Human Ecology

, Volume 43, Issue 5, pp 639–653 | Cite as

Changes in Climate, Crops, and Tradition: Cajete Maize and the Rainfed Farming Systems of Oaxaca, Mexico

  • Paul RogéEmail author
  • Marta Astier


The traditional management systems of the Mixteca Alta Region of Oaxaca, Mexico offer historical lessons about resilience to changes and variability in climate. We interviewed small farmers to inquire about the dynamics of abandonment and persistence of a traditional management system known as cajete maize. The previous generation had sown cajete maize more extensively across the landscape, but farmers increasingly relegated it to high elevation, frost prone agricultural environments that were less suited for seasonal maize. We interpret farmers’ narratives of changing cropping systems from a perspective of general agroecological resilience. The most recent years presented increasingly extreme climatic and socioeconomic hardships: increased temperatures, delayed rainy seasons, reduced capacity of soils to retain soil moisture, changing cultural norms, and reduced rural labor. Transformative change is required to develop novel cropping systems and complementary activities to agriculture that will allow for farming to be sustained in the face of these challenges.


Agroecological resilience Climate change Traditional management systems Rainfed agriculture Mexico 



This research was made possible thanks to Abelino Célis, Anastasia Velasco López, Eleazar García Jiménez, Estela Rosendo Palacios, Jesús León Santos, and Misael Velasco. Krista Isaacs, Miguel A. Altieri, Liz Carlisle, Shannon Cram, Andrew R. Friedman, Margot Higgins, Julie Klinger, Jeffrey Martin, Gustavo Oliveira, Shoshana Perrey, Nathan Sayre, and Annie Shattuck provided useful feedback on versions of this manuscript. This work was supported by the Garcia Robles-Fulbright under the scholarship “Enhancing the resilience of rainfed agroecosystems to climatic variability in Oaxaca, Mexico”; UC MEXUS under the grants “Importance of social networks in resilience theory” and “Climate change research in Mexico.”


  1. Altieri, M. A. (2002). Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture Ecosystems and Environment 93(1–3): 1–24.CrossRefGoogle Scholar
  2. Altieri, M. A., and Nicholls, C. I. (2013). The adaptation and mitigation potential of traditional agriculture in a changing climate. Climatic Change, 1–13.Google Scholar
  3. Altieri, M. A., and Trujillo, J. (1987). The agroecology of corn production in Tlaxcala, Mexico. Human Ecology 15(2): 189–220.CrossRefGoogle Scholar
  4. Aragón Cuevas, F., Figueroa Cárdenas, J. D., Flores Zarate, M., Gaytán Martínez, M., and Véles Medina, J. J. (2012). Calidad Industrial de Maíces Nativos de La Sierra Sur de Oaxaca. Libro Técnico 15. INIFAP, Oaxaca.Google Scholar
  5. Ayala-Ortiz, D. A., and García-Barrios, R. (2009). Contribuciones Metodológicas Para Valorar La Multifuncionalidad de La Agricultura Campesina En La Meseta Purépecha. Revista Economía Sociedad Y Territorio 9(31): 759–801.Google Scholar
  6. Barrow, C. J. (1999). Alternative Irrigation: the Promise of Runoff Agriculture. Earthscan, London.Google Scholar
  7. Bates, B. C., Kundzewicz, Z., Wu, S., and Palutikof, J. (eds.) (2008). Climate Change and Water: Technical Paper of the Intergovernmental Panel on Climate Change. IPCC Secretariat, Geneva.Google Scholar
  8. Benz, B. F. (2001). Archaeological evidence of teosinte domestication from Guilá Naquitz, Oaxaca. Proceedings of the National Academy of Sciences 98(4): 2104–6.CrossRefGoogle Scholar
  9. Benz, B. F., and Iltis, H. H. (1990). Studies in archaeological Maize I: the ‘Wild’ maize from San Marcos Cave Reexamined. American Antiquity 55(3): 500–511.CrossRefGoogle Scholar
  10. Berkes, F., and Ross, H. (2013). Community resilience: toward an integrated approach. Society & Natural Resources 26(1): 5–20.CrossRefGoogle Scholar
  11. Blomster, J. P. (1998). At the Bean Hill in the Land of the Mixtec: Early Formative Social Complexity and Interregional Interaction at Etlatongo, Oaxaca, Mexico. Yale University, New Haven.Google Scholar
  12. Boege, E., and Carranza, T. (2009). La Agricultura Sostenible Campesino-Indígena Frente a La Desertificación de La Mixteca Alta. In Boege, E., and Carranza, T. (eds.), Agricultura Sostenible Campesino-Indígena, Soberanía Alimentaria Y Equidad de Género. PIDAASSA, Mexico, pp. 87–138.Google Scholar
  13. Boers, T. M., and Ben-Asher, J. (1982). A review of rainwater harvesting. Agricultural Water Management 5(2): 145–58.CrossRefGoogle Scholar
  14. Borejsza, A., Rodríguez López, I., Frederick, C. D., and Bateman, M. D. (2008). Agricultural slope management and soil erosion at La Laguna, Tlaxcala, Mexico. Journal of Archaeological Science 35(7): 1854–66.CrossRefGoogle Scholar
  15. Carlisle, L. (2014). Diversity, flexibility, and the resilience effect: lessons from a social-ecological case study of diversified farming in the Northern Great Plains, USA. Ecology and Society 19(3).Google Scholar
  16. Carpenter, S., Walker, B., Anderies, J. M., and Abel, N. (2001). From metaphor to measurement: resilience of what to what? Ecosystems 4(8): 765–81.CrossRefGoogle Scholar
  17. Carrera-Garcia, S., Navarro-Garza, H., Perez-Olvera, M. A., and Mata-Garcia, B. (2012). Mazatec Agricultural calendar, Milpa and peasant dietary strategy in the territory of Huautepec, Oaxaca. Agricultura Sociedad Y Desarrollo 9(4): 455–75.Google Scholar
  18. Christman, Z., Pearsall, H., Schmook, B., and Mardero, S. (2015). Diversification and adaptive capacity across scales in an emerging post-frontier landscape of the Usumacinta valley, Chiapas, Mexico. International Forestry Review 17: 111–23.CrossRefGoogle Scholar
  19. Contreras-Hinojosa, J., Volke-Haller, V., Oropeza-Mota, J., Rodríguez-Franco, C., Martínez-Saldaña, T., and Martínez-Garza, Á. (2005). Reducción Del Rendimiento de Maíz Por La Erosión Del Suelo En Yanhuitlán, Oaxaca, México. Terra Latinoamericana 23(3): 399–408.Google Scholar
  20. Cook, S. F., and Borah, W. W. (1968). The Population of the Mixteca Alta, 1520–1960. University of California Press, Berkeley.Google Scholar
  21. Core Team, R. (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  22. Critchley, W. (1989). Building on a tradition of rainwater harvesting. Appropriate Technology 16(2): 10–12.Google Scholar
  23. Davidson, D. J. (2010). The applicability of the concept of resilience to social systems: some sources of optimism and nagging doubts. Society & Natural Resources 23(12): 1135–49.CrossRefGoogle Scholar
  24. de Grenade, R., and Nabhan, G. P. (2013). Agrobiodiversity in an oasis archipelago. Journal of Ethnobiology 33(2): 203–36.CrossRefGoogle Scholar
  25. Diego-Flores, P., Chávez-Servia, J. L., Carrillo-Rodríguez, J. C., and Pérez León, M. I. (2010). Variación Fenotípica de Una Muestra de Maíces Mixtecos En Santa Catarina Ticua, Oaxaca. In El Suelo, Sustento de Vida Y Nuestro Mejor Aliado Contra El Cambio Climático, 1009–13. Mexicali.Google Scholar
  26. Dowle, M., Short, T., Lianoglou, S., and Srinivasan, A. (2014). Data.table: Extension of Data.frame.Google Scholar
  27. Eakin, H. (2006). Weathering Risk in Rural Mexico: Climatic, Institutional, and Economic Change. University of Arizona Press, Tucson.Google Scholar
  28. Easterling, W. E., Aggarwal, P. K., Batima, P., Brander, K. M., Erda, L., Howden, S. M., Kirilenko, A., et al. (2007). Food, fibre and forest products. In Parry, M. L., Canziani, F., Palutikof, J. F., van der Linden, P. J., and Hanson, C. E. (eds.), Climate Change 2007. IPCC Secretariat, Geneva.Google Scholar
  29. Edinger, S. T. (1996). The Road from Mixtepec: a Southern Mexican Town and the United States Economy. Asociación Cívica Benito Juárez, Fresno.Google Scholar
  30. Folke, C., Walker, B., Carpenter, S. R., Chapin, T., Scheffer, M., and Rockström, J. (2010). Resilience thinking: integrating resilience, adaptability and transformability. Ecology and Society 15(4): 20.Google Scholar
  31. Free Software Foundation. (2008). Gawk. Boston.Google Scholar
  32. García Barrios, R., García Barrios, L., and Álvarez-Buylla, E. (1991). Lagunas: Deterioro Ambiental Y Tecnológico En El Campo Semiproletarizado. First. Colegio de México, Mexico.Google Scholar
  33. García-Barrios, R., and García-Barrios, L. (1990). Environmental and technological degradation in peasant agriculture: a consequence of development in Mexico. World Development 18(11): 1569–85.CrossRefGoogle Scholar
  34. García-Barrios, L., Galvan-Miyoshi, Y. M., Valdivieso-Perez, I. A., Masera, O. R., Bocco, G., and Vandermeer, J. (2009). Neotropical forest conservation, agricultural intensification, and rural out-migration: the Mexican experience. Bioscience 59(10): 863–73.CrossRefGoogle Scholar
  35. Gaudin, A. C. M., Tolhurst, T. N., Ker, A. P., Janovicek, K., Tortora, C., Martin, R. C., and Deen, W. (2015). Increasing crop diversity mitigates weather variations and improves yield stability. PLoS ONE 10(2): e0113261.CrossRefGoogle Scholar
  36. Gilles, J. L., Thomas, J. L., Valdivia, C., and Yucra, E. S. (2013). Laggards or leaders: conservers of traditional agricultural knowledge in Bolivia. Rural Sociology 78(1): 51–74.CrossRefGoogle Scholar
  37. Gray, C. L. (2009). Rural Out-migration and smallholder agriculture in the southern Ecuadorian Andes. Population and Environment 30(4): 193–217.CrossRefGoogle Scholar
  38. Hayano-Kanashiro, C., Calderón-Vázquez, C., Ibarra-Laclette, E., Herrera-Estrella, L., and Simpson, J. (2009). Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS ONE 4(10): e7531.CrossRefGoogle Scholar
  39. Hellin, J., Bellon, M. R., and Hearne, S. J. (2014). Maize landraces and adaptation to climate change in Mexico. Journal of Crop Improvement 28(4): 484–501.CrossRefGoogle Scholar
  40. Holt-Giménez, E. (2002). Measuring Farmers’ agroecological resistance after hurricane Mitch in Nicaragua: a case study in participatory, sustainable land management impact monitoring. Agriculture, Ecosystems & Environment 93: 87–105.CrossRefGoogle Scholar
  41. INEGI. (1990). Censo de Población Y Vivienda 1990: Tabulados Básicos.
  42. INEGI. (2004). Regiones Socioeconómicas de México.
  43. INEGI. (2005). Población Total Y Viviendas Según Marco Geoestadístico a 2005.
  44. IPCC. (2007). Synthesis Report. In Climate Change 2007, edited by IPCC. Cambridge: Intergovernmental Panel on Climate Change; Cambridge University Press.Google Scholar
  45. IPCC (2014). Climate Change 2014. Cambridge University Press, Cambridge.Google Scholar
  46. Jaramillo, J., Setamou, M., Muchugu, E., Chabi-Olaye, A., Jaramillo, A., Mukabana, J., Maina, J., Gathara, S., and Borgemeister, C. (2013). Climate change or urbanization? impacts on a traditional coffee production system in east africa over the last 80 years. Plos One 8(1): e51815.CrossRefGoogle Scholar
  47. Keleman, A., Hellin, J., and Flores, D. (2013). Diverse varieties and diverse markets: scale-related maize ‘Profitability Crossover’ in the central Mexican highlands. Human Ecology 41(5): 683–705.CrossRefGoogle Scholar
  48. Kowalewski, S. A., Balkansky, A. K., Stiver, L. R., Walsh, T. J., Pluckhahn, J. F., Chamblee, V. P., Rodríguez, V. Y., Espinoza, H., and Smith, C. A. (2009). Origins of the Ñuu: Archaeology in the Mixteca Alta, Mexico. University Press of Colorado, Boulder.Google Scholar
  49. León Santos, J. (2007). Programa Escuela Campesina: Acciones Que Contribuyeen a La Restauración de Suelos Y El Mejoramiento Del Medio Ambiente. CEDICAM.Google Scholar
  50. Lerner, A. M., and Appendini, K. (2011). Dimensions of peri-urban maize production in the Toluca-Atlacomulco valley, Mexico. Journal of Latin American Geography 10(2): 87–106.CrossRefGoogle Scholar
  51. Lightfoot, D. R. (1994). Morphology and ecology of lithic-mulch agriculture. Geographical Review 84 (2). American Geographical Society: 172–85.Google Scholar
  52. Lightfoot, D. R. (1996). The nature, history, and distribution of lithic mulch agriculture: an ancient technique of dryland agriculture. The Agricultural History Review 44 (2). British Agricultural History Society: 206–22.Google Scholar
  53. Lin, B. B. (2009). Coffee (Cafe Arabica Var. Bourbon) fruit growth and development under varying shade levels in the Soconusco region of Chiapas, Mexico. Journal of Sustainable Agriculture 33(1): 51–65.CrossRefGoogle Scholar
  54. Liverman, D. M. (1999). Vulnerability and adaptation to drought in Mexico. Natural Resources Journal 39: 99.Google Scholar
  55. Maestre, F. T., Salguero-Gómez, R., and Quero, J. L. (2012). It is getting hotter in here: determining and projecting the impacts of global environmental change on drylands. Philosophical Transactions of the Royal Society B-Biological Sciences 367(1606): 3062–75.CrossRefGoogle Scholar
  56. Masera Cerutti, O. (1990). Crisis Y Mecanización de La Agricultura Campesina. Colegio de México, Programa sobre Ciencia, Tecnología y Desarrollo, Mexico.Google Scholar
  57. Mercer, K. L., Perales, H. R., and Wainwright, J. D. (2012). Climate change and the transgenic adaptation strategy: smallholder livelihoods, climate justice, and maize landraces in Mexico. Global Environmental Change 22(2): 495–504.CrossRefGoogle Scholar
  58. Moore, H. L., and Vaughan, M. (1994). Cutting down Trees: Gender, Nutrition, and Agricultural Change in the Northern Province of Zambia, 1890–1990. Heinemann, Portsmouth.Google Scholar
  59. Mubanga, K. H., and Umar, B. B. (2014). Smallholder Farmers’ Responses to Rainfall Variability and Soil Fertility Problems by the Use of Indigenous Knowledge in Chipepo, Southern Zambia. Journal of Agricultural Science (Toronto) 6(6): 75–85.Google Scholar
  60. Neuwirth, E. 2011. RColorBrewer: ColorBrewer Palettes.Google Scholar
  61. Ning, W., Ismail, M., Joshi, S., Shao-liang, Y., Shrestha, R. M., and Jasra, A. W. (2014). Livelihood diversification as an adaptation approach to change in the pastoral Hindu-Kush Himalayan region. Journal of Mountain Science 11(5): 1342–55.CrossRefGoogle Scholar
  62. Njeru, E. M. (2013). Crop diversification: a potential strategy to mitigate food insecurity by smallholders in Sub-Saharan Africa. Journal of Agriculture Food Systems and Community Development 3(4): 63–69.Google Scholar
  63. Parry, M., Rosenzweig, C., and Livermore, M. (2005). Climate change, global food supply and risk of hunger. Philosophical Transactions of the Royal Society B-Biological Sciences 360(1463): 2125–38.CrossRefGoogle Scholar
  64. Pastor, R. (1987). Campesinos Y Reformas: La Mixteca, 1700–1856. Centro de Estudios Históricos, Colegio de México, Mexico.Google Scholar
  65. Perez Rodriguez, V., and Anderson, K. C. (2013). Terracing in the Mixteca Alta, Mexico: cycles of resilience of an ancient land-use strategy. Human Ecology 41(3): 335–49.CrossRefGoogle Scholar
  66. Philpott, S. M., Lin, B. B., Jha, S., and Brines, S. J. (2008). A multi-scale assessment of hurricane impacts on agricultural landscapes based on land use and topographic features. Agriculture, Ecosystems & Environment 128(1): 12–20.CrossRefGoogle Scholar
  67. Quinn, C. H., Ziervogel, G., Taylor, A., Takama, T., and Thomalla, F. (2011). Coping with multiple stresses in rural South Africa. Ecology and Society 16(3): 2.CrossRefGoogle Scholar
  68. Rasmussen, L. V., and Reenberg, A. (2015). Multiple outcomes of cultivation in the Sahel: a call for a multifunctional view of farmers’ incentives. International Journal of Agricultural Sustainability 13(1): 1–22.CrossRefGoogle Scholar
  69. Reij, C., Scoones, I., and Toulmin, C. (eds.) (1996). Sustaining the Soil: Indigenous Soil and Water Conservation in Africa. Earthscan, London.Google Scholar
  70. Reyes-Garcia, V., Aceituno-Mata, L., Calvet-Mir, L., Garnatje, T., Gomez-Baggethun, E., Lastra, J. J., Ontillera, R., et al. (2014). Resilience of traditional knowledge systems: the case of agricultural knowledge in home gardens of the Iberian Peninsula. Global Environmental Change Human and Policy Dimensions 24: 223–31.CrossRefGoogle Scholar
  71. Ríos, A. C., Ruíz, S. V., Astier, M., Léon Santos, J., Altieri, M. A., Rogé, P., Mora, F., and Gavito, M. (2012). Productividad Y Resiliencia En Sistemas Agrícolas Tradicionales En La Mixteca Alta Oaxaqueña. In Mas, J. F. (ed.), III Coloquio Internacional En Geografía Ambiental. UNAM-CIGA, Morelia.Google Scholar
  72. Rivas Guevara, M. (2008). Caracterización Del Manejo de Suelo Y Uso Del Agua de Lluvia En La Mixteca Alta: Jollas Y Maíces de Cajete Estudio de Caso, San Miguel Tulancingo, Oaxaca. PhD Thesis, Colegio de Postgraduados.Google Scholar
  73. Rivas Guevara, M., Palerm Viqueira, J., Muñoz Orozco, A., Cuevas Sánchez, J., and Martinez Saldaña, T. (2006). Las Jollas’ En La Mixteca Oaxaqueña: Una Técnica Tradicional de Captación de Agua de Lluvia Para Riego. In El Acceso Al Agua En La Historia de América, edited by Palerm, J., and García Blanco, R.. Sevilla: Colegio de Postgraduados.Google Scholar
  74. Rodriguez-Solorzano, C. (2014). Unintended outcomes of farmers’ adaptation to climate variability: deforestation and conservation in Calakmul and Maya biosphere reserves. Ecology and Society 19(2): 53.CrossRefGoogle Scholar
  75. Rogé, P., Friedman, A. R., Astier, M., and Altieri, M. A. (2014). Farmer strategies for dealing with climatic variability: a case study from the Mixteca Alta region of Oaxaca, Mexico. Agroecology and Sustainable Food Systems 38(7): 786–811.CrossRefGoogle Scholar
  76. Romero Frizzi, M. (1996). El Sol Y La Cruz: Los Pueblos Indios de Oaxaca Colonial. Mexico D.F.: Centro de Investigaciones y Estudios Superiores en Antropología Social; Instituto Nacional Indigenista.Google Scholar
  77. Rosset, P. M., Machín-Sosa, B., Roque-Jaime, A. M., and Avila-Lozano, D. R. (2011). The Campesino-to-Campesino Agroecology movement of ANAP in Cuba. Journal of Peasant Studies 1(38): 161–91.CrossRefGoogle Scholar
  78. Ruiz Meza, L. E. (2015). Adaptive capacity of small-scale coffee farmers to climate change impacts in the Soconusco Region of Chiapas, Mexico. Climate and Development 7(2): 100–109.CrossRefGoogle Scholar
  79. Schmook, B., van Vliet, N., Radel, C., Manzón-Che, M., and McCandless, S. (2013). Persistence of Swidden cultivation in the face of globalization: a case study from communities in Calakmul, Mexico. Human Ecology 41(1): 93–107.CrossRefGoogle Scholar
  80. Singh, R. K., Turner, N. J., and Pandey, C. B. (2012). ‘Tinni’ rice (Oryza Rufipogon Griff.) production: an integrated sociocultural agroecosystem in Eastern Uttar Pradesh of India. Environmental Management 49(1): 26–43.CrossRefGoogle Scholar
  81. Spores, R. (1967). The Mixtec Kings and Their People. University of Oklahoma Press, Norman.Google Scholar
  82. Spores, R. (1972). An Archaeological Settlement Survey of the Nochixtlan Valley, Oaxaca. Survey. Vanderbilt University, Nashville.Google Scholar
  83. Spores, R. (1983). Middle and Late Formative Settlement Patterns in the Mixteca Alta. In Flannery, K. V., and Marcus, J. (eds.), The Cloud People: Divergent Evolution of the Zapotec and Mixtec Civilizations. Academic, Waltham, pp. 72–74.Google Scholar
  84. Spores, R. (2007). Ñuu Ñudzahui: La Mixteca de Oaxaca: La Evolución de La Cultura Mixteca Desde Los Primeros Pueblos Preclásicos Hasta La Independencia. Instituto Estatal de Educación Pública de Oaxaca, Oaxaca.Google Scholar
  85. Stigter, C. J., Dawei, Z., Onyewotu, L. O. Z., and Xurong, M. (2005). Using traditional methods and indigenous technologies for coping with climate variability. Climatic Change 70(1): 255–71.CrossRefGoogle Scholar
  86. Tengo, M., and Belfrage, K. (2004). Local management practices for dealing with change and uncertainty: a cross-scale comparison of cases in Sweden and Tanzania. Ecology and Society 9 (3).Google Scholar
  87. Wickham, H. (2007). Reshaping data with the reshape package. Journal of Statistical Software 21(12): 1–20.CrossRefGoogle Scholar
  88. Wickham, H. (2009). Ggplot2: Elegant Graphics for Data Analysis. Springer.Google Scholar
  89. Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical Software 40(1): 1–29.CrossRefGoogle Scholar
  90. Wilken, G. (1987). Climate Management. In In Good Farmers: Traditional Agriculture and Resource Management in Mexico and Central America. University of California Press, Berkeley.Google Scholar
  91. Zimmerer, K. S. (2013). The compatibility of agricultural intensification in a global hotspot of smallholder agrobiodiversity (Bolivia). Proceedings of the National Academy of Sciences of the United States of America 110(8): 2769–74.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Michigan State UniversityEast LansingUSA
  2. 2.Universidad Nacional Autónoma de México (UNAM)MoreliaMéxico

Personalised recommendations