Advertisement

The analysis of social networks

  • A. James O’Malley
  • Peter V. Marsden
Article

Abstract

Many questions about the social organization of medicine and health services involve interdependencies among social actors that may be depicted by networks of relationships. Social network studies have been pursued for some time in social science disciplines, where numerous descriptive methods for analyzing them have been proposed. More recently, interest in the analysis of social network data has grown among statisticians, who have developed more elaborate models and methods for fitting them to network data. This article reviews fundamentals of, and recent innovations in, social network analysis using a physician influence network as an example. After introducing forms of network data, basic network statistics, and common descriptive measures, it describes two distinct types of statistical models for network data: individual-outcome models in which networks enter the construction of explanatory variables, and relational models in which the network itself is a multivariate dependent variable. Complexities in estimating both types of models arise due to the complex correlation structures among outcome measures.

Keywords

Correlation Exponential random graph model Latent-space model Network autocorrelation model Social relationship Social network 

Notes

Acknowledgements

We thank Nancy Keating for allowing us to re-analyze the data from the physician influence network. Research for the paper was supported by NIH grants R01 AG024448-02, P01 AG031093, and Robert Wood Johnson Foundation Award #58729.

References

  1. Anderson, C., Wasserman, S., Crouch, B.: A p* primer: logit models for social networks. Soc. Networks 21(1), 37–66 (1999). doi: 10.1016/S0378-8733(98)00012-4 Google Scholar
  2. Anselin, L.: Spatial Econometrics: Methods and Models. Kluwer Academic Publishers, Dordrecht, The Netherlands (1988)Google Scholar
  3. Anselin, L.: Some robust approaches to testing and estimation in spatial econometrics. Reg. Sci. Urban Econ. 20(2), 141–163 (1990). doi: 10.1016/0166-0462(90)90001-J Google Scholar
  4. Banerjee, S., Carlin, B., Gelfand, A.: Hierarchical Modeling and Analysis for Spatial Data. Chapman and Hall, Boca Raton, FL (2004)Google Scholar
  5. Barabási, A.-L.: Linked: The New Science of Networks. Perseus, New York (2002)Google Scholar
  6. Bartholomew, D., Steele, F., Moustaki, I., Galbraith, J.: The Analysis and Interpretation of Multivariate Data for Social Scientists. Chapman and Hall, New York (2002)Google Scholar
  7. Batagelj, V., Mrvar, A.: Pajek: analysis and visualization of large networks. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software, pp. 77–103. Springer, New York (2003)Google Scholar
  8. Beauchamp, M.: An improved index of centrality. Behav. Sci. 10, 161–163 (1965). doi: 10.1002/bs.3830100205 PubMedGoogle Scholar
  9. Behrman, J., Kohler, H.-P., Watkins, S.: Social networks and changes in contraceptive use over time: evidence from a longitudinal study in rural Kenya. Demography 39, 713–738 (2002). doi: 10.1353/dem.2002.0033 PubMedGoogle Scholar
  10. Berkman, L., Glass, T.: Social integration, social methods, social support, and health. In: Berkman, L., Kawachi, I. (eds.) Social Epidemiology, pp. 137–173. Oxford University Press, New York (2000)Google Scholar
  11. Berkman, L., Syme, S.: Social networks, host resistance, and mortality: a nine-year follow-up study of Alameda County residents. Am. J. Epidemiol. 109, 86–204 (1979)Google Scholar
  12. Besag, J.: Spatial interaction and statistical-analysis of lattice systems. J. Roy. Stat. Soc. B Met. 36(2), 192–236 (1974)Google Scholar
  13. Besag, J.: Statistical analysis of non-lattice data. J. Inst. Statisticians 24, 179–196 (1975)Google Scholar
  14. Best, N., Cowles, M., Vines, K.: Convergence Diagnosis and Output Analysis Software for Gibbs Sampling Output. MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 2SR, UK (1995)Google Scholar
  15. Boer, P., Huisman, M., Snijders, T., Steglich, M., Wicher, L., Zeggelink, E.: StOCNET User’s Manual, Version 1.7. ICS, Groningen, NL (2006)Google Scholar
  16. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92, 1170–1182 (1987). doi: 10.1086/228631 Google Scholar
  17. Borgatti, S.: NetDraw: Graph Visualization Software. Analytical Technologies, Lexington, KY (2008)Google Scholar
  18. Borgatti, S., Everett, M., Freeman, L.: UCINET 6 for Windows: Software for Social Network Analysis. Analytical Technologies, Lexington, KY (2002)Google Scholar
  19. Burt, R.: Structural Holes: The Social Structure of Competition. Harvard University Press, Cambridge, MA (1992)Google Scholar
  20. Burt, R., Doreian, P.: Testing a structural model of perception: conformity and deviance with respect to journal norms in elite sociological methodology. Qual. Quant. 16, 109–150 (1982). doi: 10.1007/BF00166880 Google Scholar
  21. Butts, C.: sna: Tools for Social Network Analysis (release 1.5) (2007)Google Scholar
  22. Christakis, N.: Social networks and collateral health effects. BMJ 329(7459), 184–185 (2004). doi: 10.1136/bmj.329.7459.184 PubMedGoogle Scholar
  23. Christakis, N., Fowler, J.: The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357, 370–379 (2007). doi: 10.1056/NEJMsa066082 PubMedGoogle Scholar
  24. Christakis, N., Fowler, J.: The collective dynamics of smoking in a large social network. N. Engl. J. Med. 358, 2249–2258 (2008). doi: 10.1056/NEJMsa0706154 PubMedGoogle Scholar
  25. Coleman, J., Katz, E., Menzel, H.: Medical Innovation: A Diffusion Study. Bobbs-Merrill, Indianapolis (1966)Google Scholar
  26. Doreian, P.: Linear-models with spatially distributed data-spatial disturbances or spatial effects. Sociol. Method. Res. 9(1), 29–60 (1980). doi: 10.1177/004912418000900102 Google Scholar
  27. Doreian, P.: Estimating linear models with spatially distributed data. In: Leinhardt, S. (ed.) Sociological Methodology, pp. 359–388. Jossey-Bass, San Francisco (1981)Google Scholar
  28. Doreian, P.: Network autocorrelation models: problems and prospects. In: Griffith, D.A. (ed.) Spatial Statistics: Past, Present, Future, pp. 369–389. Michigan Document Services, Ann Arbor (1989)Google Scholar
  29. Doreian, P., Stokman, F.: Evolution of social networks: processes and principles. In: Doreian, P., Stokman, F. (eds.) Evolution of Social Networks, pp. 233–250. Gordon and Breach Publishers, Amsterdam (1997)Google Scholar
  30. Dow, M.: A biparametric approach to network autocorrelation. Sociol. Method. Res. 13, 201–217 (1984). doi: 10.1177/0049124184013002002 Google Scholar
  31. Erdös, P., Rényi, A.: On random graphs. Pub. Math. 6, 290–297 (1959)Google Scholar
  32. Fienberg, S., Wasserman, S.: Categorical data analysis of single sociometric relations. In: Leinhardt, S. (ed.) Sociological Methodology, pp. 156–192. Jossey-Bass, San Francisco (1981)Google Scholar
  33. Frank, O.: Statistical Inference in Graphs. Stockholm: FOA Repro, Stockholm (1971)Google Scholar
  34. Frank, O.: Sampling and estimation in large social networks. Soc. Networks 11, 91–101 (1978)Google Scholar
  35. Frank, O.: A survey of statistical methods for graph analysis. In: Leinhardt, S. (ed.) Sociological Methodology, pp. 110–155. Jossey-Bass, San Francisco (1981)Google Scholar
  36. Frank, O.: Random sampling and social networks: a survey of various approaches. Math. Informatique Sci. Hum. 26, 19–33 (1988)Google Scholar
  37. Frank, O., Strauss, D.: Markov graphs. J. Am. Stat. Assoc. 81(395), 832–842 (1986). doi: 10.2307/2289017 Google Scholar
  38. Freeman, L.: Centrality in social networks, I. Conceptual clarification. Soc. Networks 1, 215–239 (1979). doi: 10.1016/0378-8733(78)90021-7 Google Scholar
  39. Freeman, L.: Social networks and the structure experiment. In: Freeman, L., White, D., Romney, A. (eds.) Research Methods in Social Network Analysis, pp. 11–40. George Mason University Press, Fairfax, VA (1989)Google Scholar
  40. Freeman, L.: The Development of Social Network Analysis: A Study in the Sociology of Science. Empirical Press, Vancouver, BC (2004)Google Scholar
  41. Friedkin, N.: Social networks in structural equations models. Soc. Psychol. Q. 53, 316–328 (1990). doi: 10.2307/2786737 Google Scholar
  42. Friedkin, N., Cook, K.: Peer group influence. Sociol. Method. Res. 19(1), 122–143 (1990). doi: 10.1177/0049124190019001006 Google Scholar
  43. Fruchterman, T., Reingold, E.: Graph drawing by force-directed placement. Software Pract. Exper. 21(11), 1129–1164 (1991). doi: 10.1002/spe.4380211102 Google Scholar
  44. Geyer, C., Thompson, E.: Constrained Monte Carlo maximum likelihood for dependent data. J. Roy. Stat. Soc. B Met. 54(3), 657–699 (1992)Google Scholar
  45. Gill, P., Swartz, T.: Bayesian analysis of directed graphs data with applications to social networks. J. Roy. Stat. Soc. C-App. Stat. 53, 249–260 (2004)Google Scholar
  46. Goodreau, S.: Advances in exponential random graph (p*) models applied to a large social network. Soc. Networks 29, 231–248 (2007). doi: 10.1016/j.socnet.2006.08.001 PubMedGoogle Scholar
  47. Haines, V., Hurlbert, J.: Network range and health. J. Health Soc. Behav. 33, 254–266 (1992). doi: 10.2307/2137355 PubMedGoogle Scholar
  48. Handcock, M.: Assessing Degeneracy in Statistical Models of Social Networks. Center for Statistics and Social Sciences, University of Washington, Seattle (2003)Google Scholar
  49. Handcock, M., Hunter, D., Butts, C., Goodreau, S., Morris, M.: Statnet: Software tools for the Statistical Modeling of Network Data (release Version 2.1). Center for Statistics and Social Sciences, University of Washington, Seattle, WA; Project home page at http://statnetproject.org; Software available at http://CRAN.R-project.org/package=statnet (2003)
  50. Handcock, M., Raftery, A., Tantrum, J.: Model-based clustering for social networks. J. R. Stat. Soc. [Ser A] 170(2), 301–354 (2007). doi: 10.1111/j.1467-985X.2007.00471.x Google Scholar
  51. Harville, D.: Matrix Algebra from a Statistician’s Perspective. Springer-Verlag Inc, New York (1997)Google Scholar
  52. Hoff, P.: Bilinear mixed-effects models for dyadic data. J. Am. Stat. Assoc. 100, 286–295 (2005). doi: 10.1198/016214504000001015 Google Scholar
  53. Hoff, P., Raftery, A., Handcock, M.: Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97, 1090–1098 (2002). doi: 10.1198/016214502388618906 Google Scholar
  54. Holland, P., Leinhardt, S.: Local structure in social networks. In: Heise, D. (ed.) Sociological Methodology, pp. 1–45. Jossey-Bass, San Francisco (1976)Google Scholar
  55. Holland, P., Leinhardt, S.: A dynamic model for social networks. J. Math. Sociol. 5, 5–20 (1977)Google Scholar
  56. Holland, P., Leinhardt, S.: An exponential family of probability-distributions for directed-graphs. J. Am. Stat. Assoc. 76(373), 33–50 (1981). doi: 10.2307/2287037 Google Scholar
  57. Holland, P., Laskey, K., Leinhardt, S.: Stochastic blockmodels: first steps. Soc. Networks 5, 109–137 (1983). doi: 10.1016/0378-8733(83)90021-7 Google Scholar
  58. House, J., Kahn, R.: Measures and concepts of social support. In: Cohen, S., Syme, S. (eds.) Social Support and Health, pp. 83–108. Academic Press, New York (1985)Google Scholar
  59. Huisman, M., Van Duijn, M.: Software for statistical analysis of social networks. In: Van Dijkum, C., Blasius, J., Kleijer, H., Van Hilten, B. (eds.) The Sixth International Conference on Logic and Methodology, Amsterdam, The Netherlands (2004)Google Scholar
  60. Huisman, M., Snijders, T.: Statistical analysis of longitudinal network data with changing composition. Sociol. Method. Res. 32, 253–287 (2003). doi: 10.1177/0049124103256096 Google Scholar
  61. Huisman, M.,Van Duijn, M.: Software for social networks analysis. In: Carrington, P.J., Scott, J., Wasserman, S. (eds.) Models and Methods in Social Network Analysis, pp. 270–316. Cambridge University Press, Cambridge (2005)Google Scholar
  62. Hunter, D.: Curved exponential family models for social networks. Soc. Networks 29, 216–230 (2007). doi: 10.1016/j.socnet.2006.08.005 PubMedGoogle Scholar
  63. Hunter, D., Goodreau, S., Handcock, M.: Goodness of fit of social network models. J. Am. Stat. Assoc. 103, 248–258 (2008). doi: 10.1198/016214507000000446 Google Scholar
  64. Hunter, D., Handcock, M.: Inference in curved exponential family models for networks. J. Comput. Graph. Stat. 15, 565–583 (2006)Google Scholar
  65. Katz, L., Powell, J.: Probability distributions of random variables associated with a structure of the sample space of sociometric investigations. Ann. Math. Stat. 28, 442–448 (1957). doi: 10.1214/aoms/1177706972 Google Scholar
  66. Keating, N., Ayanian, J., Cleary, P., Marsden, P.: Factors affecting influential discussions among physicians: a social network analysis of a primary care practice. J. Gen. Intern. Med. 22(6), 794–798 (2007). doi: 10.1007/s11606-007-0190-8 PubMedGoogle Scholar
  67. Kenny, D., La Voie, L.: The social relations model. In: Berkowitz, L. (ed.) Advances in Experimental Social Psychology, pp. 142–182. Academic Press, New York (1984)Google Scholar
  68. Klovdahl, A.: Social networks and the spread of infectious diseases. Soc. Sci. Med. 21, 1203–1216 (1985). doi: 10.1016/0277-9536(85)90269-2 PubMedGoogle Scholar
  69. Land, K., Deane, G.: On the large-sample estimation of regression models with spatial or network effects terms: a two-stage least-squares approach. In: Marsden, P.V. (ed.) Sociological Methodology, pp. 221–248. Basil Blackwell, Ltd., Oxford (1992)Google Scholar
  70. Laumann, E., Youm, Y.: Racial/ethnic group differences in the prevalence of sexually transmitted diseases in the United States: a network explanation. Sex. Transm. Dis. 26, 250–261 (1999). doi: 10.1097/00007435-199905000-00003 PubMedGoogle Scholar
  71. Laumann, E., Marsden, P., Prensky, D.: The boundary specification problem in network analysis. In: Burt, R., Minor, M. (eds.) Applied Network Analysis A Methodological Introduction, pp. 18–34. Sage Publications, Beverly Hills, CA (1983)Google Scholar
  72. Laumann, E., Mahay, J., Paik, A., Youm, Y.: Network data collection and its relevance for the analysis of STDs: the NHSLS and CHSLS. In: Morris, M. (ed.) Network Epidemiology: A Handbook for Survey Design and Data Collection, pp. 27–41. Oxford University Press, New York (2004)Google Scholar
  73. Leenders, R.: Modeling social influence through network autocorrelation: constructing the weight matrix. Soc. Networks 24(1), 21–47 (2002). doi: 10.1016/S0378-8733(01)00049-1 Google Scholar
  74. Marsden, P.: Core discussion networks of Americans. Am. Sociol. Rev. 52(1), 122–131 (1987). doi: 10.2307/2095397 Google Scholar
  75. Marsden, P.: Network data and measurement. Annu. Rev. Sociol. 16, 435–463 (1990). doi: 10.1146/annurev.so.16.080190.002251 Google Scholar
  76. Marsden, P.: Egocentric and sociocentric measures of network centrality. Soc. Networks 24, 407–422 (2002). doi: 10.1016/S0378-8733(02)00016-3 Google Scholar
  77. Marsden, P.: Network methods in social epidemiology. In: Oakes, J.M., Kaufman, J.S. (eds.) Methods in Social Epidemiology, pp. 267–286. Jossey-Bass, San Francisco (2006)Google Scholar
  78. McGrath, C., Blythe, J., Krackhardt, D.: The effect of spatial arrangement on judgments and errors in interpreting graphs. Soc. Networks 19(3), 223–242 (1997). doi: 10.1016/S0378-8733(96)00299-7 Google Scholar
  79. McPherson, M., Smith-Lovin, L., Cook, J.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001). doi: 10.1146/annurev.soc.27.1.415 Google Scholar
  80. Miguel, E., Kremer, M.: Networks, Social Learning, and Technology Adoption: The Case of Deworming Drugs in Kenya. Poverty Action Laboratory (2003)Google Scholar
  81. Morris, M., Handcock, M., Miller, W., Ford, C., Schmitz, J., Hobbs, M., Cohen, M., Harris, K., Udry, J.: Prevalence of HIV infection among young adults in the U.S.: results from the add health study. Am. J. Public Health 96(6), 1091–1097 (2006). doi: 10.2105/AJPH.2004.054759 PubMedGoogle Scholar
  82. Nowicki, K., Snijders, T.A.B.: Estimation and prediction for stochastic blockstructures. J. Am. Stat. Assoc. 96, 1077–1087 (2001). doi: 10.1198/016214501753208735 Google Scholar
  83. Pattison, P., Wasserman, S.: Logit models and logistic regressions for social networks: II. Multivariate relations. Br. J. Math. Stat. Psychol. 52(Pt 2), 169–193 (1999). doi: 10.1348/000711099159053 PubMedGoogle Scholar
  84. Robins, G., Pattison, P., Wasserman, S.: Logit models and logistic regressions for social networks: III. Valued relations. Psychometrika 64(3), 371–394 (1999). doi: 10.1007/BF02294302 Google Scholar
  85. Robins, G., Pattison, P., Woolcock, J.: Small and other worlds: global network structures from local processes. Am. J. Sociol. 110(4), 894–936 (2005). doi: 10.1086/427322 Google Scholar
  86. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Soc. Networks 29(2), 173–191 (2007). doi: 10.1016/j.socnet.2006.08.002 Google Scholar
  87. Rothenberg, R., Potterat, J., Woodhouse, D., Muth, S., Darrow, W., Klovdahl, A.: Social network dynamics and HIV transmission. AIDS 12, 1529–1536 (1998). doi: 10.1097/00002030-199812000-00016 PubMedGoogle Scholar
  88. Salganik, M., Heckathorn, D.: Sampling and estimation in hidden populations using respondent-driven sampling. Sociol. Methodol. 34, 193–239 (2004). doi: 10.1111/j.0081-1750.2004.00152.x Google Scholar
  89. Snijders, T.: The degree variance: an index of graph heterogeneity. Soc. Networks 3, 163–174 (1981). doi: 10.1016/0378-8733(81)90014-9 Google Scholar
  90. Snijders, T.: Enumeration and simulation methods for 0–1 matrices with given marginals. Psychometrika 56(3), 397–417 (1991). doi: 10.1007/BF02294482 Google Scholar
  91. Snijders, T.: Stochastic actor-oriented models for network change. J. Math. Sociol. 21, 149–172 (1996)Google Scholar
  92. Snijders, T.: The statistical evaluation of social network dynamics. In: Sobel, M.E., Becker, M.P. (eds.) Sociological Methodology, pp. 361–395. Basil Blackwell, Boston (2001)Google Scholar
  93. Snijders, T.: Models for longitudinal social network data. In: Carrington, P., Scott, J., Wasserman, S. (eds.) Models and Methods in Social Network Analysis, pp. 215–247. Cambridge University Press, Cambridge (2005)Google Scholar
  94. Snijders, T.: Markov Chain Monte Carlo estimation of exponential random graph models. J. Soc. Struct. 3(2) (2002). Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.5323
  95. Snijders, T., Pattison, P., Robins, G., Handcock, M.: New specifications for exponential random graph models. In: Stolzenberg, R. (ed.) Sociological Methodology, pp. 99–153. Blackwell, Boston, MA (2006)Google Scholar
  96. Snijders, T., Steglich, C., Schweinberger, M., Huisman, M.: Manual for SIENA Version 3.2. University of Groningen, Groningen, The Netherlands (2007)Google Scholar
  97. Strauss, D., Ikeda, M.: Pseudolikelihood estimation for social networks. J. Am. Stat. Assoc. 85, 204–212 (1990). doi: 10.2307/2289546 Google Scholar
  98. Sudman, S., Kalton, G.: New developments in the sampling of special populations. Annu. Rev. Sociol. 12, 401–429 (1986). doi: 10.1146/annurev.so.12.080186.002153 Google Scholar
  99. Thompson, S.: Adaptive web sampling. Biometrics 62(4), 1224–1234 (2006)PubMedGoogle Scholar
  100. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32(4), 425–443 (1969). doi: 10.2307/2786545 Google Scholar
  101. Unger, J., Chen, X.: The role of social networks and media receptivity in predicting age of smoking initiation: a proportional hazards model of risk and protective factors. Addict. Behav. 24, 371–381 (1999). doi: 10.1016/S0306-4603(98)00102-6 PubMedGoogle Scholar
  102. Valente, T., Watkins, S., Jato, M., van der Straten, A., Tsitol, L.: Social network associations with contraceptive use among Cameroonian women in voluntary associations. Soc. Sci. Med. 45, 1837–1843 (1997). doi: 10.1016/S0277-9536(96)00385-1 Google Scholar
  103. Van Duijn, M., van Busschbach, J., Snijders, T.: Multilevel analysis of personal networks as dependent variables. Soc. Networks 21, 187–209 (1999). doi: 10.1016/S0378-8733(99)00009-X Google Scholar
  104. Van Duijn, M., Snijders, T., Zijlstra, B.: P2: a random effects model with covariates for directed graphs. Stat. Neerl. 58(2), 234–254 (2004). doi: 10.1046/j.0039-0402.2003.00258.x Google Scholar
  105. Waller, L., Gotway, C.: Applied Spatial Statistics for Public Health Data. Wiley Interscience, Hoboken, NJ (2004)Google Scholar
  106. Wang, P., Robins, G., Pattison, P.: PNet: Program for the Simulation and Estimation of P* Exponential Random Graph Models (release: Department of Psychology, University of Melbourne (2008)Google Scholar
  107. Wang, W., Wong, G.: Stochastic blockmodels for directed graphs. J. Am. Stat. Assoc. 82, 8–19 (1987). doi: 10.2307/2289119 Google Scholar
  108. Wasserman, S.: A stochastic model for directed graphs with transition rates determined by reciprocity. In: Schuessler, K.F. (ed.) Sociological Methodology, pp. 392–412. Jossey-Bass, San Francisco (1979)Google Scholar
  109. Wasserman, S.: Analyzing social networks as stochastic processes. J. Am. Stat. Assoc. 75, 280–294 (1980). doi: 10.2307/2287447 Google Scholar
  110. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  111. Wasserman, S., Pattison, P.: Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p*. Psychometrika 61, 401–425 (1996). doi: 10.1007/BF02294547 Google Scholar
  112. Wellman, B., Frank, K.: Network capital in a multilevel world: getting support from personal communities. In: Lin, K., Cook, K., Burt, R. (eds.) Social Capital: Theory and Research, pp. 233–273. Aldine de Gruyter, New York (2001)Google Scholar
  113. White, D., Harary, F.: The cohesiveness of blocks in social networks: node connectivity and conditional density. In: Becker, M.P. (ed.) Sociological Methodology, pp. 140–148. Blackwell, Boston (2001)Google Scholar
  114. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)Google Scholar
  115. Wong, G.: Bayesian models for directed graphs. J. Am. Stat. Assoc. 82, 140–148 (1987)Google Scholar
  116. Zeggelink, E.: Dynamics of structure—an individual oriented approach. Soc. Networks 16(4), 295–333 (1994). doi: 10.1016/0378-8733(94)90014-0 Google Scholar
  117. Zijlstra, B., Van Duijn, M., Snijders, T.: The multilevel p2 model: a random effects model for the analysis of multiple social networks. Methodology 21, 42–47 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Health Care PolicyHarvard Medical SchoolBostonMAUSA
  2. 2.Department of SociologyHarvard UniversityCambridgeUSA

Personalised recommendations