Manzano-Baena and Casas 2010). While the origins of the transhumance remain poorly understood, it is thought that seasonal livestock movements reflect the routes of prehistoric megafauna migrations to cope with seasonal resource fluctuations (Manzano-Baena and Casas 2010). A close relationship among place names linked through livestock routes in Iberia appears to support this (Untermann 1961). Thus, it is...


Cork oak (Quercus suber) Anthropogenic species distribution Transhumance Iberian Peninsula 



We would like to express our gratitude to the Laboratory of Cartography and Geographical Information Systems (LACASIG) of the Department of Geography of the University of Valladolid, for the advice received and for the use of GIS-processed cartographical materials. JMG was funded by a Postoctoral fellowship in the University of Alcalá. Kristen Grinager (Official Translation Service of the University of Alcalá) revised the English of this manuscript.

Compliance with Ethical Standards

Conflict of Interest

Authors state that there is not any competing financial interest or any other conflict of interest in this manuscript.


  1. Arosa M.L., Ceia R.S., Costa S.R., Freitas H. (2015) Factors affecting cork oak (Quercus suber) regeneration: Acorn sowing success and seedling survival under field conditions. Plant Ecology and Diversity Online at: (doi: 10.1080/17550874.2015.1051154).
  2. Aranda I., Castro L., Alía R., Pardos J. A., Gil, L. (2005). Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). Tree Physiology 25: 1085–1090Google Scholar
  3. Avram M. (2009). The legacy of transhumance in National Parck of Abruzzo, Lazio and Molise (Pnalm): Rediscovery and exploitation. Geojournal of Tourism and Geosites 4: 153–159.Google Scholar
  4. Bachetta G., Guarino R., and Pontecorvo C. (2007). A survey of the botanical place names of the Iglesiente area (south west Sardinia). Botanica Lithuanica 13: 139–157.Google Scholar
  5. Batoma A. (2006). African ethnonyms and toponyms: An annotated bibliography. Electronic Journal of Africana Bibliography 10: 1–40.Google Scholar
  6. Bel-Martínez A. D., Boluda-Sánchez A., Gómez-Espariz G. A., Hernández-Enrile F. J., Cuevas-Suárez A., Martínez-Hernández A., and Quesada-Bustos F. (eds.) (2014). Mapa Topográfico Nacional 1:25000, Instituto Geográfico Nacional, Ministerio de Fomento (ES).Google Scholar
  7. Benito-Garzón M., Sánchez de Dios R., and Sainz-Ollero H. (2008). Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science 11: 169–178. doi: 10.3170/2008-7-18348.CrossRefGoogle Scholar
  8. Bil A. (1989). Transhumance economy, setting and settlement in highland Perthshire. Scottish Geographical Magazine 105: 158–167. doi: 10.1080/14702548908554429.CrossRefGoogle Scholar
  9. Calonge G. (1988). El clima de Castilla y León. In: Los Espacios Naturales de Castilla y León, Tomo II de la obra Geografía de Castilla y León. Ed. Ámbito. Valladolid Spain.Google Scholar
  10. Calonge-Cano G., Ramos-Santos J. M. (2009) La actualización de la toponimia en mesoescala y microescala como activo enriquecedor del patrimonio rural. Ejemplo de un municipio vallisoletano (Rueda). Actas del XV Coloquio de Geografía Rural: 454–465.Google Scholar
  11. Calonge-Cano G., and Ramos-Santos J. M. (2011). La Toponimia Mayor como fuente de nuevas aportaciones biogeográficas sobre los alcornocales en Castilla y León, Actas del X Congreso Internacional de Caminería Hispánica, Madrid.Google Scholar
  12. Čargonja H., Đaković B., and Alegro A. (2008). Plants and geographical names in Croatia. Collegium Antropologicum 32: 927–943.Google Scholar
  13. Carrillo-López J. A., Carrión-García J. S., Fernández-Jiménez S., and Ramón-del Cerro J. L. (2010). Toponimia y Biogeografía Histórica de plantas leñosas ibéricas, Universidad de Murcia, Spain.Google Scholar
  14. Carrión J. S., Fuentes N., González-Sampériz P., Sánchez-Quirante L., Finlayson J. C., Fernández S., and Andrade A. (2007). Holocene environmental change in a montane región of southern Europe with a long history of human settlement. Quaternary Science Reviews 26: 1455–1475. doi: 10.1016/j.quascirev.2007.03.013.CrossRefGoogle Scholar
  15. Catry F. X., Moreira F., Pausas J. G., Fernandes P. M., Rego F., Cardillo E., et al (2012). Cork oak vulnerability to fire: The role of bark harvesting, tree characteristics and abiotic factors. PloS One 7: e39810. doi: 10.1371/journal.pone.0039810.CrossRefGoogle Scholar
  16. Chang C. (1993). Pastoral transhumance in the southern Balkans as a social ideology: Ethnoarcheological research in northern Greece. American Anthropologist 95: 687–703. doi: 10.1525/aa.1993.95.3.02a00080.CrossRefGoogle Scholar
  17. Cleere H. (1995). Cultural landscapes as World heritage. Conservation and Management of Archeological Sites 1: 63–68.CrossRefGoogle Scholar
  18. Costa M., Morla C., and Sáinz H. (eds.) (1998). Los bosques ibéricos, Una interpretación geobotánica. GeoPlaneta, Barcelona (Spain).Google Scholar
  19. Díaz-Fernández P. M., Gallardo-Muñoz M. I., and Gil L. (1996). Alcornocales marginales en España. Estado actual y perspectivas de conservación de sus recursos genéticos. Ecología 10: 21–47.Google Scholar
  20. Dubbert M., Correia A., Pereira J., and Werner C. (2014). Influence of tree cover on herbaceous layer development and carbon and water fluxes in a Portuguese cork-oak woodland. Acta Oecologica 59: 35–45. doi: 10.1016/j.actao.2014.05.007.CrossRefGoogle Scholar
  21. Faull M. L. (1979). Place-names and past landscape. Journal of English Place-Names Society 11: 24–46.Google Scholar
  22. Galmés-Fuentes A. (2000). Los topónimos: sus blasones y trofeos (la toponimia mítica), Real Academia de la Historia, Madrid (Spain).Google Scholar
  23. Geddes D. S. (1983). Neolothic transhumance in the Mediterranean Pyrenees. World Archaeology 15: 51–66. doi: 10.1080/00438243.1983.9979884.CrossRefGoogle Scholar
  24. Gkiasta M. (2008). The historiography of landscape research on Crete. PhD thesis, Leiden University Press (NL).Google Scholar
  25. González B. F. (1985). Invitación a la Ecología Humana, Tecnos, Madrid.Google Scholar
  26. Hartel T., and Plieninger T. (eds.) (2014). European wood pastures in transition: A socioecological approach, Taylor and Francis, London.Google Scholar
  27. Hatfield R., and Davies J. (2006). Global review of the economics of pastoralism. Prepared for the World initiative for sustainable pastoralism, IUCN, Nairobi.Google Scholar
  28. Hidalgo P. J., Marín J. M., Quijada J., and Moreira J. M. (2008). A spatial distribution of cork oak (Quercus suber) in southwestern Spain: A suitable tool for reforestation. Forest Ecology and Management 255: 25–34. doi: 10.1016/j.foreco.2007.07.012.CrossRefGoogle Scholar
  29. Ibáñez B., Gómez-Aparicio L., Stoll P., Ávila J. M., Pérez-Ramos I. M., and Marañón T. (2015). A neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests. PloS One 10: e0117827. doi: 10.1371/journal.pone.0117827.CrossRefGoogle Scholar
  30. Jiménez P., Agúndez D., Alía R., and Gil L. (1999). Genetic variation and in central and marginal populations of Quercus suber L. Silvae Gnetica 48: 278–284.Google Scholar
  31. Kruskal J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrica 29: 115–129.CrossRefGoogle Scholar
  32. Manzano-Baena P., and Casas R. (2010). Past, present and future of Transhumancia in Spain: nomadism in a developed country. Pastoralism 1: 72–90. doi: 10.3362/2041–7136.2010.005.Google Scholar
  33. Marañón T. (1988). Agro-sylvo-pastoral systems in the Iberian Peninsula: Dehesas and Montados. Rangelands 10: 255–258.Google Scholar
  34. Montoya-Oliver J. M. (1988). Áreas potenciales y óptimas de Quercus suber L, en España, INIA, Madrid (Spain).Google Scholar
  35. Pausas J., Marañón T., Caldeira M., and Pons J. (2009a). Natural regeneration. In Aronson J., Santos-Pereira J., and Pausas J. (eds.), Cork oak woodlands on the edge, Island Press, Washington (US).Google Scholar
  36. Pausas J., Pereira J. S., and Aronson J. (2009b). The tree. In Aronson J., Santos-Pereira J., and Pausas J. (eds.), Cork oak woodlands on the edge, Island Press, Washington (US).Google Scholar
  37. Pausas J.G., Ribeiro E., Dias S.G., Pons J., Beseler C. (2006). Regeneration of a marginal Quercus suber forest in the eastern Iberian Peninsula. Journal of Vegetation Science 17: 729–738Google Scholar
  38. Pearsall W. (1961). Place names as clues in the pursuit of ecological history, Kung, Gustav Adolfs Akademica (SE).Google Scholar
  39. Pereira, H, Tomé, M. (2004). Cork oak. In: Burley J (ed.) Encyclopedia of forest sciences. Elsevier, Oxford, (pps. 613-620).Google Scholar
  40. R Core Team (2013). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria ISBN 3–900051–07-0, URL Scholar
  41. Ramírez-Valiente J. A., Valladares F., Gil L., and Aranda I. (2009). Population differences in juvenile survival under increasing drought are mediated by seed size in cork oak (Quercus suber L.) Forest Ecology and Management 257: 1676–1683. doi: 10.1016/j.foreco.2009.01.024.CrossRefGoogle Scholar
  42. Ramírez-Valiente J. A. (2010). Plasticidad fenotípica y diferenciación genética inter e intrapoblacional en Quercus suber L. Evaluación mediante caracteres fisiológicos y marcadores moleculares, PhD Thesis, University Politecnica of Madrid, Madrid, Spain, p. 274.Google Scholar
  43. Ramos-Santos J. M., and Calonge-Cano G. (2009). Observaciones sobre la excepcionalidad de los alcornocales en el centro de la Cuenca del Duero. Actas de la III Reunión de Historia Forestal. Cuadernos de la Sociedad Española de Ciencias Forestales 38: 343–348.Google Scholar
  44. Ramos-Santos J. M., Calonge-Cano G. (2010). Las vías pecuarias tradicionales desde los estudios geográficos. Observaciones sobre su importante papel en el paisaje y la ordenación del territorio. Actas del II Congreso Nacional de Vías Pecuarias. (pps. 189–196).Google Scholar
  45. Ruiz de la Torre J., and Ceballos L. (2001). Árboles y arbustos de la España peninsular, E.T.S. Ingenieros de Montes, Madrid (ES).Google Scholar
  46. Sáinz-Olleros H., and Franco-Múgica F. (2007). Evolución y tendencias de la vegetación en función del clima en los últimos milenios. Boletín de la Institución Libre de Enseñanza 66(67): 81–101.Google Scholar
  47. Sánchez-Palomares O., Jovellar-Lacambra L. C., Sarmiento-Maillo L. A., Rubio-Sánchez A., and Gandullo-Gutiérrez J. M. (2007). Las estaciones ecológicas de los alcornocales españoles, Instituto Nacional de Investigaciones Agrarias (INIA): Monografías, Serie Forestal, Madrid (ES).Google Scholar
  48. Seaby R.M.H., Henderson P.A., Prendergast J.R. (2004) Community analysis package 3.1. Pisces Conservation ltd, IRC house, Pennington (UK).Google Scholar
  49. Seijo F. (2009). Who framed the forest fire? State framing and peasant counter-framing of anthropogenic forest fires in Spain since 1940. Journal of Environmental Policy & Planning 11: 103–128. doi: 10.1080/15239080902732570.CrossRefGoogle Scholar
  50. Shi G., Ren F., Du Q., and Gao N. (2015). Phytotoponyms, geographical features and vegetation coverage in western Hubei, China. Entropy 17: 984–1006.CrossRefGoogle Scholar
  51. Sweeney S., Jurek M., and Bednar M. (2007). Using place names to interpret former floodplain connectivity in the Morava River, Czech Republic. Landscape Ecology 22: 1007–1018. doi: 10.1007/s10980-007-9085-7.CrossRefGoogle Scholar
  52. Sykora K.V. (1990) History of the impact of man on the distribution of plant species. In: Di Castri F, Hansen AJ, Debussche M. Biological invasions in Europe and the Mediterranean Basin. Kluwer academic Publisher, Dordrecht (NL).Google Scholar
  53. Untermann J. (1961). Sprachräume und Sprachbewegungen im vorrömischen Hispanien [In German, Language areas and language movements in pre-roman Hispania], Otto Harrassowitz, Wiesbaden (DE).Google Scholar
  54. Urbieta I., Zavala M. A., and Marañón T. (2008). Human and non-human determinants of forest composition in southern Spain: Evidence of shifts towards cork oak dominance as a result of management over the past century. Journal of Biogeography 35: 1688–1700. doi: 10.1111/j.1365-2699.2008.01914.x.CrossRefGoogle Scholar
  55. Valbuena-Carabaña M., de Heredia U.L., Fuentes-Utrilla P., González-Doncel I., Gil L. (2010) Historical and recent changes in the Spanish forests: A socio-economic process. Review of Palaeobotany and Palynology 162: 492-506. ("" \t "doilink")
  56. Vitousek P. M., Mooney H. A., Lubchenko J., and Melillo J. M. (1997). Human domination of earth’s ecosystems. Science 277: 494–499.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Area of Physical Geography (Biogeography), Department of GeographyUniversity of ValladolidValladolidSpain
  2. 2.Forest Ecology and Restoration Group (FORECO), Department of Life Sciences, Faculty of ScienceUniversity of Alcalá (UAH)MadridSpain
  3. 3.IES Juan de JuniValladolidSpain

Personalised recommendations