The effects of rurality on mental and physical health

  • Steven Stern
  • Elizabeth Merwin
  • Emily Hauenstein
  • Ivora Hinton
  • Virginia Rovnyak
  • Melvin Wilson
  • Ishan Williams
  • Irma Mahone


The effects of rurality on physical and mental health are examined in analyses of a national dataset, the Community Tracking Survey, 2000–2001, that includes individual level observations from household interviews. We merge it with county level data reflecting community resources and use econometric methods to analyze this multi-level data. The statistical analysis of the impact of the choice of definition on outcomes and on the estimates and significance of explanatory variables in the model is presented using modern econometric methods, and differences in results for mental health and physical health are evaluated.


Rural Wald tests Mental health Physical health Providers Health outcomes 



We would like to thank Dori Stern for excellent research assistance, Donna Tolson for help with data collection, and Debby Stanford for help with data input. This paper was supported in part by Grant # 1 R01 MH066293-01A1 from the National Institute of Mental Health.


  1. Agyemang, C., van Hooijdonk, C., Wendel-Vos, W., Ujcic-Voortman, J., Lindeman, E., Stronks, K., Droomers, M.: Ethnic differences in the effect of environmental stressors on blood pressure and hypertension in the Netherlands. BMC Public Health 7(118) (2007)Google Scholar
  2. Armstrong, K., Ravenell, K., McMurphy, S., Putt, M.: Racial/ethnic differences in physician distrust in the United States. Am. J. Public Health 97(7), 1283–1289 (2007)PubMedCrossRefGoogle Scholar
  3. Athey, S., Stern, S.: The impact of information technology on emergency health care outcomes. Rand J. Econ. 33(3), 399–432 (2002)PubMedCrossRefGoogle Scholar
  4. Auchincloss, A., Hadden, W.: The health effects of rural-urban residence and concentrated poverty. J. Rural Health 18(2), 319–336 (2002)PubMedCrossRefGoogle Scholar
  5. Bankhead, C., Silman, A., Barrett, B., Scott, D., Symmons, D.: Incidence of rheumatoid arthritis is not related to indicators of socioeconomic deprivation. J. Rheumatol. 23, 2039–2042 (1996)PubMedGoogle Scholar
  6. Barnett, S., Roderick, P., Martin, D., Diamond, I.: A multilevel analysis of the effects of rurality and social deprivation on premature limiting long term illness. J. Epidemiol. Community Health 55(1), 44–51 (2001)PubMedCrossRefGoogle Scholar
  7. Bayer, P., McMillan, R., & Rueben, K.: What drives racial segregation? New evidence using census microdata. J. Urban Econ. 56(3), 514–535 (2004)CrossRefGoogle Scholar
  8. Beard, J., Blaney, S., Cerda, M., Frye, V., Lovasi, G., Ompad, D., Rundle, A., Vlahov, D.: Neighborhood characteristics and disability in older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 64(2), 252–257 (2009)PubMedGoogle Scholar
  9. Bell, J., Zimmerman, F., Almgren, G., Mayera, J., Huebner, C.: Birth outcomes among urban African-American women: a multilevel analysis of the role of racial residential segregation. Soc. Sci. Med. 63(12), 3030–3045 (2006)PubMedCrossRefGoogle Scholar
  10. Bernard, P., Charafeddine, R., Frohlich, K., Daniela, M., Kestensa, Y., Potvin, L.: Health inequalities and place: a theoretical conception of neighbourhood. Soc. Sci. Med. 65(9), 1839–1852 (2007)PubMedCrossRefGoogle Scholar
  11. Bolduc, D., Fortin, B., Fournier, M.: The effect of incentive policies on the practice location of doctors: a multinomial probit analysis. J Labor Econ 14(4). 703–732 (1996)CrossRefGoogle Scholar
  12. Bond Huie, S., Hummer, R., Rogers, R.: Individual and contextual risks of death among race and ethnic groups in the United States. J. Health Soc. Behav. 43, 359–381 (2002)PubMedCrossRefGoogle Scholar
  13. Breusch, T., Pagan, A.: Simple test for heteroscedasticity and random coefficient variation. Econometrica 47(5), 1287–1294 (1979)CrossRefGoogle Scholar
  14. Brown, A., Ang, A., Pebley, A.: The relationship between neighborhood characteristics and self-rated health for adults with chronic conditions. Am. J. Public Health 97(5), 926–932 (2007)PubMedCrossRefGoogle Scholar
  15. Butler, M., Beale, C.: Rural-Urban Continuum Codes for Metropolitan and Nonmetropolitan Counties. Agriculture and Rural Economy Division, Economic Research Service, United States Department of Agriculture (1994)Google Scholar
  16. Butler, R., Moffitt, R.: A computationally efficient quadrature procedure for the one-factor multinomial probit model. Econometrica 50, 761–764 (1982)CrossRefGoogle Scholar
  17. Canizares, M., Power, J., Perruccio, A., Badley, E.: Association of regional racial/cultural context and socioeconomic status with arthritis in the population: a multilevel analysis. arthritis rheum. Arthritis Care Res. 59(3), 399–407 (2008)CrossRefGoogle Scholar
  18. Center for Studying Health System Change: Community Tracking Study Household Survey, 2000–2003. Washington, DC (2003)Google Scholar
  19. Centers for Disease Control and Prevention: NCHS Urban-Rural Classification Scheme for Counties. Accessed 27 July 2010 (2006)
  20. Chen, J., Rathmore, S., Radford, M., Wang, Y., Krumholz, M.: Racial differences in the use of cardiac catheterization after acute myocardial infarction. N. Engl. J. Med. 344, 1443–1449 (2001)PubMedCrossRefGoogle Scholar
  21. Coburn, A., MacKinney, A., McBride, T., Mueller, K., Slifkin, R., Wakefield, M.: Choosing Rural Definitions: Implications for Health Policy. Issue Brief #2. Rural Policy Research Institute Health Panel. (2007)
  22. Congdon, P.: A multilevel model for cardiovascular disease prevalence in the US and its application to micro area prevalence estimates. Int. J. Health Geogr. 8(6) (2009)Google Scholar
  23. Cooper-Patrick, L., Gallo, J., Gonzales, J., Hong, T., Vu, H., Powe, N., Nelson, C., Ford, D.: Race, gender, and partnership in the patient-physician relationship. J. Am. Med. Assoc. 282, 583–589 (1999)CrossRefGoogle Scholar
  24. Cossman, R., Cossman, J., Cosby, A., Reavis, R.: Reconsidering the rural-urban continuum in rural health research: a test of stable relationships using mortality as a health measure. Popul. Res. Policy Rev. 27(4), 459–476 (2008)CrossRefGoogle Scholar
  25. Cromartie, J., Swanson, L.: Census tracts more precisely define rural populations and areas. Rural Dev. Perspect. 11(3), 31–39 (1996)Google Scholar
  26. De la Torre, A., Fickenscher, K., Luft, H.: The zip postal code difference: methods to improve identification of rural subgroups. Agric. Econ. 5, 253–262 (1991)CrossRefGoogle Scholar
  27. Diala, C., Muntaner, C.: Mood and anxiety disorders among rural, urban, and metropolitan residents in the United States. Community Ment. Health J. 39(3), 239–252 (2003)PubMedCrossRefGoogle Scholar
  28. Diez-Roux, A., Nieto, F., Muntaner, C., Tyroler, H., Comstock, G., Shahar, E., Cooper, L., Watson, R., Szklo, M.: Neighborhood environments and coronary heart disease: a multilevel analysis. Am. J. Epidemiol. 146, 48–63 (1997)PubMedGoogle Scholar
  29. Diez-Roux, A., Merkin, S., Arnett, D., Chambless, L., Massing, M., Javier Nieto F., Sorlie, P., Szklo, M., Tyroler, H., Watson, R.: Neighborhood of residence and incidence of coronary disease. N. Engl. J. Med. 345, 99–106 (2001)PubMedCrossRefGoogle Scholar
  30. Do, D., Dubowitz, T., Bird, C., Lurieb, N., Escarcec, J., Finch, B.: Neighborhood context and ethnicity differences in body mass index: a multilevel analysis using the NHANES III Survey (1988–1994). Econ. Hum. Biol. 5(2), 179–203 (2007)PubMedCrossRefGoogle Scholar
  31. Do, D., Finch, B., Basurto-Davila, R., Bird, C., Escarce, J., Lurie, N.: Does place explain racial health disparities? Quantifying the contribution of residential context to the Black/White health gap in the United States. Soc. Sci. Med. 67(8), 1258–1268 (2008)PubMedCrossRefGoogle Scholar
  32. Erzen, D., Carriere, C., Dik, N., Mustard, C., Roos, L., Manfreda, J., Anthonisen, N.: Income level and asthma prevalence and care patterns. Am. J. Respir. Crit. Care Med. 155, 1060–1065 (1997)PubMedGoogle Scholar
  33. Ferreyra, M.: Estimating the effects of private school vouchers in multidistrict economies. Amer. Econ. Rev. 97(3), 789–817 (2007)CrossRefGoogle Scholar
  34. Flowerdew, R., Manley, D., Sabel, C.: Neighbourhood effects on health: does it matter where you draw the boundaries? Soc. Sci. Med. 66(6), 1241–1255 (2008)PubMedCrossRefGoogle Scholar
  35. Fortney, J., Owen, R., Clothier, J.: Impact of travel distance on the disposition of patients presenting for emergency psychiatric care. J. Behav. Health Serv. Res. 26(1), 104–108 (1999)PubMedCrossRefGoogle Scholar
  36. Frances, C., Shlipak, M., Noguchi, H., Heidenreich, P., McClellan, M.: Does physician specialty affect the survival of elderly patients with myocardial infarction? Health Serv. Res. 35(5 Pt 2), 1093–1116 (2000)PubMedGoogle Scholar
  37. Freedman, V., Grafova, I., Schoeni, R., Rogowski, J.: Neighborhoods and disability in later life. Soc. Sci. Med. 66(11), 2253–2267 (2008)PubMedCrossRefGoogle Scholar
  38. Geiss, L., Pan, L., Cadwell, B., Gregg, E., Benjamin, S., Engelgau, M.: Changes in incidence of diabetes in U.S. Adults, 1997–2003. Am. J. Prev. Med. 30(5), 371–377 (2006)PubMedCrossRefGoogle Scholar
  39. Gessler, W., Hayes, M., Arcury, A., Skelly, A., Nash, S., Soward, A.: Use of mapping technology in health intervention research. Nurs. Outlook 52, 142–146 (2004)CrossRefGoogle Scholar
  40. Geweke, J., Gowrisankaran, G., Town, R.: Bayesian inference for hospital quality in a selection model. Econometrica 71(4), 1215–1238 (2003)CrossRefGoogle Scholar
  41. Ghelfi, L., Parker, T.: A New County-Level Measure of Urban Influence. Staff Paper, Rural Economy Division, Economic Research Service, U.S. Department of Agriculture (1995)Google Scholar
  42. Goldstein, H.: Multilevel Statistical Models. Hodder Arnold, London (2003)Google Scholar
  43. Goodall, C., Kafadar, K., Tukey, J.: Computing and using rural versus urban measures in statistical applications. Am. Stat. 52(2), 101–111 (1998)CrossRefGoogle Scholar
  44. Gourieroux, C., Holly, A., Monfort, A.: Likelihood ratio test, wald test, and kuhn-tucker test in linear models with inequality constraints on the regression parameters. Econometrica 50(1), 63–80 (1982)CrossRefGoogle Scholar
  45. Gwynn, R.: Risk factors for asthma in US adults: results from the 2000 behavioral risk factor surveillance system. J. Asthma 41(1), 91–98 (2004)PubMedCrossRefGoogle Scholar
  46. Hart, L., Larson, E., Lishner, D.: Rural definitions for health policy and research. Am. J. Public Health 95(7), 1149–1155 (2005)PubMedCrossRefGoogle Scholar
  47. Haselkorn, T., Lee, J., Mink, D., Weiss, S.: Racial disparities in asthma-related health outcomes in severe or difficult-to-treat asthma. Ann. Allergy Asthma Immunol. 101(3), 256–263 (2008)PubMedCrossRefGoogle Scholar
  48. Hauenstein, E., Petterson, S., Merwin, E., Rovnyak, V., Heise, B., Wagner, D.: Rurality, gender, and mental health treatment. Fam. Community Health 29(3), 169–185 (2006)PubMedGoogle Scholar
  49. Hayward, M., Pienta, A., McLaughlin, D.: Inequality in men’s mortality: the socioeconomic status gradient and geographic context. J. Health Soc. Behav. 38, 313–330 (1997)PubMedCrossRefGoogle Scholar
  50. Health Resources and Services Administration (2007) Geographic Eligibility for Rural Health Grant Programs.
  51. Hewitt, M.: Defining rural areas: impact on health care policy and research. In: Gesler, W., Ricketts, T. (eds.) Health in rural North America. Rutgers University Press, London, pp. 25–54 (1992)Google Scholar
  52. Hoggart, K.: Let’s do away with rural. J. Rural Stud. 6, 245–257 (1990)CrossRefGoogle Scholar
  53. Hurley, J.: Physicians’ choices of specialty, location, and mode: a reexamination within an interdependent decision framework. J. Hum. Resour. 26(1), 47–71 (1991)CrossRefGoogle Scholar
  54. Hynes, D., Koelling, K., Stroupe, K., Arnold, N., Mallin, K., Shohn, M., Weaver, F., Manheim, L., Kok, L.: Veterans’ access to and use of medicare and veterans affairs health care. Med. Care 45(3), 214–223 (2007)PubMedCrossRefGoogle Scholar
  55. Johnston, K.: Calculating County-to-County Distances with GIS. (2010)
  56. Jonas B., Franks P., Ingram D.: Are Symptoms of anxiety and depression risk factors for hypertension? Longitudinal evidence from the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Arch. Fam. Med. 6, 43–49 (1997)PubMedCrossRefGoogle Scholar
  57. Jordan, S., Hargrove, D.: Implications of an empirical application of categorical definitions of rural. J. Rural Community Psychol. 8(2), 14–29 (1987)Google Scholar
  58. Kodde, D., Palm, F.: Wald criteria for jointly testing equality and inequality restrictions. Econometrica 54(5), 1243–1248 (1986)CrossRefGoogle Scholar
  59. Komaromy, M., Grumbach, K., Drake, M., Vranizan, K., Lurie, N., Keane, D., Bindman, A.: The role of Black and Hispanic physicians in providing health care for underserved populations. N. Engl. J. Med. 334(20), 1305–1310 (1996)PubMedCrossRefGoogle Scholar
  60. Krieger, N., Quesenberry, C., Peng, T., Horn-Ross, P., Stewart, S., Brown, S., Swallen, K., Guillermo, T., Suh, D., Alvarez-Martinez, L., Ward, F.: Social class, race/ethnicity, and incidence of breast, cervix, colon, lung, and prostate cancer among Asian, Black, Hispanic, and White residents of the San Francisco Bay Area, 1988–92 (United States). Cancer Causes Control 10, 525–537 (1999)PubMedCrossRefGoogle Scholar
  61. Krieger, N., Chen, J., Waterman, P., Soobader, M., Subramanian, S., Carson, R.: Geocoding and monitoring of US socioeconomic inequalities in mortality and cancer incidence: does the choice of area-based measure and geographic level matter? The public health disparities geocoding project. Am. J. Epidemiol.. 156(5), 471–482 (2002)PubMedCrossRefGoogle Scholar
  62. Kudo, A.: A Multivariate analogue of the one-sided test. Biometrika 50(3), 403–418 (1962)Google Scholar
  63. Laditka, J.: Physician supply, physician diversity, and outcomes of primary health care for older persons in the United States. Health Place 10(3), 231–244 (2004)PubMedCrossRefGoogle Scholar
  64. Laveist, T., Nuru-Jeter, A.: Is doctor-patient race concordance associated with greater satisfaction with care? J. Health Soc. Behav. 43, 296–306 (2002)PubMedCrossRefGoogle Scholar
  65. Lemelin, E., Diez-Roux, A., Franklin, T., Carnethon, M., Lutsey, P., Ni, H., O’Meara, E., Shrager, S.: Life-course socioeconomic positions and subclinical atherosclerosis in the multi-ethnic study of atherosclerosis. Soc. Sci. Med. 68(3), 444–451 (2009)PubMedCrossRefGoogle Scholar
  66. Lin, S., Crawford, S., Salmon, W.: Potential access and revealed access to pain management medications. Soc. Sci. Med. 60, 1881–1891 (2005)PubMedCrossRefGoogle Scholar
  67. Lipton, R., Liao, Y., Cao, G., Cooper, R., McGee, D.: Determinants of incident non-insulin-dependent diabetes mellitus among Blacks and Whites in a national sample: the NHANES I epidemiologic follow-up study. Am. J. Epidemiol. 138, 826–839 (1993)PubMedGoogle Scholar
  68. Litaker, D., Koroukian, S., Love, T.: Context and healthcare access: looking beyond the individual. Med. Care 43, 531-540 (2005)PubMedCrossRefGoogle Scholar
  69. Litonjua, A., Carey, V., Weiss, S., Gold, D.: Race, socioeconomic factors, and area of residence are associated with asthma prevalence. Pediatr. Pulmonol. 28(6), 394–401 (1999)PubMedCrossRefGoogle Scholar
  70. Lorant, V., Thomas, I., Deliege, D., Tongle, R.: Deprivation and mortality: the implications of spatial autocorrelation for health resources allocation. Soc. Sci. Med. 53(12), 1711–1719 (2001)PubMedCrossRefGoogle Scholar
  71. Loucks, E., Lynch, J., Pilote, L., Fuhrer, R., Almeida, N., Richard, H., Agha, G., Murabito, J., Benjamin, E.: Life-course socioeconomic position and incidence of coronary heart disease. Am. J. Epidemiol. 169(7), 829–836 (2009)PubMedCrossRefGoogle Scholar
  72. Lovasi, G., Moudon, A., Smith, N., Lumley, T., Larsone, E., Sohn, D., Siscovick, D., Psaty, B.: Evaluating options for measurement of neighborhood socioeconomic context: evidence from a myocardial infarction case-control study. Health Place 14(3), 453–467 (2008)PubMedCrossRefGoogle Scholar
  73. Lovett, A., Haynes, R., Sunnenberg, G., Gale, S.: Car travel time and accessibility by bus to general practioner services: a study using patient registers and GIS. Soc. Sci. Med. 55, 97–111 (2002)PubMedCrossRefGoogle Scholar
  74. Mainous, A., King, D., Garr, D., Pearson, W.: Race, rural residence, and control of diabetes and hypertension. Ann. Fam. Med. 2(6), 563–568 (2004)PubMedCrossRefGoogle Scholar
  75. Mair, C., Diez-Roux, A., Galea, S.: Are neighbourhood characteristics associated with depressive symptoms? a review of evidence. J. Epidemiol. Community Health 62(11), 940–946 (2008)PubMedGoogle Scholar
  76. Makuc, D., Haglund, B., Ingram, D., Kleinman, J., Feldman, J.: Health service areas for the United States. National Center for Health Statistics. Vital Health Stat. 2(112) (1991)Google Scholar
  77. McClellan, M., McNeil, B., Newhouse, J.: Does more intensive treatment of acute myocardial infarction in the elderly reduce mortality? Analysis using instrumental variables. J. Am. Med. Assoc. 272(11), 859–866 (1994)CrossRefGoogle Scholar
  78. McWhorter, W., Schatzkin, A., Horm, J., Brown, C.: Contribution of socioeconomic status to Black/White differences in cancer incidence. Cancer 63, 982–989 (1989)PubMedCrossRefGoogle Scholar
  79. Mezuk, B., Eaton, W., Golden, S., Ding, Y.: The influence of educational attainment on depression and risk of Type 2 diabetes. Am. J. Public Health 98(8), 1480–1485 (2008)PubMedCrossRefGoogle Scholar
  80. Moffitt, R.: Incentive effects of the United-States welfare system: a review. J. Econ. Lit. 30(1), 1–61 (1992)Google Scholar
  81. Morenoff, J.: Neighborhood mechanisms and the spatial dynamics of birth weight. Am. J. Sociol. 108(5), 976–1017 (2003)PubMedCrossRefGoogle Scholar
  82. Newhouse, J., McClellan, M.: Econometrics in outcomes research: the use of instrumental variables. Annu. Rev. Public Health 19, 17–34 (1998)PubMedCrossRefGoogle Scholar
  83. Newhouse, J., Williams, A., Bennett, B., Schwartz, W.: Does the geographical distribution of physicians reflect market failure? Bell J. Econ. 13(2), 493–505 (1982)CrossRefGoogle Scholar
  84. Niggebrugge, A., Haynes, R., Jones, A., Lovett, A., Harvey, I.: The index of multiple deprivation 2000 access domain: a useful indicator for public health? Soc. Sci. Med. 60, 2743–2753 (2005)PubMedCrossRefGoogle Scholar
  85. Office of Rural Health Policy, List of Rural Counties and Designated Eligible Census Tracts in Metropolitan Counties. Accessed 18 July 2005 (2005)
  86. Olfson, M., Cherry, D., Lewis-Fernández, R.: Racial differences in visit duration of outpatient psychiatric visits. Arch. Gen. Psychiatry 66(2), 214–221 (2009)PubMedCrossRefGoogle Scholar
  87. Pickett, K., Collins, J., Masi, C., Wilkinson, R.: The effects of racial density and income incongruity on pregnancy outcomes. Soc. Sci. Med. 60(10), 2229–2238 (2005)PubMedGoogle Scholar
  88. Polsky, D., Kletke, P., Wozniak, G., Escarce, J.: HMO penetration and the geographic mobility of practicing physicians. J. Health Econ. 19(5), 793–809 (2000)PubMedCrossRefGoogle Scholar
  89. Reijneveld, S., Verheij, R., de Bakker, D.: The impact of area deprivation on differences in health: does the choice of the geographical classification matter? J. Epidemiol. Community Health 54(4), 306–313 (2000)PubMedCrossRefGoogle Scholar
  90. Ricketts, T., Johnson-Webb, K.: What is “Rural” and how to measure “Rurality”: a focus on health care delivery and health policy. Health Resources and Services Administration: Federal Office of Rural Health Policy, Washington, DC (1997)Google Scholar
  91. Ricketts, T., Johnson-Webb, K., Taylor, P.: Definitions of rural: a handbook for health policy makers and researchers. Health Resources and Services Administration: Federal Office of Rural Health Policy, Washington, DC (1998)Google Scholar
  92. Rosenzweig, M., Wolpin, K.: Immigration selectivity and the effects of public programs. J. Public Econ. 37(3), 265–289 (1988)PubMedCrossRefGoogle Scholar
  93. Roux, A.: Investigating neighborhood and area effects on health. Am. J. Public Health 91(11), 1783–1789 (2001)CrossRefGoogle Scholar
  94. Rovnyak, V.: Wald Tests for Linear and Logistic Models in SAS, SPSS and Stata. (2008)
  95. Rural Assistance Center: (2007)
  96. Saha, S., Taggart, S., Komaromy, M., Bindman, A.: Do patients choose physicians of their own race? Health Aff. 19, 76–83 (2000)CrossRefGoogle Scholar
  97. Schootman, M., Shu, D.: Small-area incidence trends in breast cancer. Epidemiology 15, 300–317 (2004)PubMedCrossRefGoogle Scholar
  98. Smith, M., Anderson, R., Bradham, D., Longino, C.: Rural and urban differences in mortality among Americans 55 years and older: analysis of the national longitudinal mortality study. J. Rural Health 11(4), 274–285 (1995)PubMedCrossRefGoogle Scholar
  99. Sobal, J., Troiano, R., Frongillo, E.: Rural-urban differences in obesity. Rural Sociol. 61(2), 289–305 (1996)CrossRefGoogle Scholar
  100. Stern, S.: Estimating family long-term care decisions in the presence of endogenous child characteristics. J. Hum. Resour. 30(3), 551–580 (1995)CrossRefGoogle Scholar
  101. Stern, S.: Simulation-based estimation. J. Econ. Lit. 35(4), 2006–2039 (1997)Google Scholar
  102. Stern, S.: Sample moments for ‘The Effects of Rurality on Mental and Physical Health’. (2010a)
  103. Stern, S.: Distribution of African-Americans by Census Tract. (2010b)
  104. Stockdale, S., Wells, K., Tang, L., Belinc, T., Zhanga, L., Sherbourne, C.: The importance of social context: neighborhood stressors, stress-buffering mechanisms, and alcohol, drug, and mental health disorders. Soc. Sci. Med. 65(9), 1867–1881 (2007)PubMedCrossRefGoogle Scholar
  105. Stroud A., Secrest D.: Gaussian quadrature formulas. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
  106. Sundquist, K., Malmström, M., Johanssen, S.: Neighbourhood deprivation and incidence of coronary heart disease: a multilevel study of 2.6 million women and men in Sweden. J. Epidemiol. Community Health 58, 71–77 (2004)PubMedCrossRefGoogle Scholar
  107. U.S. Bureau of the Census: Special EEO Tabulation Technical Documentation for SAS Datasets (2000a)Google Scholar
  108. U.S. Bureau of the Census: Special EEO Tabulation SAS Datasets. CD-ROM, December, 2003 (2000b)Google Scholar
  109. United States Department of Agriculture: (1984)
  110. U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, National Center for Health Workforce Analysis: Documentation for the Area Resource File (2004a)Google Scholar
  111. U.S. Department of Health and Human Services, Health Resources and Services Administration, Bureau of Health Professions, National Center for Health Workforce Analysis: Technical Documentation with Field Numbers for the Area Resource File (ARF) 2004 Release (2004b)Google Scholar
  112. Vargas, C., Ingram, D., Gillum, R.: Incidence of hypertension and educational attainment: the NHANES I epidemiologic followup study. Am. J. Epidemiol. 152, 272–278 (2000)PubMedCrossRefGoogle Scholar
  113. Vigdor, J.: Locations, outcomes, and selective migration. Rev. Econ. Stat. 84(4), 751–755 (2002)CrossRefGoogle Scholar
  114. Vinikoor, L., Kaufman, J., MacLehose, R., Laraia, B.: Effects of racial density and income incongruity on pregnancy outcomes in less segregated communities. Soc. Sci. Med. 66(2), 255–259 (2008)PubMedCrossRefGoogle Scholar
  115. Vuong, Q.: Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57(2), 307–333 (1989)CrossRefGoogle Scholar
  116. Wainwright, N., Surtees, P.: Area and individual circumstances and mood disorder prevalence. Br. J. Psychiatry 185, 227–232 (2004a)PubMedCrossRefGoogle Scholar
  117. Wainwright, N., Surtees, P.: Places, people, and their physical and mental functional health. J. Epidemiol. Community Health 58(4), 333–339 (2004b)PubMedCrossRefGoogle Scholar
  118. Walters, W.: Later-life migration in the United States: a review of recent research. J. Plann. Lit. 17(1), 37–66 (2002)CrossRefGoogle Scholar
  119. Ware J., Kosinski M., Keller S.: SF-36 Physical and Mental Health Summary Scales: A User’s Manual. Health Assessment Lab, Boston, MA (1994)Google Scholar
  120. Wiggins, R., Joshi, H., Bartley, M., Gleave, S., Lynch, K., Cullis, A.: Place and personal circumstances in a multilevel account of women’s long-term illness. Soc. Sci. Med. 54(5), 827–838 (2002)PubMedCrossRefGoogle Scholar
  121. Wolak, F.: An exact test for multiple inequality constraints in the linear regression model. J. Am. Stat. Assoc. 82(399), 782–793 (1987)CrossRefGoogle Scholar
  122. Wong, S., Kao, C., Crouch, J., Korenbrot, C.: Rural American Indian medicaid health care services use and health care costs in California. Am. J. Public Health 96(2), 363–370 (2006)PubMedCrossRefGoogle Scholar
  123. Xu, G., Fields, S., Laine, C., Veloski, J., Barzansky, B., Martini, C.: the relationship between the race/ethnicity of generalist physicians and their care for underserved populations. Am. J. Public Health 87, 817–822 (1997)PubMedCrossRefGoogle Scholar
  124. Yiannakoulias, N., Rowe, B., Svenson, L., Schopflocher, D., Kellyey, K., Voaklander, D.: Zones of prevention. Soc. Sci. Med. 57, 2065–2073 (2003)PubMedCrossRefGoogle Scholar
  125. Ziembroski, J., Breiding, M.: The cumulative effect of rural and regional residence on the health of older adults. J. Aging Health 18(5), 631–659 (2006)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Steven Stern
    • 1
  • Elizabeth Merwin
    • 2
  • Emily Hauenstein
    • 2
  • Ivora Hinton
    • 2
  • Virginia Rovnyak
    • 2
  • Melvin Wilson
    • 3
  • Ishan Williams
    • 2
  • Irma Mahone
    • 2
  1. 1.Department of EconomicsUniversity of VirginiaCharlottesvilleUSA
  2. 2.School of NursingUniversity of VirginiaCharlottesvilleUSA
  3. 3.Department of PsychologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations