Human Ecology

, Volume 34, Issue 6, pp 739–763 | Cite as

Risky Business: Temporal and Spatial Variation in Preindustrial Dryland Agriculture

  • Charlotte T. Lee
  • Shripad Tuljapurkar
  • Peter M. Vitousek
Article

Abstract

Traditional dryland agriculture in the Pacific island was often labor-intensive and risky, yet settlement and farming in dry areas played an important role in the development of Polynesian societies. We investigate how temporal and spatial climatic fluctuations shape variation in agricultural production across dryland landscapes. We use a model that couples plant growth, climate, and soil organic matter dynamics, together with data from Kohala, Hawai'i, to understand how temperature, rainfall, nitrogen availability, and cropping activity interact to determine yield dynamics through time and space. Due to these interactions, the statistical characterization of rainfall alone is a poor characterization of agricultural yield. Using a simple linear model of human population dynamics, we show that the observed yield variation can affect long-term population growth substantially. Our approach to analyzing spatial and temporal fluctuations in food supply, and to interpreting the population consequences of these fluctuations, provides a quantitative evaluation of agricultural risk and human carrying capacity in dry regions.

Key words

Spatiotemporal variation dryland agriculture agroecosystem dynamics stochastic demography Polynesia Hawai'i. 

References

  1. Allen, M. S. (2004). Bet-hedging Strategies, Agricultural Change, and Unpredictable Environments: Historical Development of Dryland Agriculture in Kona, Hawaii. Journal of Anthropological Archaeology 23: 196–224.CrossRefGoogle Scholar
  2. Baisden, W. T., and Amundson, R. (2003). An Analytical Approach to Ecosystem Biogeochemistry Modeling. Ecological Applications 13: 649–663.Google Scholar
  3. Bolker, B. M., Pacala, S. W., and Parton, W. J. (1998). Linear Analysis of Soil Decomposition: Insights from the Century Model. Ecological Applications 8: 425–439.CrossRefGoogle Scholar
  4. Burke, I. C., Lauenroth, W. K., and Parton, W. J. (1997). Regional and Temporal Variation in Net Primary Production and Nitrogen Mineralization in Grasslands. Ecology 78: 1330–1340.CrossRefGoogle Scholar
  5. Burtenshaw, M., Harris, G., Davidson, J., and Leach, F. (2003). Experimental Growing of Pre-European Cultivars of Kumara (Sweet Potato, Ipomoea batatas [L.] Lam.) at the Southern Margins of Maori Horticulture. New Zealand Journal of Archaeology 23: 161–188.Google Scholar
  6. Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., and Hedin, L. O. (1999). Changing Sources of Nutrients During Four Million Years of Ecosystem Development. Nature 397: 491–497.CrossRefGoogle Scholar
  7. Chadwick, O. A., Gavenda, R. T., Kelly, E. F., Ziegler, K., Olson, C. G., Elliott, W. C., and Hendricks, D. M. (2003). The Impact of Climate on the Biogeochemical Functioning of Volcanic Soils. Chemical Geology 202: 195–223.CrossRefGoogle Scholar
  8. Comins, H. N., and McMurtrie, R. E. (1993). Long-Term Response of Nutrient-Limited Forests to Co2 Enrichment—Equilibrium Behavior of Plant-Soil Models. Ecological Applications 3: 666–681.CrossRefGoogle Scholar
  9. Fearnside, P. M. (1986). Human Carrying Capacity of the Brazilian Rainforest. Columbia University Press, New York.Google Scholar
  10. Giambelluca, T. W., and T. A. Schroeder. (1998). Climate. In Juvik, S. P., and Juvik, J. O. (eds.), Atlas of Hawai'i. University of Hawai'i, Honolulu, pp. 49–59.Google Scholar
  11. Kirch, P. V. (1985). Feathered Gods and Fishhooks. University of Hawaii, Honolulu.Google Scholar
  12. Kirch, P. V. (1994). The Wet and the Dry: Irrigation and Agricultural Intensification in Polynesia. University of Chicago, Chicago.Google Scholar
  13. Kirch, P. V., Chadwick, O. A., Tuljapurkar, S., Ladefoged, T. N., Graves, M. W., Hotchkiss, S. C. and Vitousek, P. M. (in press). Human ecodynamics in the Hawaiian ecosystem, 1200–200 BP. In Kohler, T. (ed.), Modeling Long-Term Culture Change. Oxford University Press (for Santa Fe Institute).Google Scholar
  14. Kirch, P. V., Hartshorn, A. S., Chadwick, O. A., Vitousek, P. M., Sherrod, D. R., Coil, J., Holm, L., and Sharp, W. D. (2004). Environment, Agriculture, and Settlement Patterns in a Marginal Polynesian Landscape. Proceedings of the National Academy of Sciences of the United States of America 101: 9936–9941.CrossRefGoogle Scholar
  15. Ladefoged, T. N., and Graves, M. W. (2000). Evolutionary Theory and the Historical Development of Dry-Land Agriculture in North Kohala, Hawai'i. American Antiquity 65: 423–448.CrossRefGoogle Scholar
  16. Ladefoged, T. N., and Graves, M. W. (2006). The formation of Hawaiian territories. In Lilly, I. (ed.), Archaeology of Oceania. Blackwell Press, New York, pp. 259–283.Google Scholar
  17. Ladefoged, T. N., Graves, M.W. and McCoy, M. (2003). Archaeological evidence for agricultural development in Kohala, Island of Hawai'i. Journal of Archaeological Science 30: 923–940.Google Scholar
  18. Lee, R. (1981). Short-term variation: vital rates, prices, and weather. In Wrigley, E. A., and Schofield, R. S. (eds.), The Population History of England: A Reconstruction, Edward Arnold, London, pp. 541–1871.Google Scholar
  19. Linacre, E. T. (1977). A Simple Formula for Estimating Evaporation Rates in Various Climates, Using Temperature Data Alone. Agricultural Meteorology 18: 409–424.CrossRefGoogle Scholar
  20. Metherell, A. K., Harding, L. A., Cole, C. V., and Parton, W. J. (1993). CENTURY soil organic matter model environment. Technical Documentation Agroecosystem Version 4.0. Technical Report No. 4, Great Plains Systems Research Unit, USDA-ARS, Fort Collins, Colorado.Google Scholar
  21. Onwueme, I. C. (1978). The tropical Tuber Crops: Yams, Cassava, Sweet Potato, and Cocoyam. Wiley, New York.Google Scholar
  22. Parton, W. J., Schimel, D. S., Cole, C. V., and Ojima, D. S. (1987). Analysis of Factors Controlling Soil Organic-Matter Levels in Great-Plains Grasslands. Soil Science Society of America Journal 51: 1173–1179.CrossRefGoogle Scholar
  23. Parton, W. J., Neff, J., and Vitousek, P. M. (2005). Modelling Phosphorus, Carbon, and Nitrogen Dynamics in Terrestrial Ecosystems. Organic P Symposium.Google Scholar
  24. Purseglove, J. W. (1968). Tropical Drops: Dicotyledons. Wiley, New York.Google Scholar
  25. Raich, J. W., Parton, W. J., Russell, A. E., Sanford, R. L., and Vitousek, P. M. (2000). Analysis of Factors Regulating Ecosystem Development on Mauna Loa Using the Century Model. Biogeochemistry 51: 161–191.CrossRefGoogle Scholar
  26. Tuljapurkar, S., Lee, C. T., and Figgs, M. (in press). Demography and food in early Polynesia. In Kirch, P. V., and Rallu, J.-L. (eds.), He Growth, Regulation, and Collapse of Island Societies: Archaeological and Demographic Perspectives from the Pacific. University of Hawai'i, Honolulu.Google Scholar
  27. Vitousek, P. M. (2004). Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton University Press, Princeton, New Jersey.Google Scholar
  28. Vitousek, P. M., Ladefoged, T. N., Kirch, P. V., Hartshorn, A. S., Graves, M. W., Hotchkiss, S. C., Tuljapurkar, S., and Chadwick, O. A. (2004). Soils, Agriculture, and Society in Precontact Hawai. Science 304: 1665–1669.CrossRefGoogle Scholar
  29. Woolfe, J. A. (1992). Sweet Potato: An Untapped Food Resource. Cambridge University Press, Cambridge.Google Scholar
  30. Yen, D. E. (1974). The Sweet Potato and Oceania: an Essay in Ethnobotany. Bishop Museum, Honolulu, Hawaii.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Charlotte T. Lee
    • 1
  • Shripad Tuljapurkar
    • 1
  • Peter M. Vitousek
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations