Health Services and Outcomes Research Methodology

, Volume 16, Issue 3, pp 132–153 | Cite as

An analysis of patient-sharing physician networks and implantable cardioverter defibrillator therapy

  • Erika L. MoenEmail author
  • Andrea M. Austin
  • Julie P. Bynum
  • Jonathan S. Skinner
  • A. James O’Malley


The application of social network analysis to the organization of healthcare delivery is a relatively new area of research that may not be familiar to health services statisticians and other methodologists. We present a methodological introduction to social network analysis with a case study of physicians’ adherence to clinical guidelines regarding use of implantable cardioverter defibrillators (ICDs) for the prevention of sudden cardiac death. We focus on two hospital referral regions in Indiana, Gary and South Bend, characterized by different rates of evidence-based ICD use (86 and 66 %, respectively). Using Medicare Part B claims, we construct a network of physicians who care for cardiovascular disease patients based on patient-sharing relationships. Approaches for weighting physician dyads and aggregating physician dyads by hospital are discussed. Then, we obtain a set of weighted network statistics for the positions of hospitals in their referral region, global statistics for the physician network within each hospital, and of the network positions of individual physicians within hospitals, providing the mathematical specification and sociological intuition underlying each measure. We find that adjusting for network measures can reduce the observed differences between referral regions for evidence-based ICD therapy. This study supports previous reports on how variation in physician network structure relates to utilization of care, and motivates future work using physician network measures to examine variation in evidence-based medicine.


Social network analysis Centrality Degree distribution Structural equivalence Exponential random graph model Evidence-based medicine Implantable cardioverter defibrillators 



This study was funded by U01AG046830 (to J.S.S.).

Compliance with ethical standards

Conflict of interest

All the authors declares that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Al-Khatib, S.M., Hellkamp, A., Curtis, J., Mark, D., Peterson, E., Sanders, G.D., Heidenreich, P.A., Hernandez, A.F., Curtis, L.H., Hammill, S.: Non-evidence-based ICD implantations in the United States. JAMA 305(1), 43–49 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bates, D., Maechler, M., Bolker, B., Walker, S.: Fitting linear mixed-effect models using lme4. J. Stat. Softw. 67(1), 1–48 (2015)CrossRefGoogle Scholar
  3. Bardy, G.H., Lee, K.L., Mark, D.B., Poole, J.E., Packer, D.L., Boineau, R., Domanski, M., Troutman, C., Anderson, J., Johnson, G., et al.: Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352(3), 225–237 (2005)CrossRefPubMedGoogle Scholar
  4. Barnett, M.L., Christakis, N.A., O’Malley, A.J., Onnela, J., Keating, N.L., Landon, B.E.: Physician patient-sharing networks and the cost and intensity of care in US hospitals. Med. Care 50(2), 152–160 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 101(11), 3747–3752 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bastian, M., Heymann, S., Jacomy, M.: Gephi: An open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media (2009)Google Scholar
  7. Bonarich, P.: Some unique properties of eigenvector centrality. Soc. Netw. 29(4), 555–564 (2007)CrossRefGoogle Scholar
  8. Borgatti, S.P., Halgin, D.S.: Analyzing affiliation networks. In: The Sage Handbook of Social Network Analysis, pp. 433–471. Sage Publications, Thousand Oaks, CA (2011)Google Scholar
  9. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177 (2001)CrossRefGoogle Scholar
  10. Bridewell, W., Das, A.K.: Social network analysis of physician interactions: the effect of institutional boundaries on breast cancer care. In: AMIA Annual Symposium Proceedings, pp. 152–160 (2011)Google Scholar
  11. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)CrossRefGoogle Scholar
  12. Bynum, J.P., Bernal-Delgano, E., Gottlieb, D., Fisher, E.: Assigning ambulatory patients and physicians to hospitals: a method for obtaining population-based provider performance measurements. Health Serv. Res. 41(1), 45–58 (2007)CrossRefGoogle Scholar
  13. Cabana, M.D., Rand, C.S., Powe, N.R., Wu, A.W., Wilson, M.H., Abboud, P.C., Rubin, H.R.: Why don’t physicians follow clinical practice guidelines? A framework for improvement. JAMA 282(15), 1458–1465 (1999)CrossRefPubMedGoogle Scholar
  14. Csardi, G., Nepusz, T. (2006): The igraph software package for complex network research. InterJ. Complex Syst. 1695.
  15. Curtis, L.H., Al-Khatib, S.M., Shea, A.M., Hammill, B.G., Hernandez, A.F., Schulman, K.A.: Sex differences in the use of implantable cardioverter-defibrillators for primary and secondary prevention of sudden cardiac death. JAMA 298(13), 1517–1524 (2007)CrossRefPubMedGoogle Scholar
  16. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)CrossRefGoogle Scholar
  17. Fattore, G., Frosini, F., Salvatore, D., Tozzi, V.: Social network analysis in primary care: the impact of interactions on prescribing behaviour. Health Policy 92(2–3), 141–148 (2009)CrossRefPubMedGoogle Scholar
  18. Freeman, L.C.: Centrality in social networks: conceptual clarification. Soc. Netw. 1, 215–239 (1979)CrossRefGoogle Scholar
  19. Goodreau, S.M.: Advances in exponential random graph (p*) models applied to a large social network. Soc. Netw. 29(2), 231–248 (2007)CrossRefGoogle Scholar
  20. Handcock, M.S.: Assessing Degeneracy in Statistical Models of Social Networks. Working Paper report No. 39, Center for Statistics and the Social Sciences. University of Washington, Seattle, WA (2003a)Google Scholar
  21. Handcock, M.S., Hunter, D.R., Butts, C.T., Goodreau, S.M., Morris, M.: Statnet: software tools for the Statistical Modeling of Network Data. (2003b)
  22. Hunter, D.R.: Curved exponential family models for social networks. Soc. Netw. 29(2), 230–231 (2007)CrossRefGoogle Scholar
  23. Hunter, D.R., Handcock, M.S., Butts, C.T., Goodreau, S.M., Morris, M.: ergm: A package to fit, simulate and diagnose exponential-family models for networks. J. Stat. Softw. 24(3), 54860 (2008)CrossRefGoogle Scholar
  24. Iacobucci, D., Wasserman, S.: Social networks with two sets of actors. Psychometrika 55(4), 707–720 (1990)CrossRefGoogle Scholar
  25. Kadish, A., Dyer, A., Daubert, J.P., Quigg, R., Estes, M., Anderson, K.P., Calkins, H., Hoch, D., Godlberger, J., Shalaby, A., et al.: Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N. Engl. J. Med. 350(21), 2151–2158 (2004)CrossRefPubMedGoogle Scholar
  26. Landon, B.E., Keating, N.L., Barnett, M.L., Onnela, J.P., Paul, S., O’Malley, A.J., Keegan, T., Christakis, N.A.: Variation in patient-sharing networks of physicians across the United States. JAMA 308(3), 265–273 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  27. Latapy, M., Magnien, C., Del Vecchio, N.: Basic notions for the analysis of large two-mode networks. Soc. Netw. 30(1), 31–48 (2008)CrossRefGoogle Scholar
  28. Lomas, J., Anderson, G.M., Domnick-Pierre, K., Vayda, E., Enkin, M.W., Hannah, W.J.: Do practice guidelines guide practice? The effect of a consensus statement on the practice of physicians. N. Engl. J. Med. 321(19), 1306–1311 (1989)CrossRefPubMedGoogle Scholar
  29. Luke, D.A., Harris, J.K.: Network analysis in public health: history, methods, and applications. Annu. Rev. Public Health 28, 69–93 (2007)CrossRefPubMedGoogle Scholar
  30. Lurie, S.J., Fogg, T.T., Dozier, A.M.: Social network analysis as a method of assessing institutional culture: three case studies. Acad. Med. 84(8), 1029–1035 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  31. Matlock, D.D., Peterson, P.N., Heidenreich, P.A., Lucas, F.L., Malenka, D.J., Wang, Y., Curtis, J.P., Fisher, E.S., Masoudi, F.A.: Regional variation in the use of implantable cardioverter-defibrillators for primary prevention: results from the National Cardiovascular Data Registry. Circ. Cardiovasc. Qual. Outcomes 4(1), 114–121 (2011)CrossRefPubMedGoogle Scholar
  32. Mehra, M.R., Yancy, C.W., Albert, N.M., Curtis, A.B., Stough, W.G., Gheorghiade, M., Heywood, J.T., McBride, M.L., O’Connor, C.M., Reynolds, D., et al.: Evidence of clinical practice heterogeneity in the use of implantable cardioverter-defibrillators in heart failure and post-myocardial infarction left ventricular dysfunction: Findings from IMPROVE HF. Heart Rhythm. 6(12), 1727–1734 (2009)CrossRefPubMedGoogle Scholar
  33. Moss, A.J., Zareba, W., Hall, W.J., Klein, H., Wilber, D.J., Cannom, D.S., Daubert, J.P., Higgins, S.L., Brown, M.W., et al.: Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N. Engl. J. Med. 346(12), 877–883 (2002)CrossRefPubMedGoogle Scholar
  34. Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001)CrossRefGoogle Scholar
  35. Newman, M.E.: Analysis of weighted networks. Phys. Rev. E 70(5), 056131 (2004)CrossRefGoogle Scholar
  36. O’Malley, A.J., Marsden, P.V.: The analysis of social networks. Heath Serv. Outcomes Res. Methodol. 8(4), 222–269 (2008)CrossRefGoogle Scholar
  37. O’Malley, A.J.: The analysis of social network data: an exciting frontier for statisticians. Stat. Med. 32(4), 539–555 (2013)CrossRefPubMedGoogle Scholar
  38. O’Malley, A.J., Onnela, J.P.: Topics in Social Network Analysis and Network Science (2014). arXiv:1404.0067 [physics.soc-ph]
  39. Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)CrossRefGoogle Scholar
  40. Pollack, C.E., Soulos, P.R., Gross, C.P.: Physician’s peer exposure and the adoption of a new cancer treatment modality. Cancer 121(16), 2799–2807 (2015)CrossRefPubMedGoogle Scholar
  41. Porter, M.A., Mucha, P.J., Newman, M.E., Friend, A.J.: Community structure in the united states house of representatives. Phys. A 386(1), 414–438 (2007)CrossRefGoogle Scholar
  42. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Austria. ISBN 3-900051-07-0. (2008)
  43. Rinaldo, A., Fienberg, S.E., Zhou, Y.: On the geometry of discrete exponential families with application to exponential random graph models. Electron. J. Stat. 3, 446–484 (2009)CrossRefGoogle Scholar
  44. Robins, G., Snijders, T., Wang, P., Handcock, M., Pattison, P.: Recent developments in exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 192–215 (2007)CrossRefGoogle Scholar
  45. Ruhnau, B.: Eigenvector-centrality—a node-centrality? Soc. Netw. 22(4), 357–365 (2000)CrossRefGoogle Scholar
  46. Russo, A.M., Stainback, R.F., Bailey, S.R., Epstein, A.E., Heidenreich, P.A., Jessup, M., Kapa, S., Kremers, M.S., Lindsay, B.D., Stevenson, L.W.: ACCF/HRS/AHA/ASE/HFSA/SCAI/SCCT/SCMR 2013 appropriate use criteria for implantable cardioverter-defibrillators and cardiac resynchronization therapy: a report of the American College of Cardiology Foundation appropriate use criteria task force, Heart Rhythm Society, American Heart Association, American Society of Echocardiography, Heart Failure Society of America, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J. Am. Coll. Cardiol. 61(12), 1318–1368 (2013)CrossRefPubMedGoogle Scholar
  47. Snijders, T.A.B., Pattison, P.E., Robins, G.L., Handcock, M.S.: New specifications for exponential random graph models. Sociol. Methodol. 36, 99–153 (2006)CrossRefGoogle Scholar
  48. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar
  49. Wennberg, J.E., Cooper, M.M.: The Dartmouth atlas of health care. American Health Association, Chicago (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Erika L. Moen
    • 1
    Email author
  • Andrea M. Austin
    • 1
  • Julie P. Bynum
    • 1
    • 2
  • Jonathan S. Skinner
    • 1
    • 3
  • A. James O’Malley
    • 1
    • 4
  1. 1.The Dartmouth Institute for Health Policy and Clinical PracticeGeisel School of Medicine at DartmouthLebanonUSA
  2. 2.Department of MedicineGeisel School of Medicine at DartmouthLebanonUSA
  3. 3.Department of EconomicsDartmouth CollegeHanoverUSA
  4. 4.Department of Biomedical Data ScienceGeisel School of Medicine at DartmouthLebanonUSA

Personalised recommendations