Skip to main content

Advertisement

Log in

Environmentally responsive hydrogels for repair of cardiovascular tissue

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVDs) pose a serious threat to human health, which are characterized by high disability and mortality rate globally such as myocardial infarction (MI), atherosclerosis, and heart failure. Although stem cells transplantation and growth factors therapy are promising, their low survival rate and loss at the site of injury are major obstacles to this therapy. Recently, the development of hydrogel scaffold materials provides a new way to solve this problem, which have shown the potential to treat CVD. Among these scaffold materials, environmentally responsive hydrogels have great prospects in repairing the microenvironment of cardiovascular tissues and vascular regeneration. They provide a new method for the treatment of cardiovascular tissue repair and space-time control for the release of various therapeutic drugs, including small-molecule drugs, growth factors, and stem cells. Herein, this article reviews the occurrence and current treatment of CVD, as well as the repair of cardiovascular injury by several environmental responsive hydrogels systems currently used, mainly focusing on the delivery of growth factors or the application of cell therapy to revascularization. In addition, we will also discuss the enormous potential and personal perspectives of environmentally responsive hydrogels in cardiovascular repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, Cipolla CM (2016) Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin 66(4):309–325. https://doi.org/10.3322/caac.21341

    Article  PubMed  Google Scholar 

  2. Koopman JJE, Kuipers RS (2017) From arterial ageing to cardiovascular disease. Lancet 389(10080):1676–1678. https://doi.org/10.1016/S0140-6736(17)30763-8

    Article  PubMed  Google Scholar 

  3. Zhu Y, Swanson KM, Rojas RL, Wang Z, St Sauver JL, Visscher SL, Prokop LJ, Bielinski SJ, Wang L, Weinshilboum R, Borah BJ (2019) Systematic review of the evidence on the cost-effectiveness of pharmacogenomics-guided treatment for cardiovascular diseases. Genet Med. https://doi.org/10.1038/s41436-019-0667-y

  4. Collaborators GBDCoD (2017) Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390(10100):1151–1210. https://doi.org/10.1016/S0140-6736(17)32152-9

    Article  Google Scholar 

  5. Ogle BM, Bursac N, Domian I, Huang NF, Menasche P, Murry CE, Pruitt B, Radisic M, Wu JC, Wu SM, Zhang J, Zimmermann WH, Vunjak-Novakovic G (2016) Distilling complexity to advance cardiac tissue engineering. Sci Transl Med 8(342):342ps313. https://doi.org/10.1126/scitranslmed.aad2304

    Article  CAS  Google Scholar 

  6. Sepantafar M, Maheronnaghsh R, Mohammadi H, Rajabi-Zeleti S, Annabi N, Aghdami N, Baharvand H (2016) Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol Adv 34(4):362–379. https://doi.org/10.1016/j.biotechadv.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  7. Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, Sayegh M, Hossain MM, Paul A (2015) Injectable hydrogels for cardiac tissue repair after myocardial infarction. Adv Sci (Weinh) 2(11):1500122. https://doi.org/10.1002/advs.201500122

    Article  CAS  Google Scholar 

  8. Gal D, Thijs B, Glanzel W, Sipido KR (2019) Hot topics and trends in cardiovascular research. Eur Heart J 40(28):2363–2374. https://doi.org/10.1093/eurheartj/ehz282

    Article  PubMed  PubMed Central  Google Scholar 

  9. da Silva LP, Kundu SC, Reis RL, Correlo VM (2019) Electric phenomenon: a disregarded tool in tissue engineering and regenerative medicine. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2019.07.002

  10. Du Y, Guo JL, Wang J, Mikos AG, Zhang S (2019) Hierarchically designed bone scaffolds: from internal cues to external stimuli. Biomaterials 218:119334. https://doi.org/10.1016/j.biomaterials.2019.119334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee AY, Mahler N, Best C, Lee YU, Breuer CK (2014) Regenerative implants for cardiovascular tissue engineering. Transl Res 163(4):321–341. https://doi.org/10.1016/j.trsl.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  12. Lee S, Serpooshan V, Tong XM, Venkatraman S, Lee M, Lee J, Chirikian O, Wu JC, Wu SM, Yang F (2017) Contractile force generation by 3D hiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials 131:111–120. https://doi.org/10.1016/j.biomaterials.2017.03.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Efraim Y, Sarig H, Anavy NC, Sarig U, de Berardinis E, Chaw SY, Krishnamoorthi M, Kalifa J, Bogireddi H, Duc TV, Kofidis T, Baruch L, Boey FYC, Venkatraman SS, Machluf M (2017) Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction. Acta Biomater 50:220–233. https://doi.org/10.1016/j.actbio.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  14. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926. https://doi.org/10.1126/science.8493529

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Xiao Y, Liu C (2017) The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chem Rev 117(5):4376–4421. https://doi.org/10.1021/acs.chemrev.6b00654

    Article  CAS  PubMed  Google Scholar 

  16. Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, Langer R, Vacanti JP, Mayer JE Jr (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60(6 Suppl):S513–S516. https://doi.org/10.1016/0003-4975(95)00733-4

    Article  CAS  PubMed  Google Scholar 

  17. Chow A, Stuckey DJ, Kidher E, Rocco M, Jabbour RJ, Mansfield CA, Darzi A, Harding SE, Stevens MM, Athanasiou T (2017) Human induced pluripotent stem cell-derived cardiomyocyte encapsulating bioactive hydrogels improve rat heart function post myocardial infarction. Stem Cell Reports 9(5):1415–1422. https://doi.org/10.1016/j.stemcr.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang CH (2018) Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 132:104–138. https://doi.org/10.1016/j.addr.2018.07.002

    Article  CAS  PubMed  Google Scholar 

  19. Carlini AS, Gaetani R, Braden RL, Luo C, Christman KL, Gianneschi NC (2019) Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat Commun 10(1):1735. https://doi.org/10.1038/s41467-019-09587-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Seliktar D (2012) Designing cell-compatible hydrogels for biomedical applications. Science 336(6085):1124–1128. https://doi.org/10.1126/science.1214804

    Article  CAS  PubMed  Google Scholar 

  21. He X, Aizenberg M, Kuksenok O, Zarzar LD, Shastri A, Balazs AC, Aizenberg J (2012) Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487(7406):214–218. https://doi.org/10.1038/nature11223

    Article  CAS  PubMed  Google Scholar 

  22. Kumacheva E (2012) Hydrogels: the catalytic curtsey. Nat Mater 11(8):665–666. https://doi.org/10.1038/nmat3381

    Article  CAS  PubMed  Google Scholar 

  23. Haraguchi Y, Shimizu T, Yamato M, Okano T (2012) Concise review: cell therapy and tissue engineering for cardiovascular disease. Stem Cells Transl Med 1(2):136–141. https://doi.org/10.5966/sctm.2012-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee E, Kim D, Kim H, Yoon J (2015) Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles. Sci Rep 5:15124. https://doi.org/10.1038/srep15124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rufaihah AJ, Seliktar D (2016) Hydrogels for therapeutic cardiovascular angiogenesis. Adv Drug Deliv Rev 96:31–39. https://doi.org/10.1016/j.addr.2015.07.003

    Article  CAS  PubMed  Google Scholar 

  26. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Arnlov J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Barnighausen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castaneda-Orjuela CA, Castillo-Rivas J, Catala-Lopez F, Choi JY, Christensen H, Cirillo M, Cooper L Jr, Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, El Sayed ZM, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Havmoeller R, Hay SI, Horino M, Hotez PJ, Jacobsen K, James S, Javanbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang YH, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lal DK, Larsson A, Linn S, Lopez A, Lotufo PA, El Razek HMA, Malekzadeh R, Mazidi M, Meier T, Meles KG, Mensah G, Meretoja A, Mezgebe H, Miller T, Mirrakhimov E, Mohammed S, Moran AE, Musa KI, Narula J, Neal B, Ngalesoni F, Nguyen G, Obermeyer CM, Owolabi M, Patton G, Pedro J, Qato D, Qorbani M, Rahimi K, Rai RK, Rawaf S, Ribeiro A, Safiri S, Salomon JA, Santos I, Santric Milicevic M, Sartorius B, Schutte A, Sepanlou S, Shaikh MA, Shin MJ, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabares-Seisdedos R, Tadele Atnafu N, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Truelsen T, Tyrovolas S, Ukwaja KN, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Wolfe C, Workicho A, Xu G, Yano Y, Yip P, Yonemoto N, Younis M, Yu C, Vos T, Naghavi M, Murray C (2017) Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 70(1):1–25. https://doi.org/10.1016/j.jacc.2017.04.052

    Article  PubMed  PubMed Central  Google Scholar 

  27. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21(32–33):3307–3329. https://doi.org/10.1002/adma.200802106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics C, Stroke Statistics S (2017) Heart Disease and Stroke Statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  29. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347):317–325. https://doi.org/10.1038/nature10146

    Article  CAS  PubMed  Google Scholar 

  30. Bagno L, Hatzistergos KE, Balkan W, Hare JM (2018) Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges. Mol Ther 26(7):1610–1623. https://doi.org/10.1016/j.ymthe.2018.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451(7181):937–942. https://doi.org/10.1038/nature06800

    Article  CAS  PubMed  Google Scholar 

  32. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation 107(1):139–146. https://doi.org/10.1161/01.cir.0000048892.83521.58

    Article  PubMed  Google Scholar 

  33. North BJ, Sinclair DA (2012) The intersection between aging and cardiovascular disease. Circ Res 110(8):1097–1108. https://doi.org/10.1161/Circresaha.111.246876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Roth GA, Johnson CO, Abate KH, Abd-Allah F, Ahmed M, Alam K, Alam T, Alvis-Guzman N, Ansari H, Arnlov J, Atey TM, Awasthi A, Awoke T, Barac A, Barnighausen T, Bedi N, Bennett D, Bensenor I, Biadgilign S, Castaneda-Orjuela C, Catala-Lopez F, Davletov K, Dharmaratne S, Ding EL, Dubey M, Faraon EJA, Farid T, Farvid MS, Feigin V, Fernandes J, Frostad J, Gebru A, Geleijnse JM, Gona PN, Griswold M, Hailu GB, Hankey GJ, Hassen HY, Havmoeller R, Hay S, Heckbert SR, Irvine CMS, James SL, Jara D, Kasaeian A, Khan AR, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Lal D, Larsson A, Linn S, Lotufo PA, Abd El Razek HM, Mazidi M, Meier T, Mendoza W, Mensah GA, Meretoja A, Mezgebe HB, Mirrakhimov E, Mohammed S, Moran AE, Nguyen G, Nguyen M, Ong KL, Owolabi M, Pletcher M, Pourmalek F, Purcell CA, Qorbani M, Rahman M, Rai RK, Ram U, Reitsma MB, Renzaho AMN, Rios-Blancas MJ, Safiri S, Salomon JA, Sartorius B, Sepanlou SG, Shaikh MA, Silva D, Stranges S, Tabares-Seisdedos R, Atnafu NT, Thakur JS, Topor-Madry R, Truelsen T, Tuzcu EM, Tyrovolas S, Ukwaja KN, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Weintraub R, Wolfe C, Workicho A, Xu GL, Yadgir S, Yano Y, Yip P, Yonemoto N, Younis M, Yu CH, Zaidi Z, Zaki MES, Zipkin B, Afshin A, Gakidou E, Lim SS, Mokdad AH, Naghavi M, Vos T, Murray CJL, Coll GBCD (2018) The burden of cardiovascular diseases among US states, 1990-2016. JAMA Cardiol 3(5):375–389. https://doi.org/10.1001/jamacardio.2018.0385

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hu D, Li L, Li SF, Wu MY, Ge NN, Cui YX, Lian Z, Song JX, Chen H (2019) Lymphatic system identification, pathophysiology and therapy in the cardiovascular diseases. J Mol Cell Cardiol 133:99–111. https://doi.org/10.1016/j.yjmcc.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  36. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu SM, Mackey RH, Magid DJ, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, Comm AHAS, Subcomm SS (2016) Heart Disease and Stroke Statistics-2016 update a report from the American Heart Association. Circulation 133(4):E38–E360. https://doi.org/10.1161/Cir.0000000000000350

    Article  PubMed  Google Scholar 

  37. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai SF, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, Assoc AH, Subcomm SS (2013) Heart Disease and Stroke Statistics-2013 update a report from the American Heart Association. Circulation 127(1):E6–E245. https://doi.org/10.1161/CIR.0b013e31828124ad

    Article  PubMed  Google Scholar 

  38. Dalen JE, Alpert JS, Goldberg RJ, Weinstein RS (2014) The epidemic of the 20(th) century: coronary heart disease. Am J Med 127(9):807–812. https://doi.org/10.1016/j.amjmed.2014.04.015

    Article  PubMed  Google Scholar 

  39. Zhong S, Li L, Shen X, Li Q, Xu W, Wang X, Tao Y, Yin H (2019) An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2019.03.036

  40. Zhao TX, Mallat Z (2019) Targeting the immune system in atherosclerosis: JACC state-of-the-art review. J Am Coll Cardiol 73(13):1691–1706. https://doi.org/10.1016/j.jacc.2018.12.083

    Article  CAS  PubMed  Google Scholar 

  41. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Liu LS, Investigators IS (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364(9438):937–952. https://doi.org/10.1016/S0140-6736(04)17018-9

    Article  PubMed  Google Scholar 

  42. Messner B, Bernhard D (2014) Smoking and cardiovascular disease mechanisms of endothelial dysfunction and early atherogenesis. Arterioscl Throm Vas 34(3):509–515. https://doi.org/10.1161/Atvbaha.113.300156

    Article  CAS  Google Scholar 

  43. Wang CCL, Hess CN, Hiatt WR, Goldfine AB (2016) Clinical update: cardiovascular disease in diabetes mellitus atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus - mechanisms, management, and clinical considerations. Circulation 133(24):2459–2502. https://doi.org/10.1161/Circulationaha.116.022194

    Article  Google Scholar 

  44. Lv J, Yu CQ, Guo Y, Bian Z, Yang L, Chen YP, Tang XF, Zhang WY, Qian YJ, Huang YL, Wang XP, Chen JS, Chen ZM, Qi L, Li LM, Biobank CK (2017) Adherence to healthy lifestyle and cardiovascular diseases in the Chinese population. J Am Coll Cardiol 69(9):1116–1125. https://doi.org/10.1016/j.jacc.2016.11.076

    Article  PubMed  PubMed Central  Google Scholar 

  45. Behfar A, Crespo-Diaz R, Terzic A, Gersh BJ (2014) Cell therapy for cardiac repair-lessons from clinical trials. Nat Rev Cardiol 11(4):232–246. https://doi.org/10.1038/nrcardio.2014.9

    Article  PubMed  Google Scholar 

  46. Otto CM (2019) Informed shared decisions for patients with aortic stenosis. New Engl J Med 380(18):1769–1770. https://doi.org/10.1056/NEJMe1903316

    Article  PubMed  Google Scholar 

  47. Vandvik PO, Otto CM, Siemieniuk RA, Bagur R, Guyatt GH, Lytvyn L, Whitlock R, Vartdal T, Brieger D, Aertgeerts B, Price S, Foroutan F, Shapiro M, Mertz R, Spencer FA (2016) Transcatheter or surgical aortic valve replacement for patients with severe, symptomatic, aortic stenosis at low to intermediate surgical risk: a clinical practice guideline. BMJ 354:i5085. https://doi.org/10.1136/bmj.i5085

    Article  PubMed  Google Scholar 

  48. Blau HM, Daley GQ (2019) Stem cells in the treatment of disease. N Engl J Med 380(18):1748–1760. https://doi.org/10.1056/NEJMra1716145

    Article  CAS  PubMed  Google Scholar 

  49. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corra U, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FDR, Lochen ML, Lollgen H, Marques-Vidal P, Perk J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dis I, Verschuren WMM, Binno S, Group ESCSD (2016) 2016 European guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European Society of Cardiology and Other Societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts)developed with the special contribution of the European Association for Cardiovascular Prevention & rehabilitation (EACPR). Eur Heart J 37(29):2315–2381. https://doi.org/10.1093/eurheartj/ehw106

    Article  PubMed  PubMed Central  Google Scholar 

  50. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith SC Jr, Watson K, Wilson PW, Eddleman KM, Jarrett NM, LaBresh K, Nevo L, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC Jr, Tomaselli GF, American College of Cardiology/American Heart Association Task Force on Practice G (2014) 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation 129(25 Suppl 2):S1–S45. https://doi.org/10.1161/01.cir.0000437738.63853.7a

  51. Marquis-Gravel G, Roe MT, Harrington RA, Munoz D, Hernandez AF, Jones WS (2019) Revisiting the role of aspirin for the primary prevention of cardiovascular disease. Circulation 140(13):1115–1124. https://doi.org/10.1161/CIRCULATIONAHA.119.040205

    Article  CAS  PubMed  Google Scholar 

  52. Byrne P, Cullinan J, Smith SM (2019) Statins for primary prevention of cardiovascular disease. BMJ 367:l5674. https://doi.org/10.1136/bmj.l5674

    Article  PubMed  Google Scholar 

  53. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, Ballantyne CM, Somaratne R, Legg J, Wasserman SM, Scott R, Koren MJ, Stein EA, Open-Label Study of Long-Term Evaluation against LDLCI (2015) Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med 372(16):1500–1509. https://doi.org/10.1056/NEJMoa1500858

    Article  CAS  PubMed  Google Scholar 

  54. Takeuchi R, Kuruma Y, Sekine H, Dobashi I, Yamato M, Umezu M, Shimizu T, Okano T (2016) In vivo vascularization of cell sheets provided better long-term tissue survival than injection of cell suspension. J Tissue Eng Regen M 10(8):700–710. https://doi.org/10.1002/term.1854

    Article  CAS  Google Scholar 

  55. Radisic M, Christman KL (2013) Materials science and tissue engineering: repairing the heart. Mayo Clin Proc 88(8):884–898. https://doi.org/10.1016/j.mayocp.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  56. Lutgens E, Atzler D, Doring Y, Duchene J, Steffens S, Weber C (2019) Immunotherapy for cardiovascular disease. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz283

  57. Lu D, Thum T (2019) RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat Rev Cardiol 16(11):661–674. https://doi.org/10.1038/s41569-019-0218-x

    Article  PubMed  Google Scholar 

  58. Zhang Y, Murugesan P, Huang K, Cai H (2019) NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol. https://doi.org/10.1038/s41569-019-0260-8

  59. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, JJP K, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, PRF R, Troquay RPT, Libby P, Glynn RJ, Group CT (2017) Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  60. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, Lee IM, Lichtenstein AH, Loria CM, Millen BE, Nonas CA, Sacks FM, Smith SC Jr, Svetkey LP, Wadden TA, Yanovski SZ, Kendall KA, Morgan LC, Trisolini MG, Velasco G, Wnek J, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Smith SC Jr, Tomaselli GF, American College of Cardiology/American Heart Association Task Force on Practice G (2014) 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. Circulation 129(25 Suppl 2):S76–S99. https://doi.org/10.1161/01.cir.0000437740.48606.d1

    Article  PubMed  Google Scholar 

  61. Look ARG, Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, Coday M, Crow RS, Curtis JM, Egan CM, Espeland MA, Evans M, Foreyt JP, Ghazarian S, Gregg EW, Harrison B, Hazuda HP, Hill JO, Horton ES, Hubbard VS, Jakicic JM, Jeffery RW, Johnson KC, Kahn SE, Kitabchi AE, Knowler WC, Lewis CE, Maschak-Carey BJ, Montez MG, Murillo A, Nathan DM, Patricio J, Peters A, Pi-Sunyer X, Pownall H, Reboussin D, Regensteiner JG, Rickman AD, Ryan DH, Safford M, Wadden TA, Wagenknecht LE, West DS, Williamson DF, Yanovski SZ (2013) Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 369(2):145–154. https://doi.org/10.1056/NEJMoa1212914

    Article  CAS  Google Scholar 

  62. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, DiDonato AJ, Fu X, Hazen JE, Krajcik D, DiDonato JA, Lusis AJ, Hazen SL (2015) Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163(7):1585–1595. https://doi.org/10.1016/j.cell.2015.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de Lima PR, Duque AP, Moreira BR, Rodrigues LFJ (2019) Acupuncture for the treatment of cardiovascular diseases: a systematic review. J Acupunct Meridian Stud 12(2):43–51. https://doi.org/10.1016/j.jams.2018.07.005

    Article  Google Scholar 

  64. Buikema JW, Van Der Meer P, Sluijter JP, Domian IJ (2013) Concise review: engineering myocardial tissue: the convergence of stem cells biology and tissue engineering technology. Stem Cells 31(12):2587–2598. https://doi.org/10.1002/stem.1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Radhakrishnan J, Krishnan UM, Sethuraman S (2014) Hydrogel based injectable scaffolds for cardiac tissue regeneration. Biotechnol Adv 32(2):449–461. https://doi.org/10.1016/j.biotechadv.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  66. Ungerleider JL, Christman KL (2014) Concise review: injectable biomaterials for the treatment of myocardial infarction and peripheral artery disease: translational challenges and progress. Stem Cells Transl Med 3(9):1090–1099. https://doi.org/10.5966/sctm.2014-0049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Badeau BA, Comerford MP, Arakawa CK, Shadish JA, DeForest CA (2018) Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat Chem 10(3):251–258. https://doi.org/10.1038/nchem.2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Flegeau K, Pace R, Gautier H, Rethore G, Guicheux J, Le Visage C, Weiss P (2017) Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Adv Colloid Interf Sci 247:589–609. https://doi.org/10.1016/j.cis.2017.07.012

    Article  CAS  Google Scholar 

  69. Bastings MM, Koudstaal S, Kieltyka RE, Nakano Y, Pape AC, Feyen DA, van Slochteren FJ, Doevendans PA, Sluijter JP, Meijer EW, Chamuleau SA, Dankers PY (2014) A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv Healthc Mater 3(1):70–78. https://doi.org/10.1002/adhm.201300076

    Article  CAS  PubMed  Google Scholar 

  70. Garbern JC, Minami E, Stayton PS, Murry CE (2011) Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials 32(9):2407–2416. https://doi.org/10.1016/j.biomaterials.2010.11.075

    Article  CAS  PubMed  Google Scholar 

  71. Wang T, Zheng Y, Shi Y, Zhao L (2019) pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Deliv Transl Res 9(1):227–239. https://doi.org/10.1007/s13346-018-00609-8

    Article  CAS  PubMed  Google Scholar 

  72. Wang Q, Xie XL, Zhang XW, Zhang JP, Wang AQ (2010) Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol 46(3):356–362. https://doi.org/10.1016/j.ijbiomac.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  73. Wang HB, Zhang XL, Li YM, Ma YT, Zhang Y, Liu ZG, Zhou J, Lin QX, Wang YM, Duan CM, Wang CY (2010) Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant 29(8):881–887. https://doi.org/10.1016/j.healun.2010.03.016

    Article  CAS  PubMed  Google Scholar 

  74. Lu SH, Wang HB, Lu WN, Liu S, Lin QX, Li DX, Duan C, Hao T, Zhou J, Wang YM, Gao SR, Wang CY (2010) Both the transplantation of somatic cell nuclear transfer- and fertilization-derived mouse embryonic stem cells with temperature-responsive chitosan hydrogel improve myocardial performance in infarcted rat hearts. Tissue Eng Pt A 16(4):1303–1315. https://doi.org/10.1089/ten.tea.2009.0434

    Article  Google Scholar 

  75. Chen CH, Chen SH, Mao SH, Tsai MJ, Chou PY, Liao CH, Chen JP (2017) Injectable thermosensitive hydrogel containing hyaluronic acid and chitosan as a barrier for prevention of postoperative peritoneal adhesion. Carbohydr Polym 173:721–731. https://doi.org/10.1016/j.carbpol.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  76. He D, Zhao AS, Su H, Zhang Y, Wang YN, Luo D, Gao Y, Li JA, Yang P (2019) An injectable scaffold based on temperature-responsive hydrogel and factor-loaded nanoparticles for application in vascularization in tissue engineering. J Biomed Mater Res A 107(10):2123–2134. https://doi.org/10.1002/jbm.a.36723

    Article  CAS  PubMed  Google Scholar 

  77. Mou CL, Ju XJ, Zhang L, Xie R, Wang W, Deng NN, Wei J, Chen QM, Chu LY (2014) Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure. Langmuir 30(5):1455–1464. https://doi.org/10.1021/la4046379

    Article  CAS  PubMed  Google Scholar 

  78. Kim SJ, Yooon SG, Lee YM, Kim HC, Kim SI (2004) Electrical behavior of polymer hydrogel composed of poly(vinyl alcohol)-hyaluronic acid in solution. Biosens Bioelectron 19(6):531–536. https://doi.org/10.1016/S0956-5663(03)00277-X

    Article  CAS  PubMed  Google Scholar 

  79. O'Neill HS, Herron CC, Hastings CL, Deckers R, Noriega AL, Kelly HM, Hennink WE, McDonnell CO, O'Brien FJ, Ruiz-Hernandez E, Duffy GP (2017) A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents. Acta Biomater 48:110–119. https://doi.org/10.1016/j.actbio.2016.10.001

    Article  CAS  PubMed  Google Scholar 

  80. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003. https://doi.org/10.1038/nmat3776

    Article  CAS  PubMed  Google Scholar 

  81. Knipe JM, Peppas NA (2014) Multi-responsive hydrogels for drug delivery and tissue engineering applications. Regen Biomater 1(1):57–65. https://doi.org/10.1093/rb/rbu006

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ma C, Li T, Zhao Q, Yang X, Wu J, Luo Y, Xie T (2014) Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels. Adv Mater 26(32):5665–5669. https://doi.org/10.1002/adma.201402026

    Article  CAS  PubMed  Google Scholar 

  83. Liu Z, Liu L, Ju XJ, Xie R, Zhang B, Chu LY (2011) K(+)-recognition capsules with squirting release mechanisms. Chem Commun (Camb) 47(45):12283–12285. https://doi.org/10.1039/c1cc15082k

    Article  CAS  Google Scholar 

  84. Tu T, Fang W, Sun Z (2013) Visual-size molecular recognition based on gels. Adv Mater 25(37):5304–5313. https://doi.org/10.1002/adma.201301914

    Article  CAS  PubMed  Google Scholar 

  85. Yang JM, Olanrele OS, Zhang X, Hsu CC (2018) Fabrication of hydrogel materials for biomedical applications. Adv Exp Med Biol 1077:197–224. https://doi.org/10.1007/978-981-13-0947-2_12

    Article  CAS  PubMed  Google Scholar 

  86. Yeh PD, Alexeev A (2015) Mesoscale modelling of environmentally responsive hydrogels: emerging applications. Chem Commun (Camb) 51(50):10083–10095. https://doi.org/10.1039/c5cc01027f

    Article  CAS  Google Scholar 

  87. Gerecht-Nir S, Radisic M, Park H, Cannizzaro C, Boublik J, Langer R, Vunjak-Novakovic G (2006) Biophysical regulation during cardiac development and application to tissue engineering. Int J Dev Biol 50(2–3):233–243. https://doi.org/10.1387/ijdb.052041sg

    Article  PubMed  Google Scholar 

  88. LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ (1995) Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Phys 269(2 Pt 2):H571–H582. https://doi.org/10.1152/ajpheart.1995.269.2.H571

    Article  CAS  Google Scholar 

  89. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820. https://doi.org/10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  90. Li J, Zhang K, Huang N (2017) Engineering cardiovascular implant surfaces to create a vascular endothelial growth microenvironment. Biotechnol J 12(12):1600401. https://doi.org/10.1002/biot.201600401

    Article  CAS  Google Scholar 

  91. Longchamp A, Mirabella T, Arduini A, MacArthur MR, Das A, Trevino-Villarreal JH, Hine C, Ben-Sahra I, Knudsen NH, Brace LE, Reynolds J, Mejia P, Tao M, Sharma G, Wang R, Corpataux JM, Haefliger JA, Ahn KH, Lee CH, Manning BD, Sinclair DA, Chen CS, Ozaki CK, Mitchell JR (2018) Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell 173(1):117–129. https://doi.org/10.1016/j.cell.2018.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. https://doi.org/10.1038/nature10144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bikfalvi A (2017) History and conceptual developments in vascular biology and angiogenesis research: a personal view. Angiogenesis 20(4):463–478. https://doi.org/10.1007/s10456-017-9569-2

    Article  PubMed  Google Scholar 

  94. Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417–427. https://doi.org/10.1038/nrd3455

    Article  CAS  PubMed  Google Scholar 

  95. Viallard C, Larrivee B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20(4):409–426. https://doi.org/10.1007/s10456-017-9562-9

    Article  CAS  PubMed  Google Scholar 

  96. de Palma M, Biziato D, Petrova TV (2017) Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer 17(8):457–474. https://doi.org/10.1038/nrc.2017.51

    Article  CAS  PubMed  Google Scholar 

  97. Forget A, Gianni-Barrera R, Uccelli A, Sarem M, Kohler E, Fogli B, Muraro MG, Bichet S, Aumann K, Banfi A, Shastri VP (2019) Mechanically defined microenvironment promotes stabilization of microvasculature, which correlates with the enrichment of a novel Piezo-1(+) population of circulating CD11b(+)/CD115(+) monocytes. Adv Mater 31(21):ARTN 1808050. https://doi.org/10.1002/adma.201808050

    Article  CAS  Google Scholar 

  98. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436. https://doi.org/10.1038/86498

    Article  CAS  PubMed  Google Scholar 

  99. Yla-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J (2007) Vascular endothelial growth factors - biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 49(10):1015–1026. https://doi.org/10.1016/j.jacc.2006.09.053

    Article  CAS  PubMed  Google Scholar 

  100. Samanta D, Hosseini-Nassab N, Zare RN (2016) Electroresponsive nanoparticles for drug delivery on demand. Nanoscale 8(17):9310–9317. https://doi.org/10.1039/c6nr01884j

    Article  CAS  PubMed  Google Scholar 

  101. Guo BL, Yuan JF, Gao QY (2008) Preparation and release behavior of temperature- and pH-responsive chitosan material. Polym Int 57(3):463–468. https://doi.org/10.1002/pi.2350

    Article  CAS  Google Scholar 

  102. Shao ZQ, Takaji K, Katayama Y, Kunitomo R, Sakaguchi H, Lai ZF, Kawasuji M (2006) Effects of intramyocardial administration of slow-release basic fibroblast growth factor on angiogenesis and ventricular remodeling in a rat infarct model. Circ J 70(4):471–477. https://doi.org/10.1253/circj.70.471

    Article  CAS  PubMed  Google Scholar 

  103. Zhang W, Jin X, Li H, Zhang RR, Wu CW (2018) Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydr Polym 186:82–90. https://doi.org/10.1016/j.carbpol.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  104. Cheng NC, Lin WJ, Ling TY, Young TH (2017) Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater 51:258–267. https://doi.org/10.1016/j.actbio.2017.01.060

    Article  CAS  PubMed  Google Scholar 

  105. Ron ES, Bromberg LE (1998) Temperature-responsive gels and thermogelling polymer matrices for protein and peptide delivery. Adv Drug Deliv Rev 31(3):197–221

    Article  CAS  Google Scholar 

  106. He D, Zhao A-s, Hong S, Zhang Y, Wang Y-n, Luo D, Gao Y, Li J-a, Yang P (2019) An injectable scaffold based on temperature responsive hydrogel and factors loaded nano-particles for potential application of vascularization in tissue engineering. J Biomed Mater Res A 107A:2123–2134

    Article  Google Scholar 

  107. Osman A, Oner ET, Eroglu MS (2017) Novel Levan and pNIPA temperature sensitive hydrogels for 5-ASA controlled release. Carbohydr Polym 165:61–70. https://doi.org/10.1016/j.carbpol.2017.01.097

    Article  CAS  PubMed  Google Scholar 

  108. Hoare T, Santamaria J, Goya GF, Irusta S, Lin D, Lau S, Padera R, Langer R, Kohane DS (2009) A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett 9(10):3651–3657. https://doi.org/10.1021/nl9018935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liang Z, Liu C, Li L, Xu P, Luo G, Ding M, Liang Q (2016) Double-network hydrogel with tunable mechanical performance and biocompatibility for the fabrication of stem cells-encapsulated fibers and 3D assemble. Sci Rep 6:33462. https://doi.org/10.1038/srep33462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang XZ, Xu XD, Cheng SX, Zhuo RX (2008) Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter 4(3):385–391. https://doi.org/10.1039/b713803m

    Article  CAS  PubMed  Google Scholar 

  111. Han D, Lu ZC, Chester SA, Lee H (2018) Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Sci Rep-Uk 8:ARTN 1963. https://doi.org/10.1038/s41598-018-20385-2

    Article  CAS  Google Scholar 

  112. Li X, Zhou J, Liu ZQ, Chen J, Lu SH, Sun HY, Li JJ, Lin QX, Yang BG, Duan CM, Xing M, Wang CY (2014) A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials 35(22):5679–5688. https://doi.org/10.1016/j.biomaterials.2014.03.067

    Article  CAS  PubMed  Google Scholar 

  113. Zhang K, Shi ZQ, Zhou JK, Xing Q, Ma SS, Li QH, Zhang YT, Yao MH, Wang XF, Li Q, Li JA, Guan FX (2018) Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury. J Mater Chem B 6(19):2982–2992. https://doi.org/10.1039/c7tb03213g

    Article  CAS  PubMed  Google Scholar 

  114. Karam JP, Muscari C, Sindji L, Bastiat G, Bonafe F, Venier-Julienne MC, Montero-Menei NC (2014) Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering. J Control Release 192:82–94. https://doi.org/10.1016/j.jconrel.2014.06.052

    Article  CAS  PubMed  Google Scholar 

  115. Overstreet DJ, Badha VS, Heffernan JM, Childers EP, Moore RC, Vernon BL, McLaren AC (2019) Temperature-responsive PNDJ hydrogels provide high and sustained antimicrobial concentrations in surgical sites. Drug Deliv Transl Re 9(4):802–815. https://doi.org/10.1007/s13346-019-00630-5

    Article  CAS  Google Scholar 

  116. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep 93:1–49. https://doi.org/10.1016/j.mser.2015.04.001

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lang WR (1955) Vaginal acidity and pH; a review. Obstet Gynecol Surv 10(4):546–560. https://doi.org/10.1097/00006254-195508000-00009

    Article  CAS  PubMed  Google Scholar 

  118. Wike-Hooley JL, van den Berg AP, van der Zee J, Reinhold HS (1985) Human tumour pH and its variation. Eur J Cancer Clin Oncol 21(7):785–791. https://doi.org/10.1016/0277-5379(85)90216-0

    Article  CAS  PubMed  Google Scholar 

  119. Khabbaz KR, Zankoul F, Warner KG (2001) Intraoperative metabolic monitoring of the heart: II. Online measurement of myocardial tissue pH. Ann Thorac Surg 72(6):S2227–S2233; discussion S2233-2224, S2267-2270. https://doi.org/10.1016/s0003-4975(01)03284-2

    Article  CAS  PubMed  Google Scholar 

  120. Kumbhani DJ, Healey NA, Birjiniuk V, Crittenden MD, Josa M, Treanor PR, Khuri SF (2004) Determinants of regional myocardial acidosis during cardiac surgery. Surgery 136(2):190–198. https://doi.org/10.1016/j.surg.2004.04.015

    Article  PubMed  Google Scholar 

  121. Matsusaki M, Akashi M (2005) Novel functional biodegradable polymer IV: pH-sensitive controlled release of fibroblast growth factor-2 from a poly(gamma-glutamic acid)-sulfonate matrix for tissue engineering. Biomacromolecules 6(6):3351–3356. https://doi.org/10.1021/bm050369m

    Article  CAS  PubMed  Google Scholar 

  122. Werzer O, Tumphart S, Keimel R, Christian P, Coclite AM (2019) Drug release from thin films encapsulated by a temperature-responsive hydrogel. Soft Matter 15(8):1853–1859. https://doi.org/10.1039/c8sm02529k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Teixeira LS, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 33(5):1281–1290. https://doi.org/10.1016/j.biomaterials.2011.10.067

    Article  CAS  PubMed  Google Scholar 

  124. Tran NQ, Joung YK, Lih E, Park KM, Park KD (2010) Supramolecular hydrogels exhibiting fast in situ gel forming and adjustable degradation properties. Biomacromolecules 11(3):617–625. https://doi.org/10.1021/bm100047y

    Article  CAS  PubMed  Google Scholar 

  125. Yu SS, Scherer RL, Ortega RA, Bell CS, O'Neil CP, Hubbell JA, Giorgio TD (2011) Enzymatic- and temperature-sensitive controlled release of ultrasmall superparamagnetic iron oxides (USPIOs). J Nanobiotechnology 9:7. https://doi.org/10.1186/1477-3155-9-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Akiyama N, Yamamoto-Fukuda T, Takahashi H, Koji T (2013) In situ tissue engineering with synthetic self-assembling peptide nanofiber scaffolds, PuraMatrix, for mucosal regeneration in the rat middle-ear. Int J Nanomedicine 8:2629–2640. https://doi.org/10.2147/IJN.S47279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li X, Chen YY, Wang XM, Gao K, Gao YZ, Cao J, Zhang ZL, Lei J, Jin ZY, Wang YN (2017) Image-guided stem cells with functionalized self-assembling peptide nanofibers for treatment of acute myocardial infarction in a mouse model. Am J Transl Res 9(8):3723–3731

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Rad-Malekshahi M, Lempsink L, Amidi M, Hennink WE, Mastrobattista E (2016) Biomedical applications of self-assembling peptides. Bioconjug Chem 27(1):3–18. https://doi.org/10.1021/acs.bioconjchem.5b00487

    Article  CAS  PubMed  Google Scholar 

  129. Koutsopoulos S (2016) Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications. J Biomed Mater Res A 104(4):1002–1016. https://doi.org/10.1002/jbm.a.35638

    Article  CAS  PubMed  Google Scholar 

  130. Van Hove AH, Burke K, Antonienko E, Brown E 3rd, Benoit DS (2015) Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo. J Control Release 217:191–201. https://doi.org/10.1016/j.jconrel.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wilson AN, Salas R, Guiseppi-Elie A (2012) Bioactive hydrogels demonstrate mediated release of a chromophore by chymotrypsin. J Control Release 160(1):41–47. https://doi.org/10.1016/j.jconrel.2012.02.026

    Article  CAS  PubMed  Google Scholar 

  132. Hsu CW, Olabisi RM, Olmsted-Davis EA, Davis AR, West JL (2011) Cathepsin K-sensitive poly(ethylene glycol) hydrogels for degradation in response to bone resorption. J Biomed Mater Res A 98(1):53–62. https://doi.org/10.1002/jbm.a.33076

    Article  CAS  PubMed  Google Scholar 

  133. Ziche M, Morbidelli L (2000) Nitric oxide and angiogenesis. J Neuro-Oncol 50(1–2):139–148. https://doi.org/10.1023/a:1006431309841

    Article  CAS  Google Scholar 

  134. Lundberg JO, Gladwin MT, Weitzberg E (2015) Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 14(9):623–641. https://doi.org/10.1038/nrd4623

    Article  CAS  PubMed  Google Scholar 

  135. Farah C, Michel LYM, Balligand JL (2018) Nitric oxide signalling in cardiovascular health and disease. Nat Rev Cardiol 15(5):292–316. https://doi.org/10.1038/nrcardio.2017.224

    Article  CAS  PubMed  Google Scholar 

  136. Vong LB, Bui TQ, Tomita T, Sakamoto H, Hiramatsu Y, Nagasaki Y (2018) Novel angiogenesis therapeutics by redox injectable hydrogel - regulation of local nitric oxide generation for effective cardiovascular therapy. Biomaterials 167:143–152. https://doi.org/10.1016/j.biomaterials.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  137. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53(3):321–339

    Article  CAS  Google Scholar 

  138. Shay JES, Simon MC (2012) Hypoxia-inducible factors: crosstalk between inflammation and metabolism. Semin Cell Dev Biol 23(4):389–394. https://doi.org/10.1016/j.semcdb.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  139. Saito T, Tabata Y (2014) Hypoxia-induced angiogenesis is increased by the controlled release of deferoxiamine from gelatin hydrogels. Acta Biomater 10(8):3641–3649. https://doi.org/10.1016/j.actbio.2014.04.021

    Article  CAS  PubMed  Google Scholar 

  140. Hong Y, Zhou FF, Hua YJ, Zhang XZ, Ni CY, Pan DH, Zhang YQ, Jiang DM, Yang L, Lin QN, Zou YW, Yu DS, Arnot DE, Zou XH, Zhu LY, Zhang SF, Ouyang HW (2019) A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds. Nat Commun 10:ARTN 2060. https://doi.org/10.1038/s41467-019-10004-7

    Article  CAS  Google Scholar 

  141. Leong DP, Joseph PG, McKee M, Anand SS, Teo KK, Schwalm JD, Yusuf S (2017) Reducing the global burden of cardiovascular disease, part 2 prevention and treatment of cardiovascular disease. Circ Res 121(6):695–710. https://doi.org/10.1161/Circresaha.117.311849

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Fostering Talents of National Natural Science Foundation of China and Henan Province (No. U1504310), Key Scientific Research Projects of Higher Education Institutions in Henan Province (No. 16A430030), Key Project and Special Foundation of Research, Development and Promotion in Henan Province (No. 182102310076), Top Doctor Program of Zhengzhou University (No. 32210475), and the Joint Fund for Fostering Talents of NCIR-MMT & HNKL-MMT (No. MMT2017-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Zhang or Jingan Li.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Li, J., Zhang, K. et al. Environmentally responsive hydrogels for repair of cardiovascular tissue. Heart Fail Rev 26, 1273–1285 (2021). https://doi.org/10.1007/s10741-020-09934-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-09934-y

Keywords

Navigation