Advertisement

Echocardiographic tissue imaging evaluation of myocardial characteristics and function in cardiomyopathies

  • Takahide ItoEmail author
  • Michihiro Suwa
Article

Abstract

Current echocardiography techniques have allowed more precise assessment of cardiac structure and function of the several types of cardiomyopathies. Parameters derived from echocardiographic tissue imaging (ETI)—tissue Doppler, strain, strain rate, and others—are extensively used to provide a framework in the evaluation and management of cardiomyopathies. Generally, myocardial function assessed by ETI is depressed in all types of cardiomyopathies, non-ischemic dilated cardiomyopathy (DCM) in particular. In hypertrophic cardiomyopathy (HCM), ETI is useful to identify subclinical disease in family members of HCM, to differentiate HCM from other conditions causing cardiac hypertrophy and to predict cardiac events. ETI also for HCM allows addressing the mechanism behind left ventricular outflow tract obstruction and its improvement after therapeutic options. ETI provides cardiac amyloidosis with unique and specific findings such as “apical sparing.” Nevertheless, ETI does not seem to provide as much information amenable to histological findings as recently emerging techniques of cardiac magnetic resonance imaging. This review introduces usefulness of ETI and some other ultrasound techniques for detecting clinical and subclinical characteristics of cardiomyopathies, focusing on DCM, HCM, and cardiac amyloidosis.

Keywords

Speckle tracking echocardiography Tissue Doppler imaging Strain Global longitudinal strain Dilated cardiomyopthy Hypertrophic cardiomyopathy Cardiac amyloidosis Atrial function 

Notes

Acknowledgments

We are grateful to Keiji Nishimura of Osaka Medical College Hospital for his echocardiographic expertise and Yumiko Kanzaki of Department of Cardiology in Osaka Medical College for her CMR expertise and for assistance with the figures.

Author contributions

TI was involved in the design and writing of the article, and MS in drafting and revising for important intellectual content.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Wang M, Yip G, Yu CM, Zhang Q, Zhang Y, Tse D, Kong SL, Sanderson JE (2005) Independent and incremental prognostic value of early mitral annulus velocity in patients with impaired left ventricular systolic function. J Am Coll Cardiol 45:272–277.  https://doi.org/10.1016/j.jacc.2004.09.059 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amorim S, Rodrigues J, Campelo M, Moura B, Martins E, Macedo F, Silva-Cardoso J, Maciel MJ (2017) Left ventricular reverse remodeling in dilated cardiomyopathy: maintained subclinical myocardial systolic and diastolic dysfunction. Int J Card Imaging 33:605–613.  https://doi.org/10.1007/s10554-016-1042-6 CrossRefGoogle Scholar
  4. 4.
    den Boer SL, du Marchie Sarvaas GJ, Klitsie LM, van Iperen GG, Tanke RB, Helbing WA, Backx APCM, Rammeloo LAJ, Dalinghaus M, Ten Harkel ADJ (2017) Distribution of strain patterns in children with dilated cardiomyopathy. Echocardiography 34:881–887.  https://doi.org/10.1111/echo.13548 CrossRefGoogle Scholar
  5. 5.
    Ito T, Kawanishi Y, Futai R, Terasaki F, Kitaura Y (2009) Usefulness of carvedilol to abolish myocardial postsystolic shortening in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 104:1568–1573.  https://doi.org/10.1016/j.amjcard.2009.07.028 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Takemoto Y, Hozumi T, Sugioka K, Takagi Y, Matsumura Y, Yoshiyama M, Abraham TP, Yoshikawa J (2007) Beta-blocker therapy induces ventricular resynchronization in dilated cardiomyopathy with narrow QRS complex. J Am Coll Cardiol 49(7):778–783PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Stanton T, Leano R, Marwick TH (2009) Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2:356–364.  https://doi.org/10.1161/CIRCIMAGING.109.862334 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP (2010) Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 23:351–369.  https://doi.org/10.1016/j.echo.2010.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH (2014) Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. J Am Coll Cardiol 63:2751–2768.  https://doi.org/10.1016/j.jacc.2014.01.073 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Seo Y, Ishizu T, Atsumi A, Kawamura R, Aonuma K (2014) Three-dimensional speckle tracking echocardiography. Circ J 78:1290–1301PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Sveric KM, Ulbrich S, Rady M, Ruf T, Kvakan H, Strasser RH, Jellinghaus S (2017) Three-dimensional left ventricular torsion in patients with dilated cardiomyopathy: a marker of disease severity. Circ J 81:529–536.  https://doi.org/10.1253/circj.CJ-16-0965 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Ishizu T, Seo Y, Atsumi A, Tanaka YO, Yamamoto M, Machino-Ohtsuka T, Horigome H, Aonuma K, Kawakami Y (2017) Global and regional right ventricular function assessed by novel three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 30:1203–1213.  https://doi.org/10.1016/j.echo.2017.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Balasubramanian S, Punn R, Smith SN, Houle H, Tacy TA (2017) Left ventricular systolic myocardial deformation: a comparison of two- and three-dimensional echocardiography in children. J Am Soc Echocardiogr 30:974–983.  https://doi.org/10.1016/j.echo.2017.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Duan F, Xie M, Wang X, Li Y, He L, Jiang L, Fu Q (2012) Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging. Cardiovasc Ultrasound 10:8.  https://doi.org/10.1186/1476-7120-10-8 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Matsumoto K, Tanaka H, Tatsumi K, Miyoshi T, Hiraishi M, Kaneko A, Tsuji T, Ryo K, Fukuda Y, Yoshida A, Kawai H, Hirata K (2012) Left ventricular dyssynchrony using three-dimensional speckle-tracking imaging as a determinant of torsional mechanics in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 109:1197–1205.  https://doi.org/10.1016/j.amjcard.2011.11.059 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Brown MA, Norris RM, Takayama M, White HD (1987) Postsystolic shortening: a marker of potential for early recovery of acutely ischemic myocardium in the dog. Cardiovasc Res 21:703–716PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Voigt JU, Lindenmeier G, Exner B, Regenfus M, Werner D, Reulbach U, Nixdorff U, Flachskampf FA, Daniel WG (2003) Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr 16:415–423PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ito T, Suwa M, Tonari S, Okuda N, Kitaura Y (2006) Regional postsystolic shortening in patients with hypertrophic cardiomyopathy: its incidence and characteristics assessed by strain imaging. J Am Soc Echocardiogr 19:987–993PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Nogi S, Ito T, Kizawa S, Shimamoto S, Sohmiya K, Hoshiga M, Ishizaka N (2016) Association between left ventricular postsystolic shortening and diastolic relaxation in asymptomatic patients with systemic hypertension. Echocardiography 33:216–222.  https://doi.org/10.1111/echo.13022 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Urheim S, Edvardsen T, Steine K, Skulstad H, Lyseggen E, Rodevand O, Smiseth OA (2003) Postsystolic shortening of ischemic myocardium: a mechanism of abnormal intraventricular filling. Am J Physiol Heart Circ Physiol 284:H2343–H2350PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Claus P, Weidemann F, Dommke C, Bito V, Heinzel FR, D’hooge J, Sipido KR, Sutherland GR, Bijnens B (2007) Mechanisms of postsystolic thickening in ischemic myocardium: mathematical modeling and comparison with experimental ischemic substrates. Ultrasound Med Biol 33:1963–1970PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Bijnens B, Claus P, Weidemann F, Strotmann J, Sutherland GR (2007) Investigating cardiac function using motion and deformation analysis in the setting of coronary artery disease. Circulation 116:2453–2464PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Bogunovic N, van Buuren F, Esdorn H, Horstkotte D, Bogunovic L, Faber L (2018) Physiological left ventricular segmental myocardial mechanics: multiparametric polar mapping to determine intraventricular gradients of myocardial dynamics. Echocardiography 35:1947–1955.  https://doi.org/10.1111/echo.14191 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sengupta PP (2008) Exploring left ventricular isovolumic shortening and stretch mechanics: “the heart has its reasons...”. JACC Cardiovasc Imaging 2(2):212–215.  https://doi.org/10.1016/j.jcmg.2008.12.005 CrossRefGoogle Scholar
  25. 25.
    Waldman LK, Nosan D, Villarreal F, Covell JW (1988) Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 63:550–562PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gorcsan J 3rd, Tanaka H (2011) Echocardiographic assessment of myocardial strain. J Am Coll Cardiol 58:1401–1413.  https://doi.org/10.1016/j.jacc.2011.06.038 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Carasso S, Yang H, Woo A, Vannan MA, Jamorski M, Wigle ED, Rakowski H (2008) Systolic myocardial mechanics in hypertrophic cardiomyopathy: novel concepts and implications for clinical status. J Am Soc Echocardiogr 21:675–683.  https://doi.org/10.1016/j.echo.2007.10.021 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sengupta PP, Narula J (2012) LV segmentation and mechanics in HCM: twisting the Rubik’s cube into perfection! JACC Cardiovasc Imaging 5:765–768.  https://doi.org/10.1016/j.jcmg.2012.05.009 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang TT, Kwon HS, Dai G, Wang R, Mijailovich SM, Moss RL, So PT, Wedeen VJ, Gilbert RJ (2010) Resolving myoarchitectural disarray in the mouse ventricular wall with diffusion spectrum magnetic resonance imaging. Ann Biomed Eng 38:2841–2850.  https://doi.org/10.1007/s10439-010-0031-5 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nagueh SF, Bachinski LL, Meyer D, Hill R, Zoghbi WA, Tam JW, Quinones MA, Roberts R, Marian AJ (2001) Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 104:128–130PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kitaoka H, Kubo T, Hayashi K, Yamasaki N, Matsumura Y, Furuno T, Doi YL (2013) Tissue Doppler imaging and prognosis in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 14:544–549.  https://doi.org/10.1093/ehjci/jes200 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Shan K, Bick RJ, Poindexter BJ, Shimoni S, Letsou GV, Reardon MJ, Howell JF, Zoghbi WA, Nagueh SF (2000) Relation of tissue Doppler derived myocardial velocities to myocardial structure and beta-adrenergic receptor density in humans. J Am Coll Cardiol 36:891–896PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kalra A, Harris KM, Maron BA, Maron MS, Garberich RF, Haas TS, Lesser JR, Maron BJ (2016) Relation of Doppler tissue imaging parameters with heart failure progression in hypertrophic cardiomyopathy. Am J Cardiol 117(11):1808–1814.  https://doi.org/10.1016/j.amjcard.2016.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Olivotto I, Cecchi F, Gistri R, Lorenzoni R, Chiriatti G, Girolami F, Torricelli F, Camici PG (2006) Relevance of coronary microvascular flow impairment to long-term remodeling and systolic dysfunction in hypertrophic cardiomyopathy. J Am Coll Cardiol 47:1043–1048PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Nagueh SF, McFalls J, Meyer D, Hill R, Zoghbi WA, Tam JW, Quiñones MA, Roberts R, Marian AJ (2003) Tissue Doppler imaging predicts the development of hypertrophic cardiomyopathy in subjects with subclinical disease. Circulation 108:395–398PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Michels M, Soliman OI, Kofflard MJ, Hoedemaekers YM, Dooijes D, Majoor-Krakauer D, ten Cate FJ (2008) Diastolic abnormalities as the first feature of hypertrophic cardiomyopathy in Dutch myosin-binding protein C founder mutations. JACC Cardiovasc Imaging 2:58–64.  https://doi.org/10.1016/j.jcmg.2008.08.003 CrossRefGoogle Scholar
  37. 37.
    Cameli M, Mandoli GE, Loiacono F, Dini FL, Henein M, Mondillo S (2016) Left atrial strain: a new parameter for assessment of left ventricular filling pressure. Heart Fail Rev 21:65–76.  https://doi.org/10.1007/s10741-015-9520-9 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Aly MF, Brouwer WP, Kleijn SA, van Rossum AC, Kamp O (2014) Three-dimensional speckle tracking echocardiography for the preclinical diagnosis of hypertrophic cardiomyopathy. Int J Card Imaging 30:523–533.  https://doi.org/10.1007/s10554-014-0364-5 CrossRefGoogle Scholar
  39. 39.
    Vinereanu D, Florescu N, Sculthorpe N, Tweddel AC, Stephens MR, Fraser AG (2001) Differentiation between pathologic and physiologic left ventricular hypertrophy by tissue Doppler assessment of long-axis function in patients with hypertrophic cardiomyopathy or systemic hypertension and in athletes. Am J Cardiol 88:53–58PubMedCrossRefGoogle Scholar
  40. 40.
    Kato TS, Noda A, Izawa H, Yamada A, Obata K, Nagata K, Iwase M, Murohara T, Yokota M (2004) Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation 110:3808–3814PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure: abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959CrossRefGoogle Scholar
  42. 42.
    Pak PH, Maughan L, Baughman KL, Kass DA (1996) Marked discordance between dynamic and passive diastolic pressure-volume relations in idiopathic hypertrophic cardiomyopathy. Circulation 94:52–60PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Nishimura RA, Appleton CP, Redfield MM, Ilstrup DM, Holmes DR Jr, Tajik AJ (1996) Noninvasive Doppler echocardiographic evaluation of left ventricular filling pressures in patients with cardiomyopathies: a simultaneous Doppler echocardiographic and cardiac catheterization study. J Am Coll Cardiol 28(5):1226–1233PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ito T, Suwa M, Kobashi A, Nakamura T, Miyazaki S, Hirota Y (2000) Prediction of mean pulmonary wedge pressure using Doppler pulmonary venous flow variables in hypertrophic cardiomyopathy. Int J Cardiol 76:49–56PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Nagueh SF, Lakkis NM, Middleton KJ, Spencer WH 3rd, Zoghbi WA, Quiñones MA (1999) Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation 99:254–261PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wang J, Khoury DS, Thohan V, Torre-Amione G, Nagueh SF (2007) Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation 115:1376–1383PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bednarz J, Vignon P, Mor-Avi VV, Weinert L, Koch R, Spencer K, Lang RM (1998) Color kinesis: principles of operation and technical guidelines. Echocardiography 15:21–34PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Vignon P, Mor-Avi V, Weinert L, Koch R, Spencer KT, Lang RM (1998) Quantitative evaluation of global and regional left ventricular diastolic function with color kinesis. Circulation 97:1053–1061PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Ito T, Suwa M, Imai M, Nakamura T, Kitaura Y (2004) Assessment of regional left ventricular filling dynamics using color kinesis in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 17:146–151PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Yuan J, Chen S, Qiao S, Duan F, Zhang J, Wang H (2014) Characteristics of myocardial postsystolic shortening in patients with symptomatic hypertrophic obstructive cardiomyopathy before and half a year after alcohol septal ablation assessed by speckle tracking echocardiography. PLoS One 9:e99014.  https://doi.org/10.1371/journal.pone.0099014 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Elsheshtawy MO, Mahmoud AN, Abdelghany M, Suen IH, Sadiq A, Shani J (2018) Left ventricular aneurysms in hypertrophic cardiomyopathy with midventricular obstruction: a systematic review of literature. Pacing Clin Electrophysiol 41:854–865.  https://doi.org/10.1111/pace.13380 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Støylen A, Sletvold O, Skjaerpe T (2003) Post systolic shortening in nonobstructive hypertrophic cardiomyopathy with delayed emptying of the apex: a Doppler flow, tissue Doppler and strain rate imaging case study. Echocardiography 20:167–171PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Maron BJ (2002) Hypertrophic cardiomyopathy: a systematic review. JAMA 287:1308–1320PubMedPubMedCentralGoogle Scholar
  54. 54.
    Giraldeau G, Duchateau N, Bijnens B, Gabrielli L, Penela D, Evertz R, Mont L, Brugada J, Berruezo A, Sitges M (2016) Dyssynchronization reduces dynamic obstruction without affecting systolic function in patients with hypertrophic obstructive cardiomyopathy: a pilot study. Int J Card Imaging 32:1179–1188.  https://doi.org/10.1007/s10554-016-0903-3 CrossRefGoogle Scholar
  55. 55.
    Ito T, Suwa M, Sakai Y, Hozumi T, Kitaura Y (2005) Usefulness of tissue Doppler imaging for demonstrating altered septal contraction sequence during dual-chamber pacing in obstructive hypertrophic cardiomyopathy. Am J Cardiol 96:1558–1562PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hozumi T, Ito T, Suwa M, Sakai Y, Kitaura Y (2006) Effects of dual-chamber pacing on regional myocardial deformation in patients with hypertrophic obstructive cardiomyopathy. Circ J 70:63–68PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Jassal DS, Neilan TG, Fifer MA, Palacios IF, Lowry PA, Vlahakes GJ, Picard MH, Yoerger DM (2006) Sustained improvement in left ventricular diastolic function after alcohol septal ablation for hypertrophic obstructive cardiomyopathy. Eur Heart J 27:1805–1810PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Finocchiaro G, Haddad F, Kobayashi Y, Lee D, Pavlovic A, Schnittger I, Sinagra G, Magavern E, Myers J, Froelicher V, Knowles JW, Ashley E (2016) Impact of septal reduction on left atrial size and diastole in hypertrophic cardiomyopathy. Echocardiography 33:686–694.  https://doi.org/10.1111/echo.13158 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ommen SR, Nishimura RA, Squires RW, Schaff HV, Danielson GK, Tajik AJ (1999) Comparison of dual-chamber pacing versus septal myectomy for the treatment of patients with hypertrophic obstructive cardiomyopathy: a comparison of objective hemodynamic and exercise end points. J Am Coll Cardiol 34:191–196PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Nishimura RA, Hayes DL, Ilstrup DM, Holmes DR Jr, Tajik AJ (1996) Effect of dual-chamber pacing on systolic and diastolic function in patients with hypertrophic cardiomyopathy. Acute Doppler echocardiographic and catheterization hemodynamic study. J Am Coll Cardiol 27:421–430PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Nagueh SF, Lakkis NM, Middleton KJ, Killip D, Zoghbi WA, Quiñones MA, Spencer WH 3rd (1999) Changes in left ventricular filling and left atrial function six months after nonsurgical septal reduction therapy for hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol 34:1123–1128PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Angermann CE, Nassau K, Stempfle HU, Krüger TM, Drewello R, Junge R, Uberfuhr P, Weiss M, Theisen K (1997) Recognition of acute cardiac allograft rejection from serial integrated backscatter analyses in human orthotopic heart transplant recipients. Comparison with conventional echocardiography. Circulation 95:140–150PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Suwa M, Ito T, Kobashi A, Yagi H, Terasaki F, Hirota Y, Kawamura K (2000) Myocardial integrated ultrasonic backscatter in patients with dilated cardiomyopathy: prediction of response to beta-blocker therapy. Am Heart J 139:905–912PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Suwa M, Ito T, Nakamura T, Miyazaki S (2002) Prognostic implications derived from ultrasonic tissue characterization with myocardial integrated backscatter in patients with dilated cardiomyopathy. Int J Cardiol 84:133–140PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Naito J, Masuyama T, Tanouchi J, Mano T, Kondo H, Yamamoto K, Nagano R, Hori M, Inoue M, Kamada T (1994) Analysis of transmural trend of myocardial integrated ultrasound backscatter for differentiation of hypertrophic cardiomyopathy and ventricular hypertrophy due to hypertension. J Am Coll Cardiol 24:517–524PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Maron BJ, Maron MS (2013) Hypertrophic cardiomyopathy. Lancet 381:242–255.  https://doi.org/10.1016/S0140-6736(12)60397-3 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bulluck H, Maestrini V, Rosmini S, Abdel-Gadir A, Treibel TA, Castelletti S, Bucciarelli-Ducci C, Manisty C, Moon JC (2015) Myocardial T1 mapping. Circ J 79:487–494.  https://doi.org/10.1253/circj.CJ-15-0054 PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Ogawa R, Kido T, Nakamura M, Kido T, Kurata A, Uetani T, Ogimoto A, Miyagawa M, Mochizuki T (2017) T1 mapping using saturation recovery single-shot acquisition at 3-tesla magnetic resonance imaging in hypertrophic cardiomyopathy: comparison to late gadolinium enhancement. Jpn J Radiol 35:116–125.  https://doi.org/10.1007/s11604-017-0611-5 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hinojar R, Varma N, Child N, Goodman B, Jabbour A, Yu CY, Gebker R, Doltra A, Kelle S, Khan S, Rogers T, Arroyo Ucar E, Cummins C, Carr-White G, Nagel E, Puntmann VO (2015, 2015) T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy: findings from the international T1 multicenter cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 8.  https://doi.org/10.1161/CIRCIMAGING.115.003285
  70. 70.
    Falk RH, Quarta CC (2015) Echocardiography in cardiac amyloidosis. Heart Fail Rev 20:125–131.  https://doi.org/10.1007/s10741-014-9466-3 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Phelan D, Thavendiranathan P, Popovic Z, Collier P, Griffin B, Thomas JD, Marwick TH (2014) Application of a parametric display of two-dimensional speckle-tracking longitudinal strain to improve the etiologic diagnosis of mild to moderate left ventricular hypertrophy. J Am Soc Echocardiogr 27:888–895.  https://doi.org/10.1016/j.echo.2014.04.015 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Schiano-Lomoriello V, Galderisi M, Mele D, Esposito R, Cerciello G, Buonauro A, Della Pepa R, Picardi M, Catalano L, Trimarco B, Pane F (2016) Longitudinal strain of left ventricular basal segments and E/e’ ratio differentiate primary cardiac amyloidosis at presentation from hypertensive hypertrophy: an automated function imaging study. Echocardiography 33:1335–1343.  https://doi.org/10.1111/echo.13278 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Koyama J, Ray-Sequin PA, Falk RH (2003) Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation 107:2446–1452PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U, Fogarassy P, Beyer M (2012) Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography 29:668–677.  https://doi.org/10.1111/j.1540-8175.2012.01680.x CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    de Gregorio C, Dattilo G, Casale M, Terrizzi A, Donato R, Di Bella G (2014) Left atrial morphology, size and function in patients with transthyretin cardiac amyloidosis and primary hypertrophic cardiomyopathy - comparative strain imaging study. Circ J 80:1830–1837.  https://doi.org/10.1253/circj.CJ-16-0364 PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Nochioka K, Quarta CC, Claggett B, Roca GQ, Rapezzi C, Falk RH, Solomon SD (2017) Left atrial structure and function in cardiac amyloidosis. Eur Heart J Cardiovasc Imaging 18:1128–1137.  https://doi.org/10.1093/ehjci/jex097 CrossRefPubMedGoogle Scholar
  77. 77.
    Földeák D, Kormányos Á, Domsik P, Kalapos A, Piros GÁ, Ambrus N, Ajtay Z, Sepp R, Borbényi Z, Forster T, Nemes A (2017) Left atrial dysfunction in light-chain cardiac amyloidosis and hypertrophic cardiomyopathy - a comparative three-dimensional speckle-tracking echocardiographic analysis from the MAGYAR-path study. Rev Port Cardiol 36:905–913.  https://doi.org/10.1016/j.repc.2017.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Mohty D, Petitalot V, Magne J, Fadel BM, Boulogne C, Rouabhia D, ElHamel C, Lavergne D, Damy T, Aboyans V, Jaccard A (2018) Left atrial function in patients with light chain amyloidosis: a transthoracic 3D speckle tracking imaging study. J Cardiol 71:419–427.  https://doi.org/10.1016/j.jjcc.2017.10.007 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ari H, Ari S, Akkaya M, Aydin C, Emlek N, Sarigül OY, Çetinkaya S, Bozat T, Şentürk M, Karaağaç K, Melek M, Yilmaz M (2013) Predictive value of atrial electromechanical delay for atrial fibrillation recurrence. Cardiol J 20:639–647.  https://doi.org/10.5603/CJ.2013.0164 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hoshi Y, Nozawa Y, Ogasawara M, Yuda S, Sato S, Sakasai T, Oka M, Katayama H, Sato M, Kouzu H, Nishihara M, Doi A, Nishimiya T, Miura T (2014) Atrial electromechanical interval may predict cardioembolic stroke in apparently low risk elderly patients with paroxysmal atrial fibrillation. Echocardiography 31:140–148.  https://doi.org/10.1111/echo.12329 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Iio C, Inoue K, Nishimura K, Fujii A, Nagai T, Suzuki J, Okura T, Higaki J, Ogimoto A (2015) Characteristics of left atrial deformation parameters and their prognostic impact in patients with pathological left ventricular hypertrophy: analysis by speckle tracking echocardiography. Echocardiography 32:1821–1830.  https://doi.org/10.1111/echo.12961 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of CardiologyOsaka Medical CollegeTakatsukiJapan
  2. 2.Department of Cardiovascular MedicineHokusetsu General HospitalTakatsukiJapan

Personalised recommendations