Human Ecology

, Volume 34, Issue 5, pp 713–729 | Cite as

The ‘Design’ of Mediterranean Landscapes: A Millennial Story of Humans and Ecological Systems during the Historic Period

Article

Abstract

What makes the structure and dynamics of coupled natural and human systems difficult to interpret in the Mediterranean is the extreme diversity in space and time of both environments and human societies. The succession of civilizations that waxed and waned in the Mediterranean Basin over several millennia has had great impacts on biota and ecosystems everywhere in the basin. A complex ‘coevolution’ has been claimed to shape the interactions between ecosystem components and human societies. Two opposing schools of thought traditionally have considered the consequences of human pressures on Mediterranean ecosystems. The ‘Ruined Landscape’ or ‘Lost Eden theory’ argues that human action resulted in a cumulative degradation and desertification of Mediterranean landscapes. The second school argues that humans actually contributed to keeping Mediterranean landscapes diverse since the last glacial episode. With this debate in mind, I show the following: (1) One cannot understand the components and dynamics of current biodiversity in the Mediterranean without taking into account the history of human-induced changes; (2) The various systems of land use and resource management that provided a framework for the blossoming of Mediterranean civilizations also had profound consequences on the distribution and dynamics of species, communities, and landscapes; (3) The processes of domestication of plant and animal species, which first occurred in the eastern Mediterranean area some 10,000 years ago, contributed to the increase of certain components of biodiversity at several spatial scales. Positive and negative feedback cycles between cultural practices and natural systems at the local and regional levels have kept ecosystems robust and resilient; (4) Assuming that human action can, to a certain extent, be considered a large-scale surrogate for natural sources of ecosystem disturbance, such patterns give support to the diversity-disturbance hypothesis—specifically, intermediate levels of disturbance have promoted biological diversity; (5) Intraspecific adaptive variation increased as a result of human-induced habitat changes over millennia, resulting in bursts of differentiation during the later Holocene of local ecotypes and gene pools of domesticated and wild plant and animal species, with region-specific characters fitting them to local climate and environmental conditions. High intraspecific adaptive variation also arose from earlier natural processes of the Pleistocene, mainly from a combination of periodic refugia formation and climate dynamics. During the Holocene, the main sources of disturbance came increasingly from humans, specifically from the coupled cultural and natural modifications of community and landscape structure. It is concluded that a high degree of resilience of Mediterranean ecosystems resulted in a dynamic coexistence of human and natural living systems, which in some cases provided stability, while fostering diversity and productivity (Blondel and Aronson, 1999). The word “design” used in the title and elsewhere in this paper metaphorically indicates that the long-lasting influence of human impacts resulted in an unintentional shaping of individual components of landscapes.

Key words

Biodiversity coevolution coupled cultural and natural systems cultural landscapes disturbance cycles domestication ecosystem resilience historic period land management landscape structure productivity 

Notes

Acknowledgments

This paper was first presented as a contribution to the workshop entitled “The Robustness of Coupled Natural and Human Systems,” held at the Santa Fe Institute, New Mexico in May 2003. I am deeply indebted to Mary Stiner, who invited me to this stimulating workshop and who much improved the manuscript. I also warmly thank two anonymous reviewers for their constructive comments and suggestions.

References

  1. Abbott, R. J. (1992). Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends in Ecology and Evolution 7: 401–405.CrossRefGoogle Scholar
  2. Amigues, S. (1980). Quelques aspects de la forêt dans la littérature grecque antique. Revue Forestière Française 32: 211–223.CrossRefGoogle Scholar
  3. Ammerman, A., and Cavalli-Sforza, L. (1984). The Neolithic Transition and the Genetics of Populations in Europe, Princeton University Press, Princeton.Google Scholar
  4. Attenborough, D. (1987). The First Eden. The Mediterranean World and Man, Fontana/Collins, London.Google Scholar
  5. Besnard, G., Khadari, B., Baradat, P., and Bervillé, A. (2002). Olea europaea (Oleaceae) phylogeography based on chloroplast DNA polymorphism. Theoretical Applied Genetics 104: 1353–1361.CrossRefGoogle Scholar
  6. Blondel, J., and Aronson, J. (1995). Biodiversity and ecosystem function in the Mediterranean basin: human and non-human determinants. In Davis, G. W., and Richardson, D. M. (eds.), Mediterranean-Type Ecosystems. The Function of Biodiversity, Springer, Berlin Heidelberg New York, pp. 43–119.Google Scholar
  7. Blondel, J., and Aronson, J. (1999). Biology and Wildlife of the Mediterranean Region, Oxford University Press, Oxford.Google Scholar
  8. Blondel J., and Mourer-Chauviré, C. (1998). Evolution and History of the western Palaearctic avifauna. Trends in Ecology and Evolution 13: 488–492.CrossRefGoogle Scholar
  9. Bogucki, P. (1996a). The spread of early farming in Europe. American Scientist 84(3): 242–253.Google Scholar
  10. Bogucki, P. (1996b). Sustainable and unsustainable adaptations by early farming communities of Northern Poland. Journal of Anthropological Archaeology 15: 289–311.CrossRefGoogle Scholar
  11. Bonhôte J., and Vernet, J.-L. (1988). La mémoire des charbonnières. essai de reconstitution des milieux forestiers dans une vallée marquée par la métallurgie (Aston, Haute-Ariège). Revue Forestière Française 40: 197–212.Google Scholar
  12. Breton, C., Besnard, G., and Bervillé, A. (2003). Using multiple types of molecular markers to understand olive phylogeography. In: Zeder, M. A. Decker-Walters, D., Bradley, D., and Smith, B. (eds.), Documenting Domestication: New Genetic and Archaeological Paradigms. Smithsonian, Washington, District of Columbia.Google Scholar
  13. Brisebarre, A. M. (1978). Bergers des Cévennes, Berger-Levrault, Paris.Google Scholar
  14. Chouquer G., Clavel-Lévêque M., and Favory, F. (1987). Le paysage révélé: l’empreinte du passé dans les paysages contemporains. Mappemonde 4: 16–21.Google Scholar
  15. Dawson T., and Fry, R. (1998). Agriculture in nature’s image. Trends in Ecology and Evolution 13: 50–51.CrossRefGoogle Scholar
  16. De Bonneval, L. (1990). D’un Taillis à L’autre. La Déshérance d’un Patrimoine Forestier Communal (Valliguières, Gard), 1820–1990, INRA, Unité d’Ecodéveloppement, Montfavet.Google Scholar
  17. di Castri, F. (1981). Mediterranean-type shrublands of the world. In di Castri, F., Goodall, D. W., and Specht, R. L. (eds.), Mediterranean-Type Shrublands, Elsevier, Amsterdam, pp. 1–52.Google Scholar
  18. di Castri, F. (1990). On invading species and invaded ecosystems; the interplay of historical chance and biological necessity. In di Castri, F., Hansen, A. J., and Debussche, M. (eds.), Biological Invasions in Europe and the Mediterranean Basin, Kluwer, Dordrecht, pp. 3–16.Google Scholar
  19. Diamond, J. M. (2002). Evolution, consequences and future of plant and animal domestication. Nature 418: 700–707.CrossRefGoogle Scholar
  20. Drake, J. A., Mooney, H. A., di Castri, F., Groves, R. H., Kruger, F. J., Rejmanek, M., and Williamson, M. (1989). Biological Invasions. A global Perspective, Wiley, Chichester.Google Scholar
  21. Dupouey J. L., Dambrine E., Moares C., and Lafitte, J. D. (2002). Irreversible impact of past land use on forest biodiversity. Ecology 83: 2978–2984.CrossRefGoogle Scholar
  22. Etienne M., Napoleone M., Jullian P., and Lachaux, J. (1989). Elevage ovin et protection de la forêt méditerranéenne contre les incendies. Etudes et Recherches 15: 1–46.Google Scholar
  23. Georgoudis, A. (1995). Animal genetic diversity plays important role in mediterranean agriculture. Diversity 11: 16–19.Google Scholar
  24. Gomez-Campo, C. (1985). Plant Conservation in the Mediterranean Area, Dr. W. Junk, Dordrecht, Boston, and Lancaster.Google Scholar
  25. Grove, A. T., and Rackham, O. (2001). The Nature of Mediterranean Europe. An Ecological History, Yale University Press, New Haven and London.Google Scholar
  26. Harris, D. R. (1998). The origins of agriculture in southwest asia. The Review of Archaeology 19(2): 5–11.Google Scholar
  27. Hawkes, J. G. (1995). Centers of origin for agricultural diversity in the mediterranean: From Vavilov to the present day. Diversity 11: 109–111.Google Scholar
  28. Hewitt, G. M. (2000). The genetic legacy of quaternary ice ages. Nature 405: 907–913.CrossRefGoogle Scholar
  29. Huston, M. A. (1994). Biological Diversity: The Coexistence of Species on Changing Landscapes, Cambridge University Press, Cambridge.Google Scholar
  30. Joffre R., and Rambal, S. (1993). How tree cover influences the water balance of mediterranean rangelands. Ecology 74: 570–582.CrossRefGoogle Scholar
  31. Joffre R., Rambal S. and Ratte, J. P. (1999). The dehesa system of southern Spain and Portugal as a natural ecosystem mimic. Agroforestry Systems 45: 75–79.CrossRefGoogle Scholar
  32. Kaplan, D. Y. (1992). Responses of mediterranean grassland plants ot Gazelle grazing. In Thanos, C. A. (ed.), Plant Animal Interactions in Mediterranean Ecosystems, University of Athens, Maleme, Crete, Greece, pp. 75–79.Google Scholar
  33. Lepart, J., and Debussche, M. (1992). Human impact on landscape patterning: Mediterranean examples. In Hansen, A. J., and di Castri, F. (eds.), Landscape Boundaries. Consequences for Biotic Diversity and Ecological Flows. Springer, Berlin Heidelberg New York, pp. 76–106.Google Scholar
  34. Lesins, K. A., and Lesins, I. (1979). The Genus Medicago (Leguminosae): A Taxogenetic Study, Dr. W. Junk, Dordrecht.Google Scholar
  35. Marchand, H. (1990). Les Forêts Méditerranéennes. Enjeux et Perspectives, Economica, Paris. Google Scholar
  36. Martin, P. S. (1984). Prehistoric overkill: the global model. In Martin, P. S., and Klein, R. G. (eds.), Quaternary Extinctions, University of Arizona Press, Tucson, pp. 354–403.Google Scholar
  37. McNeil, J. R. (1992). The Mountains of the Mediterranean World, An Environmental History, Cambridge University Press, Cambridge.Google Scholar
  38. McC Adams, R. (1978). Strategies of maximisation, stability, and resilience in Mesopotamian society, settlement and agriculture. Proceedings of the American Philosophical Society 122: 329–335.Google Scholar
  39. Meadow, R. H. (1998). Pre- and proto-Historic agricultural and pastoral transformations in northwestern South Asia. The Review of Archaeology 19: 12–21.Google Scholar
  40. Miller, N. F. (1992). The origins of plant cultivation in the Near East. In Cowan, C. W., and Watson, P. J. (eds.), The Origins of Agriculture: An International Perspective, Smithsonian, Washington, District of Columbia, pp. 39–58.Google Scholar
  41. Naveh, Z. (1974). Effects of fire in the Mediterranean region. In Kozlowski, T. T., and Ahlgren, C. E. (eds.), Fire and Ecosystems, Academic, New York, pp. 401–434.Google Scholar
  42. Naveh, Z. (1994). The role of fire and its management in the conservation of Mediterranean ecosystems and landscapes. In Moreno, J. M., and Oechel, W. C., The Role of Fire in Mediterranean-Type Ecosystems, Springer, Berlin Heidelberg New York, pp. 163–186.Google Scholar
  43. Naveh, Z., and Dan, J. (1973). The human degradation of Mediterranean landscapes in Israël. In di Castri, F., and Mooney, H. A. (eds.), Mediterranean Type Ecosystems: Origin and Structure, Springer, Berlin Heidelberg New York, pp. 372–390.Google Scholar
  44. Owen-Smith, N. (1987). Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13: 351–62.Google Scholar
  45. Papageorgiou, N. (1979). Population Energy Relationships of the Agrimi (Capra Aegagrus Cretica) on Theodorou Island, Paul Parey Verlag, Hamburg and Berlin.Google Scholar
  46. Pfeffer, F. (1973). Les Animaux Domestiques et Leurs Ancêtres, Bordas, Paris.Google Scholar
  47. Pickett, S. T. A., and White, P. S. (1985). The Ecology of Natural Disturbance and Patch Dynamics, Academic, New York.Google Scholar
  48. Pons, A., and Quézel, P. (1985). The history of the flora and vegetation and past and present human disturbance in the Mediterranean region. In Gomez-Campo, C. (ed.), Plant Conservation in the Mediterranean area, Dr. W. Junk, Dordrecht, pp. 25–43.Google Scholar
  49. Quézel, P. (1976). Le dynamisme de la végétation en région méditerranéenne. Collana Verde 39: 375–391.Google Scholar
  50. Quézel, P., and Médail, F. (2003). Ecologie et Biogéographie des Forêts du Bassin Méditerranéen, Elsevier, Paris.Google Scholar
  51. Roupnel, G. (1932). Histoire de la Campagne française, Grasset, Paris.Google Scholar
  52. Scheffer M., and Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution 18: 648–656.CrossRefGoogle Scholar
  53. Seligman, N. G., and Perevolotsky, A. (1994). Has intensive grazing by domestic livestock degraded Mediterranean Basin rangelands? In Arianoutsou, M., and Groves, R. H. (eds.), Plant–Animal Interactions in Mediterranean-type Ecosystems, Kluwer, Dordrecht, pp. 93–104.Google Scholar
  54. Shay, C. T., Shay, J. M., and Zwiazek, J. (1991). Paleobotanical investigations at Kommos, Crete. In Thanos, C. (ed.), Plant Animal Interactions in Mediterranean-type ecosystems, University of Athens, Maleme, Crete, Greece, pp. 382–389.Google Scholar
  55. Simmons, A. H. (1988). Extinct pygmy hippopotamus and early man in Cyprus. Nature 333: 554–557.CrossRefGoogle Scholar
  56. Socias, R. et al. (1990). Breeding Self-Compatible Almonds. Plant Breeding Review. 8: 313–338.Google Scholar
  57. Soulier, A. (1993). Le Languedoc Pour Héritage. Presses du Languedoc, Montpellier.Google Scholar
  58. Stevenson A. C. and Moore, P. D. (1988). Studies in the vegetational history of SW Spain. IV palynological investigations at El Acebron, Huelva. Journal of Biogeography 15: 339–361.CrossRefGoogle Scholar
  59. Taberlet P., Fumagali L., Wust-Saucy A.-G., and Cosson, J.-F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 6: 289–301.Google Scholar
  60. Terral, J.-F., Alonso, N., Capdevilla, B. I., Chatti, N., Fabre, L., Fiorentino, G., Marinval, P., Perez Jorda, G., Pradat, B., Rovira and Alibert, P. (2004) Historical biogeography of olive domestication (Olea europaea L.) as revealed by geometrical morphometry applied to biological and archaeological material. Journal of Biogeography 31: 63–77.Google Scholar
  61. Thirgood, J. V. (1981). Man and the Mediterranean Forest, Academic, New York.Google Scholar
  62. Thompson, J. D. (2005). Plant Evolution in the Mediterranean, Oxford University Press, Oxford.Google Scholar
  63. Toumi L., and Lumaret, R. (1998). Allozyme variation in cork oak (Quercus suber L.): the role of phylogeography, genetic introgression by other mediterranean oak Species and human activities. Theoretical Applied Genetics 97: 647–656.CrossRefGoogle Scholar
  64. Trabaud, L., Christensen, N. L., and Gill, A. M. (1993). Historical biogeography of fire in temperate ecosystems. In Crutzen, P. J., and Goldammer, J. G. (eds.), Fire in the Environment: Its Ecological and Atmospheric Importance, Wiley, New York, pp. 277–295.Google Scholar
  65. Triat-Laval, H. (1979). Histoire de la forêt provençale depuis 15 000 ans d’après l’analyse oollinique. Forêt Méditerranéenne 1: 19–24.Google Scholar
  66. Upham, S. (1984). Adaptive diversity and southwestern abandonment. Journal of Anthropological Research 40: 235–256.Google Scholar
  67. Vavilov, N. I. (1935). Botanical-geographical basis of breeding. In Vavilov, N. I. (ed.), Origin and Geography of Cultivated Plants, Nauka, Leningrad.Google Scholar
  68. Woodward, F. I. (1993). How many species are required for a functional ecosystem? In Schulze, E. D., and Mooney, H. A. (eds.), Biodiversity and Ecosystem Function, Springer, Berlin, Heildelberg New York, pp. 389–410.Google Scholar
  69. Woodward, J. (1995) Patterns of erosion and suspended sediment yield in Mediterranean river basins. In: Foster,I. D. L., Gurnell, A. M., and Webb, B. W. (eds.). Sediment and Water Quality in River Catchments, Wiley, New York, pp. 365–389.Google Scholar
  70. Zeder M. A., and Hesse, B. (2000). The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Science 287: 2254–2257.CrossRefGoogle Scholar
  71. Zohary D., and Spiegel-Roy, P. (1975). Beginnings of fruit-growing in the old rorld. Science 187: 319–327.CrossRefGoogle Scholar
  72. Zohary, M. (1973). Geobotanical Foundations of the Middle East, Gustav Fisher Verlag, Stuttgart.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.CEFE-CNRSMontpellier cedex 05France

Personalised recommendations