Human Ecology

, Volume 38, Issue 5, pp 599–611

Will Limited Land, Water, and Energy Control Human Population Numbers in the Future?

  • David Pimentel
  • Michele Whitecraft
  • Zachary R. Scott
  • Leixin Zhao
  • Patricia Satkiewicz
  • Timothy J. Scott
  • Jennifer Phillips
  • Daniel Szimak
  • Gurpreet Singh
  • Daniela O. Gonzalez
  • Tun Lin Moe
Article

Abstract

Nearly 60% of the world’s human population is malnourished and the numbers are growing. Shortages of basic foods related to decreases in per capita cropland, water, and fossil energy resources contribute to spreading malnutrition and other diseases. The suggestion is that in the future only a smaller number of people will have access to adequate nourishment. In about 100 years, when it is reported that the planet will run out of fossil energy, we suggest that a world population of about two billion might be sustainable if it relies on renewable energy technologies and also reduces per capita use of the earth’s natural resources.

Keywords

Sustainable world population Fossil fuels Population growth Agricultural land degradation 

References

  1. American Physical Society. (2008). Energy Future: Think Efficiency. Retrieved September 2009 from http://www.aps.org/energyefficiencyreport/
  2. Arrow, K. J., Dasgupta, P., Goulder, L. H., Daily, G. C., Ehrlich, P., Heal, G., Levin, S., Maler, K., Scheider, S. H., Starrett, D., and Waler, B. (2004). Are We Consuming Too Much? The Journal of Economic Perspectives 18(3): 147–172.CrossRefGoogle Scholar
  3. Bartlett, A. A. (1997-98). Reflections on Sustainability, Population Growth, and the Environment—Revisited. Renewable Resources Journal 15(4): 6–23.Google Scholar
  4. Berk, R., and Rothenberg, S. (2003). Water Resource Dynamics in Asian Pacific Cities. Department of Statistics, University of Southern California. Los Angeles, California. Retrieved September 2009 from http://repositories.cdlib.org/uclastat/papers/2003050101/
  5. Botsford, L. W., Castilla, J. C., and Peterson, C. H. (1997). The Management of Fisheries and Marine Ecosystems. Science 277(5325): 509–515.CrossRefGoogle Scholar
  6. Brown, L. (2008). World facing huge challenge on food front: Business-as-usual not a viable option. Plan B Update #72. Retrieved April 2009 from http://www.earth-policy.org/index.php?/plan_b_updates/2008/update72
  7. Butler, R. (2009). As rain forests disappear, a market solution emerges. Environment 360. Yale University, New Haven. Retrieved September 2009 from http://e360.yale.edu/content/feature.msp?id=2097
  8. Cantrell, K. B., Ducey, T., Ro, K. S., and Hunt, P. G. (2008). Livestock Waste-To-Bioenergy Generation Opportunities. Bioresource Technology 99(17): 7941–7953.CrossRefGoogle Scholar
  9. Cassman, K. G., Dobermann, A., Walters, D. T., and Yang, H. (2003). Meeting Cereal Demand While Protecting Natural Resources and Improving Environmental Quality. Annual Review of Environment and Resources 28: 315–358.CrossRefGoogle Scholar
  10. Chiras, D. (2006). Environmental Science, 7th ed. Jones and Bartlett, Sudbury.Google Scholar
  11. Cohen, J. (2003). Human Population: The Next Half Century. Science 302: 1172–1175.CrossRefGoogle Scholar
  12. Covich, A. P. (1993). Water Ecosystems. In Gleick, P. H. (ed.), Water in Crisis. Oxford University Press, New York, pp. 40–55.Google Scholar
  13. Crosson, P. (1997). Will Erosion Threaten Agricultural Productivity? Environment 39(8): 4–9. 29–31.Google Scholar
  14. Daily, G. C., and Ehrlich, P. R. (1996). Socioeconomic Equity, Sustainability, and Carrying Capacity. Ecological Applications 6: 991–1001.CrossRefGoogle Scholar
  15. Daily, G., Ehrlich, A., and Ehrlich, P. (1994). Optimum Human Population Size. Population and Environment 15: 469–475.CrossRefGoogle Scholar
  16. Desvaux, M. (2009). Current population is three times the sustainable level. From Balanced View, 2007–2008. World Population Balance newsletters. Retrieved September 2009 from http://worldpopulationbalance.org/3_times_sustainable
  17. Döös, B. R. (1994). Environmental degradation, global food production and risk for large-scale migrations. Ambio 23(2): 124–130.Google Scholar
  18. Döös, B. R. (2002). The Problem of Predicting Global Food Production. Ambio 31(5): 417–424.Google Scholar
  19. Earth Policy Organization. (2008). Why Ethanol Production Will Drive World Food Prices Even Higher in 2008. Table 5. World Grain Consumption and Stocks, 1960–2007. Retrieved February 2009 from Earth Policy Institute http://www.earth-policy.org/Updates/2008/Update69_data.htm#table5
  20. Ehrlich, P. R., and Ehrlich, A. H. (1997). The Population Explosion: Why We Should Care and What We Should Do About It. Environmental Law 27: 1187–1208.Google Scholar
  21. EIA. (2008). World Proved Reserves of Oil and Natural Gas, Most Recent Estimates. Energy Information Agency, U.S. Department of Energy, Washington, DC. Retrieved September 2009 from http://www.eia.doe.gov/emeu/international/reserves.html
  22. EPA. (1994). Quality of Our Nation’s Water 1994. Washington, DC, U.S. Environmental Protection Agency. Retrieved September 2009 from http://www.epa.gov/305b/94report/index.html
  23. Exploring the Future. (2001). Energy Needs, Choices and Possibilities. Scenarios to 2050. Global Business Environment. Shell International 2001. Retrieved September 2009 from http://www.cleanenergystates.org/CaseStudies/Shell_2050.pdf
  24. FAO. (1998). Agriculture’s use of water. FAO Corporate Document Repository. Natural Resources Management and Environment Department. Food and Agricultural Organization, United Nations. Rome.Google Scholar
  25. FAO. (2003). Food and Agricultural Organization of the United Nations. Food Balance Sheets. Retrieved September 2009 from FAO http://faostat.fao.org/site/368/default.aspx#ancor
  26. FAO. (2006). FAO, Agricultural Statistics Global Outlook. FAO Statistics Division. Food and Agricultural Organization, United Nations, Rome. Retrieved September 2009 from FAO http://faostat.fao.org/portals/_faostat/documents/pdf/world.pdf
  27. Ferguson, A. (1998). “World Carrying Capacities.” Optimum Population Trust, 12 pages. Copies can be requested from Optimum Population Trust. http://www.optimumpopulation.org/
  28. Ferguson, A. (2008). Photovoltaics, Batteries, Tractors, Horses, and Biofuels. Optimum Population Trust 8(2): 7–13.Google Scholar
  29. Fischer, G., Shah, M., Tubiello, F. N., and Velhuizen, H. V. (2005). Socio-economic and Climate Change Impacts on Agriculture: an Integrated Assessment, 1990–2080. Philosophical Transactions of the Royal Society of London, B 360: 2067–2083.CrossRefGoogle Scholar
  30. Giampietro, M., and Pimentel, D. (1994). Energy Utilization. In Arntzen, C. J., and Ritter, E. M. (eds.), Encyclopedia of Agricultural Science, vol. 2. Academic, San Diego, pp. 63–76.Google Scholar
  31. Gilau, A. M., Van Buskirk, R., and Small, M. J. (2007). Enabling Optimal Energy Options Under the Clean Development Mechanism. Energy Policy 35(11): 5526–5534.CrossRefGoogle Scholar
  32. Gleick, P. (ed.) (1993). Water in Crisis: a Guide to the World’s Fresh Water Resources. Oxford University Press, New York.Google Scholar
  33. Gleick, P. (2008–2009). The World’s Water 2008–2009: The Biennial Report on Freshwater Resources. Pacific Institute for Studies in Development, Environment and Security, Island Press, Washington D.C.Google Scholar
  34. Gleick, P. H., Wolff, E. L., and Chalecki, R. R. (2002). The New Economy of Water: The Risks and Benefits of Globalization and Privatization of Freshwater. Oakland, CA: Pacific Institute for Studies in Development, Environment, and Security. 48 pp. Retrieved September 2009 from http://www.pacinst.org/publications/
  35. Goklany, I. M. (2001). Modern Agriculture. Property and Environment Research Center Reports 19(1): 12–14. Retrieved September 2009 from PERC http://www.perc.org/search.php
  36. Ho, S. P. S., and Lin, G. C. S. (2004). Converting Land to Nonagricultural us in China’s Coastal Provinces: Evidence from Jiangsu. Modern China 30(1): 81–112.CrossRefGoogle Scholar
  37. Hotez, P. J., and Pritchard, D. T. (1995). Hookworm Infection. Scientific American 272(6): 68–74.CrossRefGoogle Scholar
  38. IFFCO. (2008). Developments in Ammonia Production Technology. Indian Farmers Fertiliser Cooperative Limited. Retrieved December 2008 from IFFCO http//www.iffco.nic.in/applications/iffcoweb5.nsf/0/4c4c41bda8dce6c7652570c40047bd41?OpenDocument
  39. IFIA. (2008). International Fertilizer Industry Association. Statistics. Infoacosan. 2005–2006. Retrieved August 2009 from http://www.fertilizer.org/iea/overview.html
  40. International Energy Annual. (2007). International Energy Annual. World Energy Overview. Retrieved from Energy Information Administration http://www.eia.doe.gov/iea/overview.html [access date].
  41. IPCC. (2007). Climate change 2007. Synthesis Report 2007. Available from IPCC Fourth Assessment Report. Retrieved January 2009 from http://www.ipcc.ch/pdf/assessment_report/ar4/syr/ar4_syr_spm.pdf
  42. Kellert, R. S., and Wilson, E. O. (1993). The Biophilia Hypothesis. Island Press, Washington.Google Scholar
  43. Kendall, H. W., and Pimentel, D. (1994). Constraints on the Expansion of the Global Food Supply. Ambio 23(3): 198–205.Google Scholar
  44. Kloverpris, J., Wenzel, H., and Nielsen, P. H. (2008). Life Cycle Inventory Modeling of Land Use Induced by Crop Consumption. Part 1: Conceptual Analysis and Methodological Proposal. Assessment 13(1): 13–21.Google Scholar
  45. Kondratyev, K. Y., Krapivin, V. F., and Varotsus, C. A. (2003). Global Carbon Cycle and Climate Change. Springer-Verlag, Berlin.Google Scholar
  46. Lal, R. (1997). Degradation and Resilience of soils. Philosophical Transactions of the Royal Society of London 352(1356): 997–1010.CrossRefGoogle Scholar
  47. Larsen, J. (2003). Population growth leading to land hunger. Earth Policy Institute, January 23, 2003. Retrieved February 2009 from Earth Policy Institute http://www.earth-policy.org/index.php?/plan_b_updates/2003/update21
  48. Leach, G. (1995). Global Land and Food in the 21st Century. Stockholm: International Institute for Environmental Technology and Management. Retrieved from Earth Policy Institute http://www.earth-policy.org/index.php?/Plan_b_updates/2003/update21 [access date].
  49. Mann, D. (2009). Essay on a sustainable economy. NPG Forum Series. Retrieved July 2009 from NPG http://www.npg.org/forum_series/sus_econ_91.htm
  50. Matson, P. A., Parton, W. J., Power, A. G., and Swift, M. J. (1997). Agricultural Intensification and Ecosystem Properties. Science 277: 504–509.CrossRefGoogle Scholar
  51. McNeely, J. A. (1999). Imagine Tomorrow's World. International Union for Conservation of Nature, GlandGoogle Scholar
  52. Meadows, D. (2000). “Population, Poverty, And Planet Earth” in Birth, Sex & Death. In Context: A Quarterly of Humane Sustainable Culture (#31): Human Family Planning. Last Updated 29 June 2000. Retrieved January 2009 from http://www.context.org/ICLIB/IC31/Meadows.htm
  53. Montgomery, D. R. (2007). Dirt: The Erosion of Civilizations. University of California Press, Berkeley.Google Scholar
  54. Morrison, F. B. (1946). Feeds and Feeding: a handbook for the student and stockman. 21th Edition, unabridged. Morrison Publishing Co., Ithaca.Google Scholar
  55. Murray, C. J. L., and Lopez, A. D. (1996). The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020. Harvard School of Public Health, Cambridge.Google Scholar
  56. Muvirimi, F., and Ellis-Jones, J. (1999). A farming systems approach to improving draft animal power in sub-Saharan Africa. In Starkey, P. and Kaumbutho, P. (eds.), Meeting the Challenges of Animal Traction: A resource book of the Animal Traction Network for Eastern and Southern Africa (ATNESA). Intermediate Technology Publications, London, pp. 10–19. Retrieved January 2009 from ATNESA http://atnesa.org/challenges/challengesmuvirimifarmingsystems.pdf
  57. Myers, N. (1990). The Nontimber Values of Tropical Forests. Forestry for Sustainable Development Program, University of Minnesota, November, 1990. Report 10.Google Scholar
  58. National Academy of Sciences (1989). Alternative Agriculture. National Research Council. National Academy of Sciences Press, Washington.Google Scholar
  59. National Academy of Sciences (1994). Population Summit of the World’s Scientific Academies. National Academy of Sciences Press, Washington.Google Scholar
  60. National Academy of Sciences (2003). Frontiers in Agricultural Research: Food, Health, Environment and Communities. National Academy of Sciences, Washington.Google Scholar
  61. NASA/C3P. (2008). International Workshop on Pollution Prevention and Sustainable Development. Retrieved September 2009 from http://www.teerm.nasa.gov/workshop2008.html
  62. Nash, L. (1993). Water Quality and Health. In Gleick, P. (ed.), Water in Crisis: A Guide to the World’s Fresh Water Resources. Oxford University Press, Oxford, pp. 25–39.Google Scholar
  63. Netherlands Environmental Assessment Agency. (2008). China Now No. 1 in CO2 Emissions; USA in Second Position. Retrieved September 2009 from http://www.pbl.nl/en/dossiers/Climatechange/moreinfo/Chinanowno1inCO2emissionsUSAinsecondposition.html
  64. Nearing, M. A., Pruski, F. F., and O’Neal, M. R. (2004). Expected Climate Change Impacts on Soil Erosion Rates: A Review. Journal of Soil and Water Conservation 59(1): 43–50.Google Scholar
  65. Oldeman, L. R., Hakkeling, R. T. A., and Sombroek, W. G. (1990). World map of the status of human-induced soil degradation: an explanatory note. Global Assessment of Soil Degradation (GLASOD). International Soil Reference and Information Centre (ISRIC) and United Nations Environment Programme (UNEP).Google Scholar
  66. Oreke, E. C., and Dehne, H. W. (2004). Safeguarding production--losses in major crops and the role of crop protection. Crop Protection 23(4): 275–285. Retrieved February 2009 from Science Direct http://www.sciencedirect.com/science/article/B6T5T-4B84XHC-1/2/e55ee6dbbb31f42ef43b7eb26066e907
  67. Patzek, T. (2009). Personal Communication, University of Texas.Google Scholar
  68. Pimentel, D. (1997). Pest Management in Agriculture. In Pimentel, D. (ed.), Techniques for Reducing Pesticide use: Environmental and Economic Benefits. Wiley, Chichester.Google Scholar
  69. Pimentel, D. (1998). Economics Benefit of Natural Biota. Ecological Economics 25: 45–47.CrossRefGoogle Scholar
  70. Pimentel, D. (2000). Konsequenzen der weltweiten Bordenerosion und-degradation. In Haber, W., Held, M., and Schneider, M. (eds.). Nachhaltiger Umang mit Boden: Initiative fur eine internationale. Bodenkonvention, pp. 11–27.Google Scholar
  71. Pimentel, D. (ed.) (2002). Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal and Microbe Species. CRC Press, Boca Raton.Google Scholar
  72. Pimentel, D. (2006). Soil Erosion: A Food and Environmental Threat. Environment, Development and Sustainability 8: 119–137.CrossRefGoogle Scholar
  73. Pimentel, D. (2008). Renewable and Solar Energy Technologies: Energy and Environmental Issues. In Pimentel, D. (ed.), Biofuels, Solar and Wind as Renewable Energy Systems: Benefits and Risks. Springer, Dordrecht, pp. 1–17.CrossRefGoogle Scholar
  74. Pimentel, D., and Wen, D. (2004). China and the World: Population, Food and Resource Scarcity. In Tso, T. C., and He, K. (eds.), Dare to Dream: Vision of 2050 Agriculture in China. China Agricultural University Press, Beijing, pp. 103–116.Google Scholar
  75. Pimentel, D., and Wilson, A. (2004). World Population, Agriculture, and Malnutrition. Worldwatch Magazine 17(5). Retrieved October 2009 from the Worldwatch Institute http://www.worldwatch.org/node/554
  76. Pimentel, D., and Patzek, T. (2008). Ethanol Production Using Corn, Switchgrass and Wood; Biodiesel Production Using Soybean. In Pimentel, D. (ed.), Biofuels, Solar and Wind as Renewable Energy Systems: Benefits and Risks. Springer, Dordrecht, pp. 375–396.CrossRefGoogle Scholar
  77. Pimentel, D., and Pimentel, M. (2008). Food, Energy and Society, 3rd ed. CRC Press (Taylor and Francis Group), Boca Raton, p. 380.Google Scholar
  78. Pimentel, D., Stachow, U., Takacs, D. A., Brubaker, H. W., Dumas, A. R., Meaney, J. J., O'Neil, J. A. S., Onsi, D. E., and Corzilius, D. B. (1992). Conserving Biological Diversity in Agricultural/Forestry Systems. Bioscience 42: 354–362.CrossRefGoogle Scholar
  79. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurtz, D., McNair, M., Crist, S., Spritz, L., Fitton, L., Saffouri, R., and Blair, R. (1995). Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 267: 1117–1123.CrossRefGoogle Scholar
  80. Pimentel, D., Wilson, C., McCullum, C., Huang, R., Dwen, P., Flack, J., Tran, Q., Saltman, T., and Cliff, B. (1997). Economic and Environmental Benefits of Biodiversity. Bioscience 47(11): 747–757.CrossRefGoogle Scholar
  81. Pimentel, D., Bailey, O., Kim, P., Mullaney, E., Calabrese, J., Walman, L., Nelson, F., and Yao, X. (1999). Will Limits of the Earth’s Resources Control Human Numbers? Environment, Development and Sustainability 1(1): 19–39.CrossRefGoogle Scholar
  82. Pimentel, D., Hertz, M., Glickstein, M., Zimmerman, M., Allen, R., Becker, K., Evans, J., Hussain, B., Sarsfield, R., Grosfeld, A., and Seidel, T. (2002). Renewable Energy: Current and Potential Issues. Bioscience 52(12): 1111–1120.CrossRefGoogle Scholar
  83. Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, B., Clark, S., Poon, E., Abbett, E., and Nandagopal, S. (2004). Water Resources: Agricultural and Environmental Issues. Bioscience 54(10): 909–918.CrossRefGoogle Scholar
  84. Pimentel, D., Petrova, T., Rley, M., Jacquet, J., Ng, V., Honigman, J., and Valero, E. (2006). Conservation of Biological Diversity in Agricultural, Forestry, and Marine Systems. In Burk, A. R. (ed.), Focus on Ecology Research. Nova Science, New York, pp. 151–173.Google Scholar
  85. Pimentel, D., Cooperstein, S., Randell, H., Filiberto, D., Sorrentino, S., Kaye, B., Yagi, C. J., Brian, J., O’Hern, J., Habas, A., and Weistein, C. (2007). Ecology of Increasing Diseases: Population Growth and Environmental Degradation. Human Ecology 35(6): 653–668.CrossRefGoogle Scholar
  86. Pimentel, D., Williamson, S., Alexander, C. E., Gonzalez-Pagan, O., Kontak, C., and Mulkey, S. E. (2008a). Reducing Energy Inputs in the U.S. Food System. Human Ecology 36(4): 459–471.CrossRefGoogle Scholar
  87. Pimentel, D., Marklein, A., Toth, M. A., Karpoff, M., Paul, G. S., McCormack, R., Kyriazis, J., and Krueger, T. (2008b). Biofuel Impacts on World Food Supply: Use of Fossil Fuel, Land and Water Resources. Energies 1: 41–78; DOI: 10.3390/en1010041 Retrieved December 2008 from http://www.mdpi.org/energies/papers/en1020041.pdf
  88. Pingali, P. L., and Rajaram, S. (1999). Global wheat research in a changing world: Options for sustaining growth in wheat productivity. In Pingali, P.L. (ed.), CIMMYT 1998–99 World wheat facts and trends, Global wheat research in a changing World: Challenges and Achievements. CIMMYT, Mexico, DF, pp. 1–18. Retrieved September 2009 from http://www.cimmyt.org/research/economics/map/facts_trends/wheatft9899/htm/wheatft9899.htm
  89. Pollution Problem. (2009). From 90% to 95% of sewage in developing countries is placed in rivers and lakes. Retrieved August 2009 from http://www.infoforhealth.org/pr/m14/m14chap4_1.shtml
  90. Postel, S. (1997). Last Oasis: Facing Water Scarcity. W.W Norton, New York.Google Scholar
  91. PRB (1996). World Population Data Sheet. Population Reference Bureau, Washington.Google Scholar
  92. PRB. (2008). World Population Data Sheet. Population Reference Bureau, Washington, D.C. Retrieved August 2009 from PRB http://www.prb.org/Publications/Datasheets/2008/2008wpds.aspx
  93. PRB. (2009). World Population Data Sheet. Population Reference Bureau, Washington, D.C. Retrieved October 2009 from PRB http://www.prb.org/Publications/Datasheets/2009/2009wpds.aspx
  94. Reid, W. V., and Miller, K. R. (1989). Keeping Options Alive: The Scientific Basis for Conserving Biodiversity. World Resources Institute, Washington.Google Scholar
  95. Rijsberman, F. (2004). The Water Challenge. Copenhagen Consensus. pp. 1–37. 3. May 2004. Retrieved November 2008 from http://www.copenhagenconsensus.com/files/filer/cc/papers/sanitation_and_water_140504.pdf
  96. Ro, K. S., Cantrell, K., Elliott, D., and Hunt, P. G. (2007). Catalytic Wet Gasification of Municipal and Animal Wastes. Industrial and Engineering Chemistry Research 46(26): 8839–8845.CrossRefGoogle Scholar
  97. Rosegrant, M., Leach, N., and Gerpacio, R. (1999). Alternative Futures for World Cereal and Meat Consumption. Proceedings of the Nutrition Society 58: 219–234.Google Scholar
  98. Sanchez, P. A. (2002). Soil Fertility and Hunger in Africa. Science 295: 2019–2020.CrossRefGoogle Scholar
  99. Science Daily. (2008). Economic Value of Insect Pollination Worldwide. Estimated at U.S. $217 Billion. Retrieved February 2009 from Science Daily http://www.sciencedaily.com/releases/2008/09/080915122725.htm.
  100. Shetty, P. S., and Shetty, N. (1993). Parasitic Infection and Chronic Energy Deficiency in Adults. Supplement to Parasitology 107: S159–S167.Google Scholar
  101. Shi, A. (2003). The impact of population pressure on global carbon dioxide emissions, 1975–1996: evidence from pooled cross-country data. Ecological Economics 44(2003): 29–42.CrossRefGoogle Scholar
  102. Stillwaggon, E. (2006). The Ecology of Poverty: Nutrition, Parasites, and Vulnerability to HIV/AIDS. In Gillespie, S. (ed.), AIDS, Poverty and Hunger: Challenges and Responses. International Food Policy Research Institute, Washington, pp. 167–180.CrossRefGoogle Scholar
  103. Soil and Water Conservation Society. (2003). Conservation Implications of Climate Change: Soil Erosion and Runoff from Cropland. Soil and Water Conservation Society, Ankeny, IA. Retrieved February 2009 from SWCS http://www.swcs.org/en/publications/conservation_implications_of_climate_change/
  104. Sustainable World (2002). Water. Retrieved August 2009 from http://www.sustainableworld.org.uk/water_res.htm
  105. Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D., and Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science 292: 281–284.CrossRefGoogle Scholar
  106. Troeh, F., Hobbs, J., and Donahue, R. L. (2004a). Soil and Water Conservation for Productivity and Environmental Protection, 4th ed. Prentice Hall, New Jersey.Google Scholar
  107. Troeh, F. R., Hobbs, J. A., and Donahue, R. L. (2004b). Soil and Water Conservation for Productivity and Environmental Protection. Prentice Hall, New Jersey.Google Scholar
  108. UN. (2005). UN News Centre. UN News Service. World population to reach 9.1 billion in 2050, UN projects. United Nations. Geneva. Retrieved September 2009 from http://www.un.org/apps/news/story.asp?NewsID=13451&kwi=billion8Kw2=9.1t&Kw3=
  109. UNFPA (1991). Population and the Environment: The Challenges Ahead. United Nations Fund for Population Activities. United Nations Population Fund, New York.Google Scholar
  110. USCB (2002). Statistical Abstract of the United States: 2002, 122nd ed. U.S. Census Bureau, Washington.Google Scholar
  111. USCB (2008). Statistical Abstract of the United States: 2008, 127th ed. U.S. Census Bureau, Washington.Google Scholar
  112. USCB (2009). Statistical Abstract of the United States: 2009, 128th ed. U.S. Census Bureau, Washington.Google Scholar
  113. USDA (2007). Agricultural Statistics. U.S. Department of Agriculture, Washington.Google Scholar
  114. Vietmeyer, N. (1995). Applying Biodiversity. Journal of the Federation of American Scientists 48(8): 1–8.Google Scholar
  115. Vorosmarty, C., Green, P., Salisbury, J., and Lammers, R. (2000). Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 289: 284–288.CrossRefGoogle Scholar
  116. Weeks, J. R. (1986). Population: An Introduction to Concepts and Issues, 3rd ed. Wadsworth Publishing Co, Belmont.Google Scholar
  117. Wen, D., and Pimentel, D. (1992). Ecological Resource Management to Achieve a Productive, Sustainable Agricultural System in Northeast China. Agriculture, Ecosystems & Environment 41: 215–230.CrossRefGoogle Scholar
  118. West, L. (2008). U.S. Autos Account for Half of Global Warming Linked to Cars Worldwide. Retrieved October 2009 at About.com http://environment.about.com/b/2008/06/02/us-autos-account-for-half-of-global-warming-linked-to-cars-worldwide.htm
  119. Western, D. (1989). Conservation without peaks. In Western, D., and Pearl, M. C. (eds.), Wildlife in Rural Landscape in Conservation for the Twenty-first Century. Oxford University Press, New York, pp. 158–165Google Scholar
  120. Wheal, C. (1991). Freshwater Pollution. Global Environment Monitoring System, Nairobi, Kenya, United Nations Environment Programme.Google Scholar
  121. WHO. (1992). Our Planet, our Health: Report of the WHO Commission on Health and Environment, Geneva, World Health Organization. Environment and Urbanization 4(1): 65–76. Retrieved from http://eau.sagepub.com/cgi/content/abstract/4/1/65 [access date].
  122. WHO (1993). Global health situation, Weekly Epidemiological Record. World Health Organization 68(12 February): 43–44.Google Scholar
  123. WHO. (2004). World Health Report. World Health Organization. Retrieved October 2008 http://www.who.int/whr/2004/
  124. WHO. (2005a). World Health Report on Infectious Diseases, Removing the Obstacles to Healthy Development, World Health Organization, Geneva. Retrieved September 2009 from http://www.who.int/infectious-disease-report/index-rpt99
  125. WHO. (2005b). Malnutrition Worldwide. World Health Organization. Retrieved February 2009 from http://www.mikeschoice.com/reports/malnutrition_worldwide.htm
  126. WHO. (2008). The global burden of disease: 2004 Update. World Health Organization. Retrieved December 2008 http://www.who.int/healthinfo/global_burden_disease/2004_report_update
  127. Wiens, M. J., Entz, M. H., Wilson, C., and Ominski, K. H. (2008). Energy Requirements for Transport and Surface Application of Liquid Pig Manure in Manitoba, Canada. Agricultural Systems 98(2): 74–81.CrossRefGoogle Scholar
  128. Willett, W. C., Sacks, F., Trichopoulou, A., and Drescher, G. (1995). Mediterranean Diet Pyramid: A Cultural Model for Healthy Eating. The American Journal of Clinical Nutrition 61(6): 1402S.Google Scholar
  129. WPP. (2006). The 2006 Revision (2006). UN-Social and Economic Affairs. Retrieved January 2009 from http://www.un.org/esa/population/publications/wpp2006/WPP2006_Highlights_rev.pdf
  130. WRI. (1993). World Resources 1992–93: Guide to the Global Environment. World Resources Institute, Washington, DC. Retrieved December 2008 from the World Resources Institute http://www.wri.org/publication/world-resources-1992-93-guide-global-environment
  131. Yao, X.-J. (1998). Personal Communication, Cornell University.Google Scholar
  132. Youngquist, W. (2008). Personal Communication, Petroleum Geologist. Eugene, Oregon.Google Scholar
  133. Zweibel, K., Mason, J., and Fdthenakis, V. (2007). Solar Grand Plan. By 2050 Solar Power Could End U.S. Dependence on Foreign Oil and Slash Greenhouse Gas Emissions. Scientific American 289: 37–48.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • David Pimentel
    • 1
  • Michele Whitecraft
    • 1
  • Zachary R. Scott
    • 1
  • Leixin Zhao
    • 1
  • Patricia Satkiewicz
    • 1
  • Timothy J. Scott
    • 1
  • Jennifer Phillips
    • 1
  • Daniel Szimak
    • 1
  • Gurpreet Singh
    • 1
  • Daniela O. Gonzalez
    • 1
  • Tun Lin Moe
    • 1
  1. 1.College of Agriculture and Life Sciences, Comstock HallCornell UniversityIthacaUSA

Personalised recommendations