Human Ecology

, Volume 40, Issue 2, pp 167–174 | Cite as

Non-Lévy Mobility Patterns of Mexican Me’Phaa Peasants Searching for Fuel Wood

  • Octavio Miramontes
  • Og DeSouza
  • Diego Hernández
  • Eliane Ceccon


We measured mobility patterns that describe walking trajectories of individual Me’Phaa peasants searching for and collecting fuel wood in the forests of “La Montaña de Guerrero” in Mexico. These 1-day excursions typically follow a mixed pattern of nearly-constant steps when individuals displace from their homes towards potential collecting sites and a mixed pattern of steps of different lengths when actually searching for fallen wood in the forest. Displacements in the searching phase seem not to be compatible with Lévy flights described by power-laws with optimal scaling exponents. These findings, however, can be interpreted in the light of deterministic searching on heavily degraded landscapes where the interaction of the individuals with their fuel wood-scarce environment produces alternative searching strategies than the expected Lévy flights. These results have important implications for future management and restoration of degraded forests and the improvement of the ecological services they may provide to their inhabitants.


Lévy flights Human mobility Deterministic walks Me’Phaa Fuel wood Ecological restoration Foraging Mexico 



We very much appreciate PAPIIT-UNAM Grants IN-118306, IN-107309 and IN-304409, PASPA-DGAPA grants, a CONACYT-CNPq Bi-national Joint Project on the Dynamics of Mexico-Brazil Tropical Forests and the Centro de Ciencias de la Complejidad (C3) for financial support. ODS is supported by a fellowship from Brazilian National Council for Research (CNPq 302486/2010-0). OM and EC thank the Universidade Federal de Paraná in Brazil for hosting a sabbatical leave. We thank Pedro Miramontes and Lynna Kiere for useful comments. Special thanks to all the Me’Phaa volunteers and the Xuajin Me’Phaa AC ONG.


  1. Bénichou, O., Loverdo, C., Moreau, M., and Voituriez, R. (2011). Intermittent search strategies. Reviews of Modern Physics 83(1): 81.CrossRefGoogle Scholar
  2. Berrìo, J. C., Hooghiemstra, H., van Geel, B., and Ludlow-Wiechers, B. (2006). Environmental history of the dry forest biome of Guerrero, Mexico, and human impact during the last c. 2700 years. The Holocene 16(1): 63.CrossRefGoogle Scholar
  3. Boyer, D. (2008). Intricate dynamics of a deterministic walk confined in a strip. EPL (Europhysics Letters) 83: 20,001.CrossRefGoogle Scholar
  4. Boyer, D., and Larralde, H. (2005). Looking for the right thing at the right place: Phase transition in an agent model with heterogeneous spatial resources. Complexity 10(3): 52–55.CrossRefGoogle Scholar
  5. Boyer, D., and Walsh, P. D. (2010). Modelling the mobility of living organisms in heterogeneous landscapes: does memory improve foraging success? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368(1933): 5645.CrossRefGoogle Scholar
  6. Boyer, D., Miramontes, O., Ramos-Fernández, G., Mateos, J. L., and Cocho, G. (2004). Modeling the searching behavior of social monkeys. Physica A: Statistical Mechanics and its Applications 342(1–2): 329–335.CrossRefGoogle Scholar
  7. Boyer, D., Ramos-Fernández, G., Miramontes, O., Mateos, J. L., Cocho, G., Larralde, H., Ramos, H., and Rojas, F. (2006). Scale-free foraging by primates emerges from their interaction with a complex environment. Proceedings of the Royal Society B: Biological Sciences 273(1595): 1743.CrossRefGoogle Scholar
  8. Boyer D, Miramontes O, Ramos-Fernández G (2008) Evidence for biological Lévy flights stands. Arxiv preprint arXiv:08021762Google Scholar
  9. Boyer, D., Miramontes, O., and Larralde, H. (2009). Lévy-like behaviour in deterministic models of intelligent agents exploring heterogeneous environments. Journal of Physics A: Mathematical and Theoretical 42: 434,015.Google Scholar
  10. Brantingham, P. J. (2006). Measuring forager mobility. Current anthropology 47(3): 435–459.CrossRefGoogle Scholar
  11. Brockmann, D., Hufnagel, L., and Geisel, T. (2006). The scaling laws of human travel. Nature 439(7075): 462–465.CrossRefGoogle Scholar
  12. Brown, C. T., Liebovitch, L. S., and Glendon, R. (2007). Lévy flights in Dobe ju/’hoansi foraging patterns. Human Ecology 35(1): 129–138.CrossRefGoogle Scholar
  13. Brown, C. T., Liebovitch, L. S., and Glendon, R. (2010). Hunter-gatherers optimize their foraging patterns using lévy flights. In Bates, D. G., and Tucker, J. (eds.), Human Ecology: Contemporary Research and Practice. Springer, New York, USA, pp. 51–65.Google Scholar
  14. Burke, M. B., Miguel, E., Satyanath, S., Dykema, J. A., and Lobell, D. (2009). Warming increases the risk of civil war in Africa. Proceedings of the National Academy of Sciences 106(49): 20,670.CrossRefGoogle Scholar
  15. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer VerlagGoogle Scholar
  16. Camacho Z (2007) Montaña de Guerrero: pobreza y militarización. Revista Contralínea Año 5(70). (Retrived 09/09/2011)
  17. Campiteli, M., Martinez, A., and Bruno, O. (2006). An image analysis methodology based on deterministic tourist walks. Advances in Artificial Intelligence-IBERAMIA-SBIA 2006: 159–167.CrossRefGoogle Scholar
  18. Cervantes, V., Arriaga, V., and Carabias, J. (1996). La problematica socioambiental e institucional de la reforestacion en la region de la Montana, Guerrero, Mexico. Soc. Bot. Mex 59: 67–80.Google Scholar
  19. Cervantes, V., Arriaga, V., Meave, J., and Carabias, J. (1998). Growth analysis of nine multipurpose woody legumes native from southern Mexico. Forest Ecology and Management 110(1–3): 329–341.CrossRefGoogle Scholar
  20. Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology 9(2): 129–136.CrossRefGoogle Scholar
  21. Chechkin, A. V., Metzler, R., Klafter, J., and Gonchar, V. Y. (2008). Introduction to the theory of Lévy flights. In Klages, R., Radons, G., and Sokolov, I. M. (eds.), Anomalous Transport: Foundations and Applications. Wiley-VCH, Berlin.Google Scholar
  22. de Jager, M., Weissing, F. J., Herman, P. M. J., Nolet, B. A., and van de Koppel, J. (2011). Lévy walks evolve through interaction between movement and environmental complexity. Science 332(6037): 1551.CrossRefGoogle Scholar
  23. Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., Buldyrev, S. V., da Luz, M. G. E., Raposo, E. P., Stanley, H. E., et al. (2007). Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449(7165): 1044–1048.CrossRefGoogle Scholar
  24. Enquist, B., and Niklas, K. (2001). Invariant scaling relations across tree-dominated communities. Nature 410(6829): 655–660.CrossRefGoogle Scholar
  25. Flores, J. C. (2007). Dispersal time for ancient human migrations: Americas and Europe colonization. EPL (Europhysics Letters) 79: 18,004.CrossRefGoogle Scholar
  26. Ghilardi, A., Guerrero, G., and Masera, M. (2007). Spatial analysis of residential fuel wood supply and demand patterns in Mexico using the wisdom approach. Biomass and Bioenergy 31(7): 475–491.CrossRefGoogle Scholar
  27. Gonzalez, M. C., Hidalgo, C. A., and Barabási, A. L. (2008). Understanding individual human mobility patterns. Nature 453(7196): 779–782.CrossRefGoogle Scholar
  28. Hays GC, Bastian T, Doyle TK, Fossette S, Gleiss AC, Gravenor MB, Hobson VJ, Humphries NE, Lilley MKS, Pade NG, et al (2011) High activity and Lévy searches: jellyfish can search the water column like fish. Proceedings of the Royal Society B: Biological SciencesGoogle Scholar
  29. Hébert, M. (2006). Ni la guerre, ni la paix: campagnes de “stabilisation” et violence structurelle chez les tlapanéques de la Montaña du Guerrero (Mexique). Anthropologica 48(1): 29–42.CrossRefGoogle Scholar
  30. Homer-Dixon, T. F. (1994). Environmental scarcities and violent conflict: evidence from cases. International Security 19(1): 5–40.CrossRefGoogle Scholar
  31. Hsiang, S. M., Meng, K. C., and Cane, M. A. (2011). Civil conflicts are associated with the global climate. Nature 476(49): 438–441.CrossRefGoogle Scholar
  32. IEA (2009). International Energy Agency—2009 World Energy Outlook. OECD/IEA, Paris.Google Scholar
  33. James A, Plank MJ, Edwards AM (2011) Assessing Lévy walks as models of animal foraging. Journal of The Royal Society InterfaceGoogle Scholar
  34. Klafler, J., and Sokolov, I. M. (2005). Anomalous diffusion spreads its wings. Physics world 18(8): 29.Google Scholar
  35. Knoppien, P., and Reddingius, J. (1985). Predators with two modes of searching: A mathematical model. Journal of Theoretical Biology 114(2): 273–301.CrossRefGoogle Scholar
  36. Landa, R., Meave, J., and Carabias, J. (1997). Environmental deterioration in rural Mexico: an examination of the concept. Ecological Applications 7(1): 316–329.CrossRefGoogle Scholar
  37. Lima, G. F., Martinez, A. S., and Kinouchi, O. (2001). Deterministic walks in random media. Physical Review Letters 87(1): 10,603.CrossRefGoogle Scholar
  38. Lomholt, M. A., Tal, K., Metzler, R., and Joseph, K. (2008). Lévy strategies in intermittent search processes are advantageous. Proceedings of the National Academy of Sciences 105(32): 11,055.CrossRefGoogle Scholar
  39. Mao, L., and Bian, L. (2010). A dynamic network with individual mobility for designing vaccination strategies. Transactions in GIS 14(4): 533–545.CrossRefGoogle Scholar
  40. Martínez MO (2008) La Montaña de Guerrero: una redefinición. Oxtotitlán: Itinerancias Antropológicas Número 2, Febrero.Google Scholar
  41. Matthäus, F., Mommer, M. S., Curk, T., and Dobnikar, J. (2011). On the origin and characteristics of noise-induced Lévy walks of e. coli. PloS one 6(4): e18,623.CrossRefGoogle Scholar
  42. Miramontes, O., and Luque, B. (2002). Dynamical small-world behavior in an epidemical model of mobile individuals. Physica D: Nonlinear Phenomena 168: 379–385.CrossRefGoogle Scholar
  43. Miramontes O, Boyer D, Bartumeus F (2012) The effects of spatially heterogeneous prey distributions on detection patterns in foraging seabirds. PLoS ONE in press.Google Scholar
  44. Morales-Hernández R (2006) Remesas familiares y condiciones de vida en el contexto de la migración guerrerense hacia los Estados Unidos de América (PhD Thesis). Universidad Autónoma de GuerreroGoogle Scholar
  45. Newman, M. E. J. (2005). Power laws, Pareto distributions and Zip’s law. Contemporary Physics 46(5): 323–351.CrossRefGoogle Scholar
  46. Nurzaman, S. G., Matsumoto, Y., Nakamura, Y., Shirai, K., Koizumi, S., and Ishiguro, H. (2011). From Lévy to Brownian: A computational model based on biological fluctuation. PLoS ONE 6(2): e16,168.CrossRefGoogle Scholar
  47. Pineda-García, F., et al. (2007). Richness and diversity of woody species in the tropical dry forest of El Tarimo, Cuenca del Balsas, Guerrero. Revista Mexicana de Biodiversidad 78(1): 129–139.Google Scholar
  48. R Development Core Team (2009). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  49. Raleigh, C., and Urdal, H. (2007). Climate change, environmental degradation and armed conflict. Political Geography 26(6): 674–694.CrossRefGoogle Scholar
  50. Ramos-Fernández, G., Mateos, J., Miramontes, O., Cocho, G., Larralde, H., and Ayala-Orozco, B. (2004). Lévy walk patterns in the foraging movements of spider monkeys (ateles geoffroyi). Behavioral Ecology and Sociobiology 55(3): 223–230.CrossRefGoogle Scholar
  51. Ramos-Fernández, G., Boyer, D., and Gómez, V. P. (2006). A complex social structure with fission–fusion properties can emerge from a simple foraging model. Behavioral ecology and sociobiology 60(4): 536–549.CrossRefGoogle Scholar
  52. Reynolds, A. M. (2008). Deterministic walks with inverse-square power-law scaling are an emergent property of predators that use chemotaxis to locate randomly distributed prey. Physical Review E 78(1): 011,906.CrossRefGoogle Scholar
  53. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., and Chong, S. (2011). On the Lévy-walk nature of human mobility. IEEE-ACM Transactions on Networking 19(3): 630–643.CrossRefGoogle Scholar
  54. Richerson, P. J., and Boyd, R. (2008). Being human: Migration: An engine for social change. Nature 456(7224): 877–877.CrossRefGoogle Scholar
  55. Rzedowski, J. (1996). Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botanica Mexicana 35: 25–44.Google Scholar
  56. Santos, M. C., Boyer, D., Miramontes, O., Viswanathan, G. M., Raposo, E. P., Mateos, J. L., and Da Luz, M. G. E. (2007). Origin of power-law distributions in deterministic walks: The influence of landscape geometry. Physical Review E 75(6): 061,114.CrossRefGoogle Scholar
  57. Schreier, A. M., and Grove, M. (2010). Ranging patterns of hamadryas baboons: random walk analyses. Animal Behaviour 80(1): 75–87.CrossRefGoogle Scholar
  58. Shlesinger, M. F., and Klafter, J. (2000). Lévy walks versus Lévy flights. In Stanley, H. E., and Ostrowsky, N. (eds.), On Growth and Form: Fractal and Non-Fractal Patters in Physics. Martinus Nijhoff Publishers, Dordrecht, pp. 279–283.Google Scholar
  59. Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J. A., Pitchford, J. W., James, A., Ahmed, M. Z., Brierley, A. S., Hindell, M. A., et al. (2008). Scaling laws of marine predator search behaviour. Nature 451(7182): 1098–1102.CrossRefGoogle Scholar
  60. Slatkin, M. (1973). Gene flow and selection in a cline. Genetics 75(4): 733.Google Scholar
  61. Sokal, R. R., Harding, R. M., and Oden, N. L. (1989). Spatial patterns of human gene frequencies in Europe. American journal of physical anthropology 80(3): 267–294.CrossRefGoogle Scholar
  62. Stanley, H. E., and Buldyrev, S. V. (2001). The salesman and the tourist. Nature 413: 373.CrossRefGoogle Scholar
  63. Stephens DW, Krebs JR (1986) Foraging theory. Princeton Univ PrGoogle Scholar
  64. Sueur, C. (2011). A non-Lévy random walk in chacma baboons: What does it mean? PloS one 6(1): e16,131.CrossRefGoogle Scholar
  65. Taniguchi H (2011) Guerrero tiene municipios tan pobres como algunos países de Africa. CNN México. (Retrieved 20/09/2011)
  66. Viswanathan, G. M., Buldyrev, S. V., Havlin, S., Da Luz, M. G. E., Raposo, E. P., and Stanley, H. E. (1999). Optimizing the success of random searches. Nature 401(6756): 911–914.CrossRefGoogle Scholar
  67. Viswanathan GM, da Luz MGE, Raposo EP, Stanley HE (2011) The Physics of Foraging: An Introduction to Random Searches and Biological Encounters. Cambridge Univ PrGoogle Scholar
  68. Wakeley, J. (1999). Nonequilibrium migration in human history. Genetics 153(4): 1863.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Octavio Miramontes
    • 1
    • 2
  • Og DeSouza
    • 3
  • Diego Hernández
    • 4
  • Eliane Ceccon
    • 5
    • 6
  1. 1.Instituto de Física and Centro de Ciencias de la ComplejidadUniversidad Nacional Autónoma de MéxicoCoyoacánMexico
  2. 2.Departamento de FísicaUFPRCuritibaBrazil
  3. 3.Laboratório de Termitologia, EntomologiaUniversidade Federal de VicosaVicosaBrazil
  4. 4.Posgrado en Ciencias Biológicas, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoCoyoacánMexico
  5. 5.Centro Regional de Investigaciones MultidisciplinariasUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  6. 6.Departamento de BiologíaUFPRCuritibaBrazil

Personalised recommendations