Cavitation in left ventricular assist device patients: a potential early sign of pump thrombosis

  • Marco Zuin
  • Gianluca RigatelliEmail author
  • Gabriele Braggion
  • Daniela Bacich
  • Thach Nguyen


Mechanical ventricular support with left ventricular assist device (LVAD) has emerged as a durable and safe therapy, both as bridge-to-transplant (BTT) or destination therapy (DT), in patients with advanced heart failure (HF). However, the occurrence of pump thrombosis (PT) still represents a serious complication, especially when LVADs of first or second generation are implanted. During the latest years, some investigations have recognized the occurrence of cavitation, evidenced through transthoracic echocardiography (TTE), as a potential early and indirect sign of PT. In the present manuscript, we reviewed the available data on the occurrence of cavitation in LVAD patients as an early potential marker of PT, also presenting the hemodynamic mechanisms involved.


Left ventricular assist device Pump thrombosis Cavitation Microbubbles Echocardiography 





Destination therapy


High-intensity transient signals


Left ventricular assist device


Left ventricular end diastolic diameter




Pump thrombosis


Vapor pressure


Transcranial Doppler


Transthoracic echocardiography


Compliance with ethical standards

Conflict of interest

None of the authors have conflict of interest to declare

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Li X, Kondray V, Tavri S, Ruhparwar A, Azeze S, Dey A, Partovi S, Rengier F (2019) Role of imaging in diagnosis and management of left ventricular assist device complications. Int J Cardiovasc Imaging 35:1365–1377. CrossRefPubMedGoogle Scholar
  2. 2.
    Rigatelli G, Santini F, Faggian G (2012) Past and present of cardiocirculatory assist devices: a comprehensive critical review. J Geriatr Cardiol 9:389–400PubMedPubMedCentralGoogle Scholar
  3. 3.
    Han JJ, Acker MA, Atluri P (2018) Left ventricular assist devices. Circulation 138:2841–2851CrossRefGoogle Scholar
  4. 4.
    Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B (2016) Left ventricular assist devices-current state and perspectives. J Thorac Dis 8:E660–E666CrossRefGoogle Scholar
  5. 5.
    Uriel N, Han J, Morrison KA, Nahumi N, Yuzefpolskaya M, Garan AR, Duong J, Colombo PC, Takayama H, Thomas S, Naka Y, Jorde UP (2014) Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: a multifactorial phenomenon. J Heart Lung Transplant 33:51–59CrossRefGoogle Scholar
  6. 6.
    Girod G, Jaussi A, Rosset C, De Werra P, Hirt F, Kappenberger L (2002) Cavitation versus degassing: in vitro study of the microbubble phenomenon observed during echocardiography in patients with mechanical prosthetic cardiac valves. Echocardiography 19:531–536CrossRefGoogle Scholar
  7. 7.
    Johansen P (2004) Mechanical heart valve cavitation. Expert Rev Med Devices 1:95–104CrossRefGoogle Scholar
  8. 8.
    Johansen P, Andersen TS, Hasenkam JM, Nygaard H, Paulsen PK (2014) Mechanical heart valve cavitation in patients with bileaflet valves. Conf Proc IEEE Eng Med Biol Soc:5655–5658Google Scholar
  9. 9.
    Davis MK, Ha R, Banerjee D (2014) The presence of air bubbles in the aorta of a patient with a HeartMate II left ventricular assist device: a novel sign of outflow graft obstruction. ASAIO J 60:600–602CrossRefGoogle Scholar
  10. 10.
    Raina A, Agarwal R, Benza RL (2014) Spontaneous microbubbles in the aortic root and thrombosis of a continuous-flow left ventricular assist device. J Heart Lung Transplant 33:550–551CrossRefGoogle Scholar
  11. 11.
    Nguyen TN, Tri Nguyen NM, Truong VT, Vo VM, Rigatelli G (2018) Cavitation phenomenon creating bubbles and their explosion in the coronary arteries causes damage to the endothelium and start the atherosclerotic process. JACC 71:A269. CrossRefGoogle Scholar
  12. 12.
    Andersen TS, Johansen P, Christensen BO, Paulsen PK, Nygaard H, Hasenkam JM (2006) Intraoperative and postoperative evaluation of cavitation in mechanical heart valve patients. Ann Thorac Surg 81:34–41CrossRefGoogle Scholar
  13. 13.
    Zong YJ, Liu G,Long J, Zhou D, Zhang L, Feng Y, Wan M (2017) Focused ultrasound cavitation induced injury and localized atherosclerosis plaques of rabbit abdominal arterial endothelium. Conference: 2017 IEEE International Ultrasonics Symposium (IUS). 1-4.
  14. 14.
    Zong YJ, Wang R, Zhang L, Liu G, Zou X, Feng Y, Wan M (2015) Local cavitation induced vessel wall injury and its potential application in developing atherosclerosis model, 2015 IEEE International Ultrasonics Symposium (IUS) 1-4
  15. 15.
    Graf T, Fischer H, Reul H, Rau G (1991) Cavitation potential of mechanical heart valve prostheses. Int J Artif Organs 14:169–174CrossRefGoogle Scholar
  16. 16.
    Kafesjian R, Howanec M, Ward GD, Diep L, Wagstaff LS, Rhee R (1994) Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve 3:2–7Google Scholar
  17. 17.
    Barak M, Katz Y (2005) Microbubbles: pathophysiology and clinical implications. Chest 128:2918–2932CrossRefGoogle Scholar
  18. 18.
    Dhillon SS, Khoo NS, Quinonez L, Buchholz H (2013) Spontaneous endogenous microbubbles in a child with Berlin heart ventricular assist device. ASAIO J 59:181–182CrossRefGoogle Scholar
  19. 19.
    Malik AB, Johnson A, Tahamont MV (1982) Mechanisms of lung vascular injury after intravascular coagulation. Ann N Y Acad Sci 384:213–234CrossRefGoogle Scholar
  20. 20.
    Kolla KR, Maltais S, Pereira NL, Chaliki HP (2018) Microbubbles in the aorta and left ventricle of a patient with a left ventricular assist device: a unique presentation of pump thrombosis leading to urgent surgery. Cureus 10:e2463PubMedPubMedCentralGoogle Scholar
  21. 21.
    Palaniswamy C, Garg J, Dutta T, Shah A, Gass A, Lanier GM (2014) Cavitation phenomenon: a novel echocardiographic finding in pump thrombosis. J Card Fail 20:874–875CrossRefGoogle Scholar
  22. 22.
    Dimitrov K, Riebandt J, Haberl T, Wiedemann D, Simon P, Laufer G, Schima H, Zimpfer D (2016) High-intensity transient signals in the outflow graft and thrombosis of a HeartWare left ventricular assist device. Ann Thorac Surg 101:e83–e85CrossRefGoogle Scholar
  23. 23.
    Letarte L, Sears-Rogan P, Boyce S, Tyson M, Wang Z (2015) Spontaneous microbubble formation is an indicator of LVAD pump thrombosis. J Heart Lung Transplant 34:S110–S111CrossRefGoogle Scholar
  24. 24.
    Letarte L, Wang Z, Rodrigo ME, Sheikh FH, Hofmeyer M, Boyce SW, Najjar SS, Majure DT (2016) Microbubbles in patients with LVADs: echocardiographic markers for LVAD pump thrombosis? J Heart Lung Transplnat 35:S241CrossRefGoogle Scholar
  25. 25.
    Stainback RF, Estep JD, Agler DA, Birks EJ, Bremer M, Hung J, Kirkpatrick JN, Rogers JG, Shah NR, American Society of Echocardiography (2015) Echocardiography in the management of patients with left ventricular assist devices: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 28:853–909CrossRefGoogle Scholar
  26. 26.
    Ammar KA, Umland MM, Kramer C, Sulemanjee N, Jan MF, Khandheria BK, Seward JB, Paterick TE (2012) The ABCs of left ventricular assist device echocardiography: a systematic approach. Eur Heart J Cardiovasc Imaging 13:885–899CrossRefGoogle Scholar
  27. 27.
    Kato TS, Colombo PC, Nahumi N, Kitada S, Takayama H, Naka Y, Di Tullio MR, Homma S, Mancini D, Jorde UP, Uriel N (2014) Value of serial echo-guided ramp studies in a patient with suspicion of device thrombosis after left ventricular assist device implantation. Echocardiography 31:E5–E9CrossRefGoogle Scholar
  28. 28.
    Imamura T, Jeevanandam V, Kim G, Raikhelkar J, Sarswat N, Kalantari S, Smith B, Rodgers D, Besser S, Chung B, Nguyen A, Narang N, Ota T, Song T, Juricek C, Mehra M, Costanzo MR, Jorde UP, Burkhoff D, Sayer G, Uriel N (2019) Optimal hemodynamics during left ventricular assist device support are associated with reduced readmission rates. Circ Heart Fail 12:e005094CrossRefGoogle Scholar
  29. 29.
    Yang F, Kormos RL, Antaki JF (2015) High-speed visualization of disturbed pathlines in axial flow ventricular assist device under pulsatile conditions. J Thorac Cardiovasc Surg 150:938–944CrossRefGoogle Scholar
  30. 30.
    Chiu AH, Haluszkiewicz E, McAuliffe W (2015) High-speed visualization of disturbed pathlines in axial flow ventricular assist device under pulsatile conditions. J Thorac Cardiovasc Surg 150:938–944CrossRefGoogle Scholar
  31. 31.
    Rigatelli G, Bacich D, Zuin M, Braggion G, Dell'Avvocata F (2019) Cardiac pump-induced platypnea-orthodeoxia. Eur Heart J Cardiovasc Imaging. CrossRefGoogle Scholar
  32. 32.
    Ferns J, Dowling R, Bhat G (2001) Evaluation of a patient with left ventricular assist device dysfunction. ASAIO J 47:696–698CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Section of Internal and Cardiopulmonary Medicine, Faculty of MedicineUniversity of FerraraFerraraItaly
  2. 2.Cardiovascular Diagnosis and Endoluminal Interventions UnitRovigo General HospitalRovigoItaly
  3. 3.Division of CardiologyAdria General HospitalRovigoItaly
  4. 4.Department of CardiologyPorto Viro HospitalRovigoItaly
  5. 5.Cardiovascular ResearchMethodist HospitalMerrillvilleUSA

Personalised recommendations