Human Ecology

, Volume 37, Issue 3, pp 375–388 | Cite as

Environmental Consequences of the Demise in Swidden Cultivation in Southeast Asia: Carbon Storage and Soil Quality

  • Thilde Bech Bruun
  • Andreas de Neergaard
  • Deborah Lawrence
  • Alan D. Ziegler


The effects of swidden cultivation on carbon storage and soil quality are outlined and compared to the effects of the intensified production systems that swidden systems of Southeast Asia transform into. Time-averaged aboveground carbon stocks decline by about 90% if the long fallow periods of traditional swidden cultivation are reduced to 4 years and by about 60% if swidden cultivation is converted to oil palm plantations. Stocks of soil organic carbon (SOC) in tree plantations are 0–40% lower than stocks in swidden cultivation, with the largest losses found in mechanically established oil palm plantations. Impacts of tree plantations on soil quality are to a large extent determined by management. Conversion of swiddening to continuous annual cropping systems brings about substantial losses of time-averaged aboveground carbon stocks, reductions of SOC stocks and generally leads to declining soil quality. Knowledge of carbon storage in belowground biomass of tree based systems of the tropics is sparse but failure to include this pool in carbon inventories may significantly underestimate the total biomass of the systems. Moreover, studies that consider the ecological reasons behind farmers’ land use decisions as well as spatial variability in biogeophysical and edaphological parameters are needed to evaluate the effects of the ongoing land use transitions in Southeast Asia.


Swidden cultivation Land use transformation Soil quality Soil organic carbon Time-averaged aboveground carbon stocks 



We would like to thank the Ford Foundation for funding a workshop in Hanoi in March 2008 where the data for this paper was discussed.


  1. Achard, F., Eva, H. D., Stibig, H.-J., Mayaux, P., Gallego, J., Richards, T., and Malingreau, J. P. (2002). Determination of Deforestation Rates of the World’s Humid Tropical Forests. Science 297: 999–1002. doi: 10.1126/science.1070656.CrossRefGoogle Scholar
  2. Altieri, M. A., and Nicholls, C. I. (2003). Soil Fertility Management and Insect Pests: Harmonizing Soil and Plant Health in Agroecosystems. Soil and Tillage Research 72: 203–211. doi: 10.1016/S0167-1987(03)00089-8.CrossRefGoogle Scholar
  3. Andriesse, J. P. (1989). Nutrient management through shifting cultivation. A comparative study on cycling of nutrients in traditional farming systems of Malaysia and Sri Lanka. In van der Heide, J. (ed.), Nutrient Management for Food Crop Production in Tropical Farming Systems. Institute for Soil Fertility and Universitas Brawijaya, Haren, pp. 29–61.Google Scholar
  4. Andriesse, J. P., and Koopmans, T. T. (1984). A Monitoring Study on Nutrient Cycles in Soils Used for Shifting Cultivation under Various Climatic Conditions in Tropical Asia. I. The Influence of Simulated Burning on Form and Availability of Plant Nutrients. Agriculture, Ecosystems & Environment 12: 1–16. doi: 10.1016/0167-8809(84)90057-4.CrossRefGoogle Scholar
  5. Andriesse, J. P., and Schelhaas, R. M. (1987a). A Monitoring Study of Nutrient Cycles in Soils Used for Shifting Cultivation under Various Climatic Conditions in Tropical Asia. II. Nutrient Stores in Biomass and Soil—Results of Baseline Studies. Agriculture, Ecosystems & Environment 19: 285–310. doi: 10.1016/0167-8809(87)90058-2.CrossRefGoogle Scholar
  6. Andriesse, J. P., and Schelhaas, R. M. (1987b). A Monitoring Study on Nutrient Cycles in Soils Used for Shifting Cultivation under Various Climatic Conditions in Tropical Asia. III. The Effects of Land Clearing Through Burning on Fertility Level. Agriculture, Ecosystems & Environment 19: 311–332. doi: 10.1016/0167-8809(87)90059-4.CrossRefGoogle Scholar
  7. Arunachalam, A. (2002). Dynamics of Soil Nutrients and Microbial Biomass During First Year Cropping in an 8-year Jhum Cycle. Nutrient Cycling in Agroecosystems 64: 283–291. doi: 10.1023/A:1021488621394.CrossRefGoogle Scholar
  8. Aumtong, S., Magid, J., Bruun, S., and de Neergaard, A. (2009). Relating Soil Carbon Fractions to Land Use in Sloping Uplands in Northern Thailand. Agriculture, Ecosystems & Environment 131: 229–239. doi: 10.1016/j.agee.2009.01.013.CrossRefGoogle Scholar
  9. Aweto, A. O. (1995). Organic Carbon Diminution and Estimates of Carbon Dioxide Release from Plantation Soil. Environmentalist 15: 10–15. doi: 10.1007/BF01888885.CrossRefGoogle Scholar
  10. Batjes, N. H. (1996). Total Carbon and Nitrogen in the Soils of the World. European Journal of Soil Science 47: 151–163. doi: 1111/j.1365-2389.1996.tb01386.x.CrossRefGoogle Scholar
  11. Beare, M. H. (1994). Aggregate-Protected and Unprotected Organic Matter Pools in Conventional- and No-Tillage Soils. Soil Science Society of America Journal 58: 787–795.Google Scholar
  12. Brady, N. C. (1996). Alternatives to Slash-and-Burn: A Global Imperative. Agriculture, Ecosystems & Environment 58: 3–11. doi: 10.1016/0167-8809(96)00650-0.CrossRefGoogle Scholar
  13. Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests, A Primer. FAO Forestry Paper 134. FAO, Rome.Google Scholar
  14. Bruce, J. P., Frome, M., Haites, E., Janzen, H., and Paustian, K. (1999). Carbon Sequestration in Soils. Journal of Soil and Water Conservation 54: 382–389.Google Scholar
  15. Bruun, T. B., Mertz, O., and Elberling, B. (2006). Linking Yields of Upland Rice in Shifting Cultivation to Fallow Length and Soil Properties. Agriculture, Ecosystems & Environment 113: 139–149. doi: 10.1016/j.agee.2005.09.012.CrossRefGoogle Scholar
  16. Cairns, M. A., Brown, S., Helmer, E. H., and Baumgardner, G. A. (1997). Root Biomass Allocation in the World’s Upland Forests. Oecologia 11: 1–11. doi: 10.1007/s004420050201.CrossRefGoogle Scholar
  17. Carter, M. R., Gregorich, E. G., Anderson, D. W., Doran, J. W., Janzen, H. H., and Pierce, F. J. (1997). Concepts of soil quality and their significance. In Gregorich, E. G., and Carter, M. R. (eds.), Soil Quality for Crop Production and Ecosystem Health. Elsevier, Amsterdam, pp. 1–19.CrossRefGoogle Scholar
  18. Carvalho, J. L. N., Cerri, C. E. P., Feigl, B. J., Piccolo, M. C., Godinho, V. P., and Cerri, C. C. (2009). Carbon Sequestration in Agricultural Soils in the Cerrado Region of the Brazilian Amazon. Soil and Tillage Research 103: 342–349. doi: 10.1016/j.still.2008.10.022.CrossRefGoogle Scholar
  19. Das, D. K., and Chaturvedi, O. P. (2008). Root Biomass and Distribution of Five Agroforestry Tree Species. Agroforestry Systems 74: 223–230. doi: 10.1007/s10457-008-9159-9.CrossRefGoogle Scholar
  20. Davidson, E. A., and Ackerman, I. L. (1993). Changes in Soil Carbon Inventories Following Cultivation of Previously Untilled Soils. Biogeochemistry 20: 161–193. doi: 10.1007/BF00000786.CrossRefGoogle Scholar
  21. de Neergaard, A., Magid, J., and Mertz, O. (2008). Soil Erosion from Shifting Cultivation and other Smallholder Land Use in Sarawak, Malaysia. Agriculture, Ecosystems & Environment 125: 182–190. doi: 10.1016/j.agee.2007.12.013.CrossRefGoogle Scholar
  22. DeBano, L. F., Neary, D. G., and Ffolliott, P. F. (1998). Fire’s Effects on Ecosystems. Wiley, New York.Google Scholar
  23. Detwiler, R. (1986). Land Use Change and the Global Carbon Cycle: The Role of Tropical Soils. Biogeochemistry 2: 67–93. doi: 10.1007/BF02186966.CrossRefGoogle Scholar
  24. Devendra, C., and Thomas, D. (2002). Smallholder Farming Systems in Asia. Agricultural Systems 71: 17–25. doi: 10.1016/S0308-521X(01)00033-6.CrossRefGoogle Scholar
  25. Doran, J. W., and Parkin, T. B. (1994). Defining and assessing soil quality. In Doran, J. W., Coleman, D. C., Bezdicek, D. F., and Steward, B. A. (eds.), Defining Soil Quality for Sustainable Environment. Soil Science of America, Madison, pp. 3–21Special publication No 35.Google Scholar
  26. Eaton, J. M., and Lawrence, D. (2009). Loss of Carbon Sequestration Potential After Several Decades of Shifting Cultivation in the Southern Yucatan. Forest Ecology and Management (in press).Google Scholar
  27. Ewel, J., Berish, C., Brown, B., Price, N., and Raich, J. (1981). Slash and Burn Impacts on a Costa Rican Wet Forest Site. Ecology 62: 816–829. doi: 10.2307/1937748.CrossRefGoogle Scholar
  28. Feller, C., and Beare, M. H. (1997). Physical Control of Soil Organic Matter Dynamics in the Tropics. Geoderma 79: 69–116. doi: 10.1016/S0016-7061(97)00039-6.CrossRefGoogle Scholar
  29. Foody, G. M., Cuttler, M. E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D. S., and Douglas, I. (2001). Mapping the Biomass of Bornean Tropical Rain Forest from Remotely Sensed Data. Global Ecology and Biogeography 10: 379–387. doi: 10.1046/j.1466-822X.2001.00248.x.CrossRefGoogle Scholar
  30. Fox, J. (2000). How Blaming ‘Slash and Burn’ Farmers is Deforesting Mainland Southeast Asia. Asia Pacific Issues 47: 1–8.Google Scholar
  31. Fujisaka, S., Harrington, L., and Hobbs, P. (1994). Rice–Wheat in South Asia: Systems and Long-Term Priorities Established through Diagnostic Research. Agricultural Systems 46: 169–187. doi: 10.1016/0308-521X(94)90096-X.CrossRefGoogle Scholar
  32. Funakawa, S., Tanaka, S., Shinjyo, H., Kaewkhongkha, T., Hattori, T., and Yonebayashi, K. (1997). Ecological Study on the Dynamics of Soil Organic Matter and its Related Properties in Shifting Cultivation Systems of Northern Thailand. Soil Science and Plant Nutrition 43: 681–693.Google Scholar
  33. Garrity, D. P. (1993). Sustainable land-use systems for sloping uplands in South East Asia. In Ragland, J., Lal, R. (eds.), ASA Special Publication No. 56, 41–66.Google Scholar
  34. Giardina, C. P., Sanford, R. L. Jr., Døckersmith, I. C., and Jaramillo, V. J. (2000). The Effects of Slash Burning on Ecosystem Nutrients During the Land Preparation Phase of Shifting Cultivation. Plant and Soil 220: 247–260. doi: 10.1023/A:1004741125636.CrossRefGoogle Scholar
  35. Grace, J. (2004). Understanding and Managing the Global Carbon Cycle. Journal of Ecology 92: 189–202. doi: 10.1111/j.0022-0477.2004.00874.x.CrossRefGoogle Scholar
  36. Greenland, D. J. (1975). Bringing the Green Revolution to the Shifting Cultivator. Science 190: 841–844.Google Scholar
  37. Halenda, C. J. (1989). The Ecology of Fallow Forest After Shifting Cultivation in Niah Forest Reserve. Forest Research Report. Forest Department, Kuching.Google Scholar
  38. Halenda, C. J. (1993). Aboveground Biomass Production and Nutrient Accumulation of a Gmelina arborera Plantation in Sarawak, Malaysia. Journal of Tropical Forest Science 5: 429–439.Google Scholar
  39. Hamdan, J., Burnham, C. P., and Ruhana, B. (2000). Degradation Effect of Slope Terracing on Soil Quality for Elaeis guineensis Jacq. (Oil Palm) Cultivation. Land Degradation & Development 11: 181–193. doi: 10.1002/(SICI)1099-145X(200003/04)11:2<181::AID-LDR377>3.0.CO;2-U.CrossRefGoogle Scholar
  40. Harwood, R. R. (1996). Development Pathways Toward Sustainable Systems Following Slash-and-Burn. Agriculture, Ecosystems and Environment 58: 75–86. doi: 10.1016/0167-8809(95)00655-9.CrossRefGoogle Scholar
  41. Hashimotio, T., Kojima, K., Tange, T., and Sasaki, S. (2000). Changes in Carbon Storage in Fallow Forests in the Tropical Lowlands of Borneo. Forest Ecology and Management 126: 331–337. doi: 10.1016/S0378-1127(99)00104-8.CrossRefGoogle Scholar
  42. Henson, I. E. (2003). The Malaysian National Average Oil Palm: Concept and Evaluation. Oil Palm Bulletin 14: 15–27.Google Scholar
  43. Hölscher, D., Ludwig, B., Moller, R. F., and Folster, H. (1997). Dynamic of Soil Chemical Parameters in Shifting Agriculture in the Eastern Amazon. Agriculture, Ecosystems and Environment 66: 153–163. doi: 10.1016/S0167-8809(97)00077-7.CrossRefGoogle Scholar
  44. Houghton, R. A., Skole, D. L., and Lefkowitz, D. S. (1991). Changes in the Landscape of Latin America between 1850 and 1985 Forest II. Net Release of CO2 to the Atmosphere. Ecology and Management 38: 173–199. doi: 10.1016/0378-1127(91)90141-H.CrossRefGoogle Scholar
  45. Hughes, R. F., Kauffman, J. B., and Cummings, D. L. (2000). Fire in the Brazilian Amazon. Oecologia 124: 574–588. doi: 10.1007/s004420000416.CrossRefGoogle Scholar
  46. Ingram, J. S. I., and Fernandes, E. C. M. (2001). Managing Carbon Sequestration in Soils: Concepts and Terminology. Agriculture, Ecosystems & Environment 87: 111–117. doi: 10.1016/S0167-8809(01)00145-1.CrossRefGoogle Scholar
  47. IPCC. (2007). Synthesis report. An Assessment of the Intergovernmental Panel on Climate Change. Valencia.Google Scholar
  48. Jepsen, M. R. (2006). Above-Ground Carbon Stocks in Tropical Fallows, Sarawak, Malaysia. Forest Ecology and Management 225: 287–295. doi: 10.1016/j.foreco.2006.01.005.CrossRefGoogle Scholar
  49. Jobbaggy, E. G., and Jackson, R. B. (2000). The Vertical Distribution of Soil Organic Carbon and its Relation to Climate and Vegetation. Ecological Applications 10: 423–436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.CrossRefGoogle Scholar
  50. Johnson, C. M., Vieira, I. C. G., Zarin, D. J., and Frizano, J. (2001). Carbon and Nutrient Storage in Primary and Secondary Forest in Eastern Amazônia. Forest Ecology and Management 147: 245–252. doi: 10.1016/S0378-1127(00)00466-7.CrossRefGoogle Scholar
  51. Jordan, C. F. (1985). Nutrient Cycling in Tropical Forest Ecosystems. Principles and their Practical Application in Management of Conservation. Wiley, New York.Google Scholar
  52. Jordan, C. F. (1989). An Amazonian Rain Forest. The Structure and Function of a Nutrient Stressed Ecosystem and the Impact of Slash-and-burn Agriculture. Parthenon, Lancs.Google Scholar
  53. Juo, A. S. R., and Lal, R. (1977). The Effect of Fallow and Continuous Cultivation on the Chemical and Physical Properties of an Alfisol in Western Nigeria. Plant and Soil 47: 567–584. doi: 10.1007/BF00011027.CrossRefGoogle Scholar
  54. Juo, A. S. R., and Manu, A. (1996). Chemical Dynamics in Slash-and-Burn Agriculture. Agriculture, Ecosystems and Environment 58: 49–60. doi: 10.1016/0167-8809(95)00656-7.CrossRefGoogle Scholar
  55. Juo, A. S. R., Franzluebbers, K., Dabiri, A., and Ikhile, B. (1995). Changes in Soil Properties during Long-Term Fallow and Continuous Cultivation after Forest Clearing in Nigeria. Agriculture, Ecosystems & Environment 56: 9–18. doi: 10.1016/0167-8809(95)00635-4.CrossRefGoogle Scholar
  56. Kauffman, J. B., Sanford, R. L., Cummings, D. L., Salcedo, I. H., and Sampaio, E. V. S. B. (1993). Biomass and Nutrient Dynamics Associated with Slash Fires in Neotropical Dry Forests. Ecology 74: 140–151. doi: 10.2307/1939509.CrossRefGoogle Scholar
  57. Kennard, D. K., and Gholz, H. L. (2001). Effects of High- and Low-intensity Fires on Soil Properties and Plant Growth in a Bolivian Dry Forest. Plant and Soil 234: 119–129. doi: 10.1023/A:1010507414994.CrossRefGoogle Scholar
  58. Ketterings, Q. M., Ceo, R., van Noordwijk, M., Ambagau, Y., and Palm, C. (2001). Reducing Uncertainty in the Use of Allometric Biomass Equations for Predicting Above-Ground Tree Biomass in Mixed Secondary Forests. Forest Ecology and Management 146: 199–209. doi: 10.1016/S0378-1127(00)00460-6.CrossRefGoogle Scholar
  59. Kho, L. P., and Wilcove, D. S. (2008). Is Oil Palm Agriculture Really Destroying Tropical Biodiversity. Conservation Letters 1: 60–64. doi: 10.1111/j.1755-263X.2008.00011.x.CrossRefGoogle Scholar
  60. Kleinman, P. J. A., Pimentel, D., and Bryant, R. B. (1995). The Ecological Sustainability of Slash-and-Burn Agriculture. Agriculture, Ecosystems & Environment 52: 235–249. doi: 10.1016/0167-8809(94)00531-I.CrossRefGoogle Scholar
  61. Kleinman, P. J. A., Bryant, R. B., and Pimentel, D. (1996). Assessing Ecological Sustainability of Slash-and-Burn Agriculture through Soil Fertility Indicators. Agronomy Journal 88: 122–127.Google Scholar
  62. Ladha, J. K., Dawe, D., Pathak, H., Padre, A. T., Yadav, R. L., Singh, B., Singh, Y., Singh, Y., Singh, P., Kundu, A. L., Sakal, R., Ram, N., Regmi, A. P., Gami, S. K., Bhandari, A. L., Amin, R., Yadav, C. R., Bhattarai, E. M., Das, S., Aggarwal, H. P., Gupta, R. K., Hobbs, P. R. (20-2-2003). How Extensive are Yield Declines in Long-Term Rice–Wheat Experiments in Asia? Field Crops Research 81: 159–180. doi: 10.1016/S0378-4290(02)00219-8.
  63. Lal, R. (1997). Degradation and Resilience of Soils. Philosophical Transactions of the Royal Society of London Series B—Biological Sciences 352: 869–889. doi: 10.1098/rstb.1997.0078.CrossRefGoogle Scholar
  64. Lal, R. (2000). Soil Management in Developing Countries. Soil Science 165: 57–72. doi: 10.1097/00010694-200001000-00008.CrossRefGoogle Scholar
  65. Lal, R. (2004a). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 304: 1623–1627. doi: 10.1126/science.1097396.CrossRefGoogle Scholar
  66. Lal, R. (2004b). Soil Carbon Sequestration to Mitigate Climate Change. Geoderma 123: 1–22. doi: 10.1016/j.geoderma.2004.01.032.CrossRefGoogle Scholar
  67. Lal, R., and Bruce, J. P. (1999). The Potential of World Cropland Soils to Sequester C and Mitigate the Greenhouse Effect. Environmental Science & Policy 2: 177–185. doi: 10.1016/S1462-9011(99)00012-X.CrossRefGoogle Scholar
  68. Lal, R., and Cummings, D. J. (1979). Clearing a Tropical Forest I. Effects on Soil and Micro-climate. Field Crops Research 2: 91–107. doi: 10.1016/0378-4290(79)90012-1.CrossRefGoogle Scholar
  69. Lawrence, D., and Schlesinger, W. H. (2001). Changes in Soil Phosphorus during 200 Years of Shifting Cultivation in Indonesia. Ecology 82: 2769–2780.Google Scholar
  70. Lawrence, D., Suma, V., and Mogea, J. P. (2005). Change in Species Composition with Repeated Shifting Cultivation: Limited Role of Soil Nutrients. Ecological Applications 15: 1952–1967. doi: 10.1890/04-0841.CrossRefGoogle Scholar
  71. Lawrence, D., D’Odorico, P., DeLonge, M., Diekmann, L., Das, R., and Eaton, J. M. (2007). Ecological Feedbacks Following Deforestation Create the Potential for a Catastrophic Ecosystem Shift in Tropical Dry Forest. Proceedings of the National Academy of Sciences 104: 20696–20701. doi: 10.1073/pnas.0705005104.CrossRefGoogle Scholar
  72. McCarthy, J. F., and Cramb, R. A. (2009). Policy Narratives, Landholder Engagement, and Oil Palm Expansion on the Malaysian and Indonesian Frontiers. The Geographical Journal 175: 112–123.Google Scholar
  73. Mertz, O. (2002). The Relationship Between Fallow Length and Crop Yields in Shifting Cultivation: A Rethinking. Agroforestry Systems 55: 149–159. doi: 10.1023/A:1020507631848.CrossRefGoogle Scholar
  74. Mertz, O., Wadley, R. L., Nielsen, U., Bruun, T. B., Colfer, C. J. P., de Neergaard, A., Jepsen, M. R., Martinussen, T., Zhao, Q., Noweg, G. T., and Magid, J. (2008). A Fresh Look at Shifting Cultivation: Fallow Length an Uncertain Indicator of Productivity. Agricultural Systems 96: 75–84. doi: 10.1016/j.agsy.2007.06.002.CrossRefGoogle Scholar
  75. Mokany, K., Raison, R. J., and Prokushkin, A. S. (2006). Critical Analysis of Root:Shoot Ratios in Terrestrial Biomes. Global Change Biology 12: 84–96. doi: 10.1111/j.1365-2486.2005.001043.x.CrossRefGoogle Scholar
  76. Montagnini, F. (1-9-2000). Accumulation in Above-Ground Biomass and Soil Storage of Mineral Nutrients in Pure and Mixed Plantations in a Humid Tropical Lowland. Forest Ecology and Management 134: 257–270. doi: 10.1016/S0378-1127(99)00262-5.
  77. Montagnini, F., and Nair, P. K. R. (2004). Carbon Sequestration: An Underexploited Environmental Benefit of Agroforestry Systems. Agroforestry Systems 61: 281–295. doi: 10.1023/B:AGFO.0000029005.92691.79.CrossRefGoogle Scholar
  78. Montagnini, F., and Porras, C. (1998). Evaluating the Role of Plantations as Carbon Sinks: An Example of an Integrative Approach from the Humid Tropics. Environmental Management 22: 459–470. doi: 10.1007/s002679900119.CrossRefGoogle Scholar
  79. Murdiyarso, D., van Noordwijk, M., Wasrin, U. R., Tomich, T. P., and Gillison, A. N. (2002). Environmental Benefits and Sustainable Land-Use Options in the Jambi Transect, Sumatra. Journal of Vegetation Science 13: 429–438.CrossRefGoogle Scholar
  80. Murty, D., Kirschbaum, M. U. F., Mcmurtrie, R. E., and Mcgilvray, H. (2002). Does Conversion of Forest to Agricultural Land Change Soil Carbon and Nitrogen? A Review of the Literature. Global Change Biology 8: 105–123. doi: 10.1046/j.1354-1013.2001.00459.x.CrossRefGoogle Scholar
  81. Mutuo, P., Cadisch, G., Albrecht, A., Palm, C., and Verchot, L. (2005). Potential of Agroforestry for Carbon Sequestration and Mitigation of Greenhouse Gas Emissions from Soils in the Tropics. Nutrient Cycling in Agroecosystems 71: 43–54. doi: 10.1007/s10705-004-5285-6.CrossRefGoogle Scholar
  82. Nielsen, U., Mertz, O., and Noweg, G. T. (2006). The Rationality of Shifting Cultivation Systems: Labor Productivity Revisited. Human Ecology 34: 210–218. doi: 10.1007/s10745-006-9014-4.CrossRefGoogle Scholar
  83. Noble, A. D., Gillman, G. P., and Ruaysoongnern, S. (2000). A Cation Exchange Index for Assessing Degradation of Acid Soil by Further Acidification under Permanent Agriculture in the Tropics. European Journal of Soil Science 51: 233–243. doi: 10.1046/j.1365-2389.2000.00313.x.CrossRefGoogle Scholar
  84. Noguchi, S., Kasran, S., Yosup, Z., Tsuboyama, Y., and Tani, M. (2003). Depth and Physical Properties of Soil in a Forest and a Rubber Plantation in Peninsular Malaysia. Journal of Tropical Forest Science 15: 513–530.Google Scholar
  85. Nye, P. H., and Greenland, D. J. (1964). Changes in the Soil after Clearing Tropical Forest. Plant and Soil 21: 101–112. doi: 10.1007/BF01373877.CrossRefGoogle Scholar
  86. Padoch, C., Coffey, K., Mertz, O., Leisz, S., Fox, J., and Wadley, R. L. (2007). The Demise of Swidden in Southeast Asia? Local Realities and Regional Ambiguities. Geografisk Tidsskrift—Danish Journal of Geography 107: 29–41.Google Scholar
  87. Palm, C. A., Swift, M. J., and Woomer, P. L. (1996). Soil Biological Dynamics in Slash-and-Burn Agriculture. Agriculture, Ecosystems and Environment 58: 61–74. doi: 10.1016/0167-8809(95)00653-2.CrossRefGoogle Scholar
  88. Palm, C. A., van Noordwijk, M., Woomer, P., Alegre, J. C., Arévalo, L., Castilla, C. E., Cordeiro, D. G., Hairiah, K., Kotto-Same, J., Moukam, A., Parton, W. J., Ricse, A., Rodrigues, V., and Sitompul, S. M. (2005). Carbon losses and sequestration after land use changes on the humid tropics. In Palm, C. A., Vosti, S. A., Sanchez, P. A., and Ericksen, P. J. (eds.), Slash-and-Burn Agriculture—The Search for Alternatives. Columbia University Press, New York, pp. 41–63.Google Scholar
  89. Paul, K. I., Polglase, P. J., Nyakuengama, J. G., and Khanna, P. K. (1-9-2002). Change in soil carbon following afforestation. Forest Ecology and Management 168: 241–257. doi: 10.1016/S0378-1127(01)00740-X.
  90. Petit, B., and Montagnini, F. (15-9-2006). Growth in Pure and Mixed Plantations of Tree Species Used in Reforesting Rural Areas of the Humid Region of Costa Rica, Central America. Forest Ecology and Management 233: 338–343. doi: 10.1016/j.foreco.2006.05.030.
  91. Powers, J. S., and Veldkamp, E. (2005). Regional Variation in Soil Carbon and Delta C13 Signature in Forests and Pastures of Northeastern Costa Rica. Biogeochemistry 72: 315–336. doi: 10.1007/s10533-004-0368-7.CrossRefGoogle Scholar
  92. Ramakrishnan, P. S., and Toky, O. P. (1981). Soil Nutrient Status of Hill Agro-ecosystems and Recovery Pattern after Slash and Burn Agriculture (Jhum) in North-Eastern India. Plant and Soil 60: 41–64. doi: 10.1007/BF02377111.CrossRefGoogle Scholar
  93. Rerkasem, K., Lawrence, D., Padoch, C., Schmidt-Vogt, D., Ziegler, A. D., and Bruun, T. B. (2009). Consequences of swidden transitions for crop and fallow biodiversity in Southeast Asia. Human Ecology, this issue.Google Scholar
  94. Richards, A. E., Dalal, R. C., and Schmidt, S. (2007). Soil Carbon Turnover and Sequestration in Native Subtropical Tree Plantations. Soil Biology and Biochemistry 39: 2078–2090.CrossRefGoogle Scholar
  95. Roder, W., Phengchanh, S., and Keoboulapha, B. (1995). Relationships Between Soil, Fallow Period, Weeds and Rice Yield in Slash-and-Burn Systems of Laos. Plant and Soil 176: 27–36. doi: 10.1007/BF00017672.CrossRefGoogle Scholar
  96. Roder, W., Phengchanh, S., and Maniphone, S. (1997). Dynamics of Soil and Vegetation During Crop and Fallow Period in Slash-and-Burn Fields of Northern Laos. Geoderma 76: 131–144. doi: 10.1016/S0016-7061(96)00100-0.CrossRefGoogle Scholar
  97. Romanyá, J., Casals, P., and Vallejo, V. R. (2001). Short Term Effects of Fire on Soil Nitrogen Availability in Mediterranean Grasslands and Shrublands Growing in Old Fields. Forest Ecology and Management 147: 39–53. doi: 10.1016/S0378-1127(00)00433-3.CrossRefGoogle Scholar
  98. Ruthenberg, H. (1980). Farming Systems in the Tropics. Clarendon, Oxford.Google Scholar
  99. Sá, J. C., Cerri, C. C., Dick, W. A., Lal, R., Venzke Filho, S. P., Piccolo, M. C., and Feigl, B. J. (2001). Organic Matter Dynamics and Carbon Sequestration for a Tillage Chronosequence in a Brazilian Oxisol. Soil Science Society of America Journal 65: 1486–1499.CrossRefGoogle Scholar
  100. Saa, A., Trasar-Cepeda, M. C., Gil-Sotres, F., and Carballas, T. (1993). Changes in Soil Phosphorus and Acid Phosphatase Activity Immediately Following Forest Fires. Soil Biology and Biochemistry 25: 1223–1230. doi: 10.1016/0038-0717(93)90218-Z.CrossRefGoogle Scholar
  101. Sanchez, P. A. (1976). Properties and Management of Soils in the Tropics. Wiley, New York.Google Scholar
  102. Sanchez, P. A., Bandy, D. E., Villachica, J. H., and Nicholaides, J. J. (1982). Amazon Basin Soils: Management for Continuous Crop Production. Science 216: 821–827. doi: 10.1126/science.216.4548.821.CrossRefGoogle Scholar
  103. Sarmiento, L., and Bottner, P. (2002). Carbon and Nitrogen Dynamics in Two Soils with Different Fallow Times in the High Tropical Andes: Indications for Fertility Restoration. Applied Soil Ecology 19: 79–89. doi: 10.1016/S0929-1393(01)00178-0.CrossRefGoogle Scholar
  104. Schlesinger, W. H., and Andrews, J. A. (2000). Soil Respiration and the Global Carbon Cycle. Biogeochemistry 48: 7–20. doi: 10.1023/A:1006247623877.CrossRefGoogle Scholar
  105. Schmidt-Vogt, D., Leisz, S., Mertz, O., Heinimann, A., Thiha, Messerli, P., Epprecht, M., Cu, P. V., Chi, K., Hardino, M., and Truong, D. (2009). An Assessment of Trends in the Extent of Swidden in Southeast Asia. Human Ecology, this issue.Google Scholar
  106. Schroeder, P. (1992). Carbon Storage Potential of Short Rotation Tropical Tree Plantations. Forest Ecology and Management 50: 31–41. doi: 10.1016/0378-1127(92)90312-W.CrossRefGoogle Scholar
  107. Schroth, G., D’Angelo, S. A., Teixeira, W. G., Haag, D., and Lieberei, R. (2002). Conversion of Secondary Forest into Agroforestry and Monoculture Plantations in Amazonia: Consequences for Biomass, Litter and Soil Carbon Stocks after 7 years. Forest Ecology and Management 163: 131–150. doi: 10.1016/S0378-1127(01)00537-0.CrossRefGoogle Scholar
  108. Six, J., Feller, C., Denef, K., Ogle, S. M., Moraes, J. C., and Albrecht, A. (2002). Soil Organic Matter, Biota and Aggregation in Temperate and Tropical Soils—Effects of No-Tillage. Agronomie 22: 755–775. doi: 10.1051/agro:2002043.CrossRefGoogle Scholar
  109. Sommer, R., Denich, M., and Vlek, P. L. G. (2000). Carbon Storage and Root Penetration in Deep Soils Under Small-Farmer Land-Use Systems in the Eastern Amazon Region, Brazil. Plant and Soil 219: 231–241. doi: 10.1023/A:1004772301158.CrossRefGoogle Scholar
  110. Swamy, P. S., and Ramakrishnan, P. S. (1988). Nutrient Budget under Slash and Burn Agriculture (Jhum) with Different Weeding Regimes in North-Eastern India. Acta Oecologica 9: 85–102.Google Scholar
  111. Szott, L. T., Palm, C. A., and Buresh, R. J. (1999). Ecosystem Fertility and Fallow Function in the Humid and Subhumid Tropics. Agroforestry Systems 47: 163–196. doi: 10.1023/A:1006215430432.CrossRefGoogle Scholar
  112. Tanaka, S., Tachibe, S., Wasli, M. E. B., Lat, J., Seman, L., Kendawang, J. J., Iwasaki, K., and Sakurai, K. (2009). Soil Characteristics under Cash Crop Farming in Upland Areas of Sarawak, Malaysia. Agriculture, Ecosystems & Environment 129: 293–301. doi: 10.1016/j.agee.2008.10.001.CrossRefGoogle Scholar
  113. Tinker, P. B., Ingram, J. S. I., and Struwe, S. (1996). Effects of Slash-and-Burn Agriculture and Deforestation on Climate Change. Agriculture, Ecosystems & Environment 58: 13–22. doi: 10.1016/0167-8809(95)00651-6.CrossRefGoogle Scholar
  114. Uhl, C. (1987). Factors Controlling Succession Following Slash-and-Burn Agriculture in Amazonia. Journal of Ecology 75: 377–407. doi: 10.2307/2260425.CrossRefGoogle Scholar
  115. Uhl, C., Jordan, C., Clark, K., Clark, H., and Herrera, R. (1982). Ecosystem Recovery in Amazon Caatinga Forest after Cutting, Cutting and Burning, and Bulldozer Clearing Treatments. Oikos 38: 313–320. doi: 10.2307/3544671.CrossRefGoogle Scholar
  116. van Noordwijk, M., Cerri, C., Woomer, P. L., Nugroho, K., and Bernoux, M. (1997). Soil Carbon Dynamics in the Humid Tropical Forest Zone. Geoderma 79: 187–225. doi: 10.1016/S0016-7061(97)00042-6.CrossRefGoogle Scholar
  117. Vogt, K., Asbjornsen, H., Ercelawn, A., Montagnini, F., and Valdes, M. (1997). Roots and mycorrhizas in plantation ecosystems. In Nambiar, E. K. S., and Brown, A. G. (eds.), Management of Soil. Water and Nutrients in Tropical Plantation Forests, ACIAR Monograph, Melbourne, pp. 247–289, No. 43.Google Scholar
  118. Wauters, J. B., Coudert, S., Grallien, E., Jonard, M., and Ponette, Q. (2008). Carbon Stock in Rubber Tree Plantations in Western Ghana and Mato Grosso (Brazil). Forest Ecology and Management 255: 2347–2361. doi: 10.1016/j.foreco.2007.12.038.CrossRefGoogle Scholar
  119. Whitmore, T. C. (1998). An Introduction to Tropical Rain Forests. Oxford University Press, Oxford.Google Scholar
  120. Yadav, R. L., Dwivedi, B. S., Prasad, K., Tomar, O. K., Shurpali, N. J., and Pandey, P. S. (2000). Yield Trends, and Changes in Soil Organic-C and Available NPK in a Long-Term Rice–Wheat System under Integrated Use of Manures and Fertilisers. Field Crops Research 68: 219–246. doi: 10.1016/S0378-4290(00)00126-X.CrossRefGoogle Scholar
  121. Young, A. (1997). Agroforestry for Soil Management. CAB International and ICRAF, Oxon.Google Scholar
  122. Zhang, H., and Zhang, G. L. (2003). Microbial Biomass Carbon and Total Organic Carbon of Soils as Affected by Rubber Cultivation. Pedosphere 13: 353–357.Google Scholar
  123. Zhang, H., and Zhang, G. L. (2005). Landscape-Scale Soil Quality Change Under Different Farming Systems of a Tropical Farm in Hainan, China. Soil Use and Management 21: 58–64. doi: 10.1079/SUM2005293.CrossRefGoogle Scholar
  124. Zhang, H., Zhang, G. L., Zhao, Y. G., Zhao, W. J., and Qi, Z. P. (2007). Chemical Degradation of a Ferralsol (Oxisol) Under Intensive Rubber (Hevea brasiliensis) Farming in Tropical China. Soil and Tillage Research 93: 109–116. doi: 10.1016/j.still.2006.03.013.CrossRefGoogle Scholar
  125. Ziegler, A. D., Agus, F., Bruun, T. B., van Noordwijk, M., Lam, N. T., Lawrence, D., Rerkasem, K., and Padoch, C. (2009). Environmental consequences of the demise in swidden agriculture in Montane Mainland SE Asia: Hydrology and geomorphology. Human Ecology, this issue.Google Scholar

Copyright information

© noteSpringer Science+Business Media, LLC 2009

Authors and Affiliations

  • Thilde Bech Bruun
    • 1
  • Andreas de Neergaard
    • 2
  • Deborah Lawrence
    • 3
  • Alan D. Ziegler
    • 4
  1. 1.Department of Geography and GeologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Agriculture and Ecology, Faculty of Life SciencesUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  4. 4.Department of GeographyNational University of SingaporeSingaporeSingapore

Personalised recommendations