Advertisement

Role of endothelial dysfunction in heart failure

  • Cinzia Zuchi
  • Isabella Tritto
  • Erberto Carluccio
  • Cristian Mattei
  • Gaia Cattadori
  • Giuseppe AmbrosioEmail author
Article

Abstract

Coronary artery disease is a major underlying etiology for heart failure. The role of coronary microvascular disease, and endothelial dysfunction, in the pathophysiology of heart failure is poorly appreciated. Endothelial dysfunction, induced by oxidative stress, contributes to the development of heart failure. Alterations of endothelial function and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway are involved in the pathophysiology of heart failure with both reduced and preserved ejection fraction. Indeed, an altered endothelium dependent vasodilatation, causing repeated episodes of ischemia/reperfusion, can induce a chronic stunned myocardium with systolic dysfunction and an increased diastolic stiffness with diastolic dysfunction. Moreover, the altered NO-cGMP pathway directly affects myocardial homeostasis. Endothelial dysfunction is associated with worse prognosis and higher rate of cardiovascular events. Potential therapeutic strategies targeting the NO-cGMP pathway in patients with HF will be discussed in this review article. Although clinical data are still inconclusive, the NO-cGMP pathway represents a promising target for therapy.

Keywords

Heart failure Endothelial dysfunction Nitric oxide Microcirculation 

Notes

Funding information

This paper did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cook C, Cole G, Asaria P, Jabbour R, Francis DP (2014) The annual global economic burden of heart failure. Int J Cardiol 171:368–376PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Steinberg BA, Zhao X, Heidenreich PA et al (2012) Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation 126(1):65–75PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Owan TE, Do H, Herges RM et al (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, Gong Y, Liu PP (2006) Outcome of heart failure with preserved ejection in a population-based study. N Engl J Med 355:260–269PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Chioncel O, Lainscak M, Seferovic PM, Anker SD, Crespo-Leiro MG, Harjola VP, Parissis J, Laroche C, Piepoli MF, Fonseca C, Mebazaa A, Lund L, Ambrosio GA, Coats AJ, Ferrari R, Ruschitzka F, Maggioni AP, Filippatos G (2017) Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 19(12):1574–1585PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Bourassa MG, Gurné O, Bangdiwala SI, et al. (1993) Natural history and patterns of current practice in heart failure. The Studies of Left Ventricular Dysfunction (SOLVD) Investigators. J Am Coll Cardiol 22(4 Suppl A):14A–19A.CrossRefGoogle Scholar
  7. 7.
    Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, Hainer J, Bibbo CF, Dorbala S, Blankstein R, di Carli MF (2018) Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J 39(10):840–849PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Kubo SH, Rector TS, Bank AJ et al (1991) Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 84:1589–1596PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Katz SD, Hryniewicz K, Hriljac I, Balidemaj K, Dimayuga C, Hudaihed A, Yasskiy A (2005) Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation 111(3):310–314PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ramsey MW, Goodfellow J, Jones CJ, Luddington LA, Lewis MJ, Henderson AH (1995) Endothelial control of arterial distensibility is impaired in chronic heart failure. Circulation 92(11):3212–3219PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Dulce RA, Kulandavelu S, Schulman IH et al (2017) Nitric oxide regulation of cardiovascular physiology and pathophysiology. Nitric Oxide:313–338Google Scholar
  12. 12.
    Treasure CB, Vita JA, Cox DA, Fish RD (1990) Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. Circulation 81:772–779PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Canetti M, Akhter MW, Lerman A, Karaalp IS, Zell JA, Singh H, Mehra A, Elkayam U (2003) Evaluation of myocardial blood flow reserve in patients with chronic congestive heart failure due to idiopathic dilated cardiomyopathy. Am J Cardiol 92(10):1246–1249PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Mathier MA, Rose GA, Fifer MA, Miyamoto MI, Dinsmore RE, Castaño HH, Dec GW, Palacios IF, Semigran MJ (1998) Coronary endothelial dysfunction in patients with acute-onset idiopathic dilated cardiomyopathy. J Am Coll Cardiol 32:216–224PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Elkayam U, Khan S, Mehboob A, Ahsan N (2002) Impaired endothelium-mediated vasodilation in heart failure: clinical evidence and the potential for therapy. J Card Fail 8(1):15–20PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Carbone S, Billingsley HE, Rodriguez-Miguelez P, et al. (2019) Lean mass abnormalities in heart failure: the role of sarcopenia, sarcopenic obesity, and cachexia. Curr Probl Cardiol. 2019 Mar 28. pii: S0146-2806(19)30057-X.  https://doi.org/10.1016/j.cpcardiol.2019.03.006
  17. 17.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Burnett JC (1997) Coronary endothelial function in health and disease. Drugs 531:20–29CrossRefGoogle Scholar
  19. 19.
    Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415CrossRefGoogle Scholar
  20. 20.
    Noll G, Lang MG, Tschudi MR, Ganten D, Lüscher TF (1997) Endothelial vasoconstrictor prostanoids modulate contractions to acetylcholine and ANG II in Ren-2 rats. Am J Physiol 272:H493–H500PubMedPubMedCentralGoogle Scholar
  21. 21.
    Moncada S, Higgs EA (1995) Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J 9:1319–1330PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Zuchi C, Ambrosio G, Lüscher TF, Landmesser U (2010) Nutraceuticals in cardiovascular prevention: lessons from studies on endothelial function. Cardiovasc Ther 28(4):187–201PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Breitenstein S, Roessig L, Sandner P, Lewis KS (2017) Novel sGC Stimulators and sGC Activators for the Treatment of Heart Failure. Handb Exp Pharmacol 243:225–247PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Wroblewski Lissin L, Cooke JP (2000) Maintaining the endothelium: preventive strategies for vessel integrity. Prev Cardiol 3:172–177PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Loscalzo J (2000) What we know and don’t know about L-arginine and NO. Circulation 101:2126PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Tritto I, Ambrosio G (2004) The multi-faceted behavior of nitric oxide in vascular “inflammation”: catchy terminology or true phenomenon? Cardiovasc Res 63(1):1–4PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Paolocci N, Biondi R, Bettini M, Lee CI, Berlowitz CO, Rossi R, Xia Y, Ambrosio G, L'Abbate A, Kass DA, Zweier JL (2001) Oxygen radical-mediated reduction in basal and agonist-evoked NO release in isolated rat heart. J Mol Cell Cardiol 33(4):671–679PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, Harrison DG, Hornig B, Drexler H (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106(24):3073–3078PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA, Marbán E, Hare JM (2001) Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 104(20):2407–2411PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hornig B, Arakawa N, Kohler C et al (1998) Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 97(4):363–368PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Farquharson CA, Butler R, Hill A et al (2002) Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 106(2):221–226PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ellis GR, Anderson RA, Lang D, Blackman DJ, Morris RH, Morris-Thurgood J, McDowell I, Jackson SK, Lewis MJ, Frenneaux MP (2000) Neutrophil superoxide anion-generating capacity, endothelial function and oxidative stress in chronic heart failure: effects of short- and long-term vitamin C therapy. J Am Coll Cardiol 36(5):1474–1482PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ellis GR, Anderson RA, Chirkov YY, Morris-Thurgood J, Jackson SK, Lewis MJ, Horowitz JD, Frenneaux MP (2001) Acute effects of vitamin C on platelet responsiveness to nitric oxide donors and endothelial function in patients with chronic heart failure. J Cardiovasc Pharmacol 37(5):564–570PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Erbs S, Gielen S, Linke A et al (2003) Improvement of peripheral endothelial dysfunction by acute vitamin C application: different effects in patients with coronary artery disease, ischemic, and dilated cardiomyopathy. Am Heart J 146(2):280–285PubMedCrossRefGoogle Scholar
  35. 35.
    Shinke T, Shite J, Takaoka H et al (2007) Vitamin C restores the contractile response to dobutamine and improves myocardial efficiency in patients with heart failure after anterior myocardial infarction. Am Heart J 154(4):645.e1–645.e8CrossRefGoogle Scholar
  36. 36.
    Piccirillo G, Nocco M, Moise A et al (2003) Influence of vitamin C on baroreflex sensitivity in chronic heart failure. Hypertension 41(6):1240–1245PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt DV, Reaveley DA, Schuler G, Coats AJ, Anker SD, Hambrecht R (2002) Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation 105(22):2619–2624PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Pfister R, Sharp SJ, Luben R, Wareham NJ, Khaw KT (2011) Plasma vitamin C predicts incident heart failure in men and women in European Prospective Investigation into Cancer and Nutrition-Norfolk prospective study. Am Heart J 162(2):246–253PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    de Lorgeril M, Salen P, Accominotti M, Cadau M, Steghens JP, Boucher F, de Leiris J (2001) Dietary and blood antioxidants in patients with chronic heart failure. Insights into the potential importance of selenium in heart failure. Eur J Heart Fail 3(6):661–669PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A, Omran AS, Jeejeebhoy KN (1998) Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 31(6):1352–1356PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Demirbag R, Yilmaz R, Erel O, Gultekin U, Asci D, Elbasan Z (2005) The relationship between potency of oxidative stress and severity of dilated cardiomyopathy. Can J Cardiol 21(10):851–855PubMedPubMedCentralGoogle Scholar
  42. 42.
    Thanassoulis G, Brophy JM, Richard H, Pilote L (2010) Gout, allopurinol use, and heart failure outcomes. Arch Intern Med 170(15):1358–1364PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Málek F, Ošťádal P, Pařenica J et al (2012) Uric acid, allopurinol therapy, and mortality in patients with acute heart failure—results of the Acute HEart FAilure Database registry. J Crit Care 27(6):737.e11–737.e24CrossRefGoogle Scholar
  44. 44.
    Gotsman I, Keren A, Lotan C, Zwas DR (2012) Changes in uric acid levels and allopurinol use in chronic heart failure: association with improved survival. J Card Fail 18(9):694–701PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Hare JM, Mangal B, Brown J et al (2008) Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol 51(24):2301–2309PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, Tang WH, Dunlap ME, LeWinter M, Mann DL, Felker GM, O'Connor CM, Goldsmith SR, Ofili EO, Saltzberg MT, Margulies KB, Cappola TP, Konstam MA, Semigran MJ, McNulty S, Lee KL, Shah MR, Hernandez AF, NHLBI Heart Failure Clinical Research Network (2015) Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients (EXACT-HF) Study. Circulation 131(20):1763–1771PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ambrosio G, Betocchi S, Pace L et al (1996) Prolonged impairment of regional contractile function after resolution of exercise-induced angina. Evidence of myocardial stunning in patients with coronary artery disease. Circulation 94(10):2455–2464PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Homans DC, Laxson DD, Sublett E et al (1989) Cumulative deterioration of myocardial function after repeated episodes of exercise-induced ischemia. Am J Physiol 256(5 Pt 2):H1462–H1471PubMedPubMedCentralGoogle Scholar
  49. 49.
    Cleland JG, Pennell DJ, Ray SG, Coats AJ, Macfarlane PW, Murray GD, Mule JD, Vered Z, Lahiri A, Carvedilol hibernating reversible ischaemia trial: marker of success investigators (2003) Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (CHRISTMAS trial): randomised controlled trial. Lancet 362(9377):14–21PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Dumitrescu C, Biondi R, Xia Y et al (2007) Myocardial ischemia results in tetrahydrobiopterin (BH4) oxidation with impaired endothelial function ameliorated by BH4. Proc Natl Acad Sci U S A 104(38):15081–15086PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Reyes LA, Boslett J, Varadharaj S, de Pascali F, Hemann C, Druhan LJ, Ambrosio G, el-Mahdy M, Zweier JL (2015) Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart. Proc Natl Acad Sci U S A 112(37):11648–11653PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA, Tarpey M, Fukai T, Harrison DG (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103(9):1282–1288PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Xia Y, Tsai AL, Berka V, Zweier JL (1998) Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem 273(40):25804–25808PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zweier JL, Flaherty JT, Weisfeldt ML (1987) Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A 84(5):1404–1407PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bolli R, Jeroudi MO, Patel BS et al (1989) Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proc Natl Acad Sci U S A 86(12):4695–4699PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ambrosio G, Zweier JL, Flaherty JT (1991) The relationship between oxygen radical generation and impairment of myocardial energy metabolism following post-ischemic reperfusion. J Mol Cell Cardiol 23(12):1359–1374PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Zweier JL, Kuppusamy P, Lutty GA (1988) Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues. Proc Natl Acad Sci U S A 85(11):4046–4050PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zweier JL, Broderick R, Kuppusamy P et al (1994) Determination of the mechanism of free radical generation in human aortic endothelial cells exposed to anoxia and reoxygenation. J Biol Chem 269(39):24156–24162PubMedPubMedCentralGoogle Scholar
  59. 59.
    Zweier JL, Talukder MA (2006) The role of oxidants and free radicals in reperfusion injury.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Zweier JL (1988) Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. J Biol Chem 263(3):1353–1357PubMedPubMedCentralGoogle Scholar
  61. 61.
    Zweier JL, Kuppusamy P, Williams R, Rayburn BK, Smith D, Weisfeldt ML, Flaherty JT (1989) Measurement and characterization of postischemic free radical generation in the isolated perfused heart. J Biol Chem 264(32):18890–18895PubMedPubMedCentralGoogle Scholar
  62. 62.
    Becker BL (2004) New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 61:461–470PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollot SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Sam F, Sawyer DB, Xie Z, Chang DL, Ngoy S, Brenner DA, Siwik DA, Singh K, Apstein CS, Colucci WS (2001) Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ Res 89:351–356PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Feng Q, Lu X, Jones DL, Shen J, Arnold JM (2001) Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation 104:700–704PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ambrosio G (1995) The elusive difference between hibernation and stunning in patients. Basic Res Cardiol 90(4):297–299PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Heymes C, Vanderheyden M, Bronzwaer JGF et al (1999) Endomyocardial nitric oxide synthase and left ventricular preload reserve in dilated cardiomyopathy. Circulation 99:3009–3016PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Bronzwaer JGF, Zeitz C, Visser CA, Paulus WJ (2002) Endomyocardial nitric oxide synthase and the hemodynamic phenotypes of human dilated cardiomyopathy and of athlete’s heart. Cardiovasc Res 55:270–278PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Paulus WJ, Frantz S, Kelly RA (2001) Nitric oxide and cardiac contractility in human heart failure: Time for reappraisal. Circulation 104:2260–2262PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Paulus WJ, Bronzwaer JG (2002) Myocardial contractile effects of nitric oxide. Heart Fail Rev 7(4):371–383PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Fischer D, Rossa S, Landmesser U, Spiekermann S, Engberding N, Hornig B, Drexler H (2005) Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation, or death. Eur Heart J 26(1):65–69PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, Gallopin M, Salvadori P, Sorace O, Carpeggiani C, Poddighe R, L'Abbate A, Parodi O (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105(2):186–193PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Franssen C, Chen S, Unger A et al (2016) Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail 4(4):312–324PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Borbely A, van der Velden J, Papp Z et al (2005) Cardiomyocyte stiffness in diastolic heart failure. Circulation 111:774–781PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Bishu K, Hamdani N, Mohammed SF, Kruger M, Ohtani T, Ogut O, Brozovich FV, Burnett JC Jr, Linke WA, Redfield MM (2011) Sildenafil and b-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation 124:2882–2891PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, Slater R, Palmer BM, van Buren P, Meyer M, Redfield MM, Bull DA, Granzier HL, LeWinter M (2015) Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131:1247–1259PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Zannad F, Radauceanu A (2005) Effect of MR blockade on collagen formation and cardiovascular disease with a specific emphasis on heart failure. Heart Fail Rev 10:71–78PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Calderone A, Thaik CM, Takahashi N et al (1998) Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 101:812–818PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Mohammed SF, Hussain S, Mirzoyev SA et al (2015) Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131:550–559PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Gomberg-Maitland M, Shah SJ, Guazzi M (2016) Inflammation in heart failure with preserved ejection fraction: time to put out the fire. JACC Heart Fail 4(4):325–328PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kato S, Saito N, Kirigaya H et al (2016) Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc 5(2)Google Scholar
  85. 85.
    Dryer K, Gajjar M, Narang N, Lee M, Paul J, Shah AP, Nathan S, Butler J, Davidson CJ, Fearon WF, Shah SJ, Blair JEA (2018) Coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 314(5):H1033–H1042PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Srivaratharajah K, Coutinho T, deKemp R et al (2016) Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ Heart Fail 9(7)Google Scholar
  87. 87.
    Ju YK, Saint DA, Gage PW (1996) Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 497(Pt. 2):337–347PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Undrovinas AI, Fleidervish IA, Makielski JC (1992) Inward sodium current at resting potentials in single cardiac myocytes induced by the ischemic metabolite lysophosphatidylcholine. Circ Res 71:1231–1241PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Murphy E, Perlman M, London RE, Steenbergen C (1991) Amiloride delays the ischemia-induced rise in cytosolic free calcium. Circ Res 68:1250–1258PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Bing OH, Keefe JF, Wolk MJ, Finkelstein LJ, Levine HJ (1971) Tension prolongation during recovery from myocardial hypoxia. J Clin Invest 50:660–666PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Akiyama E, Sugiyama S, Matsuzawa Y, Konishi M, Suzuki H, Nozaki T, Ohba K, Matsubara J, Maeda H, Horibata Y, Sakamoto K, Sugamura K, Yamamuro M, Sumida H, Kaikita K, Iwashita S, Matsui K, Kimura K, Umemura S, Ogawa H (2012) Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol 60(18):1778–1786PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Flather MD, Shibata MC, Coats AJ, van Veldhuisen D, Parkhomenko A, Borbola J, Cohen-Solal A, Dumitrascu D, Ferrari R, Lechat P, Soler-Soler J, Tavazzi L, Spinarova L, Toman J, Böhm M, Anker SD, Thompson SG, Poole-Wilson PA, SENIORS Investigators (2005) Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J 26(3):215–225PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Ambrosio G, Flather MD, Böhm M, Cohen-Solal A, Murrone A, Mascagni F, Spinucci G, Conti MG, van Veldhuisen D, Tavazzi L, Coats AJ (2011) β-Blockade with nebivolol for prevention of acute ischaemic events in elderly patients with heart failure. Heart 97(3):209–214PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Redfield MM, Chen HH, Borlaug BA et al (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309(12):1268–1277PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Bonderman D, Ghio S, Felix SB, Ghofrani HA, Michelakis E, Mitrovic V, Oudiz RJ, Boateng F, Scalise AV, Roessig L, Semigran MJ, Left Ventricular Systolic Dysfunction Associated With Pulmonary Hypertension Riociguat Trial (LEPHT) Study Group (2013) Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation 128(5):502–511PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CS, Maggioni AP, Ponikowski P, Shah SJ, Solomon SD, Kraigher-Krainer E, Samano ET, Müller K, Roessig L, Pieske B, SOCRATES-REDUCED Investigators and Coordinators (2015) Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA 314(21):2251–2262PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Pieske B, Maggioni AP, Lam CSP et al (2017) Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the Soluble Guanylate Cyclase Stimulator in Heart Failure Patients with Preserved EF (SOCRATES-PRESERVED) study. Eur Heart J 38(15):1119–1127PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, PARADIGM-HF Investigators and Committees (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, Shi V, Bransford T, Takeuchi M, Gong J, Lefkowitz M, Packer M, McMurray J, Prospective comparison of ARNI with ARB on Management Of heart failUre with preserved ejectioN fracTion (PARAMOUNT) Investigators (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 380(9851):1387–1395PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Solomon SD, McMurray JJV, Anand IS et al (2019) Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med (in press)  https://doi.org/10.1056/NEJMoa1908655 PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    de Groot AA, Mathy MJ, van Zwieten PA, Peters SL (2003) Involvement of the beta3 adrenoceptor in nebivolol-induced vasorelaxation in the rat aorta. J Cardiovasc Pharmacol 42(2):232–236PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Rozec B, Quang TT, Noireaud J, Gauthier C (2006) Mixed beta3-adrenoceptor agonist and alpha1-adrenoceptor antagonist properties of nebivolol in rat thoracic aorta. Br J Pharmacol 147(7):699–706PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Bonderman D, Pretsch I, Steringer-Mascherbauer R, Jansa P, Rosenkranz S, Tufaro C, Bojic A, Lam CSP, Frey R, Ochan Kilama M, Unger S, Roessig L, Lang IM (2014) Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest 146(5):1274–1285PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Filippatos G, Maggioni AP, Lam CSP, Pieske-Kraigher E, Butler J, Spertus J, Ponikowski P, Shah SJ, Solomon SD, Scalise AV, Mueller K, Roessig L, Bamber L, Gheorghiade M, Pieske B (2017) Patient-reported outcomes in the Soluble Guanylate Cyclase Stimulator in Heart Failure Patients with Preserved Ejection Fraction (SOCRATES-PRESERVED) study. Eur J Heart Fail 19(6):782–791PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Nishikimi T, Maeda N, Matsuoka H (2006) The role of natriuretic peptides in cardioprotection. Cardiovasc Res 69(2):318–328PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray J, Michelson EL, Olofsson B, Ostergren J, CHARM Investigators and Committees (2003) Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362(9386):777–781PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J, PEP-CHF Investigators (2006) The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 27(19):2338–2345CrossRefGoogle Scholar
  108. 108.
    Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, Anderson S, Donovan M, Iverson E, Staiger C, Ptaszynska A, I-PRESERVE Investigators (2008) Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 359(23):2456–2467PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cardiology and Cardiovascular PathophysiologyAzienda Ospedaliero-Universitaria “S. Maria della Misericordia”PerugiaItaly
  2. 2.MultiMedica IRCCSMilanItaly
  3. 3.Department of CardiologyOspedale S. Maria della Misericordia Piazzale Menghini, 1PerugiaItaly

Personalised recommendations