The role of the kidney in acute and chronic heart failure

  • Gaetano RuoccoEmail author
  • Alberto Palazzuoli
  • Jozine M. ter Maaten


Renal dysfunction affects approximately 30 to 50% of heart failure (HF) patients. The unfavourable relationship between heart and kidney dysfunction contributes to worse outcomes through several mechanisms such as inflammation, oxidative stress, impaired hydrosaline homeostasis, and diuretic resistance. Renal dysfunction not only carries important prognostic value both in acute and in chronic HF, but also is a potential precipitating factor after the first diagnosis. Because renal dysfunction encompasses different etiologies, a better understanding of its definition, incidence, and pathophysiology provides additional information. Although old and novel available biomarkers for the detection of renal dysfunction have been recently proposed, there is no general consensus regarding the terminology and definition of renal dysfunction in HF. Due to some specific pathophysiological mechanisms, renal impairment seems to be different on an individual patient level and, recognizing it in acute and chronic settings, could be useful to optimize decongestive treatment. For these reasons, in this review, we aim to describe and evaluate different phenotypes of renal dysfunction in acute and chronic HF and the possible management in these settings.

Key messages

• Chronic kidney dysfunction and worsening renal function are highly prevalent in acute heart failure and chronic heart failure and associated with poor outcomes.

• This association is modified by the context in which it occurs, i.e. worsening renal function in the context of adequate decongestion in acute heart failure, or worsening renal function after initiation of neurohormonal blockers in chronic heart failure.

• Future research should be aimed at elucidating the mechanisms involved in these differenct contexts, as well as alternative treatment approaches in the case of true worsening renal function.


Renal dysfunction Worsening renal function Acute heart failure Chronic heart failure Pathophysiology Outcome 



Angiotensin-converting enzyme inhibitors


Acute heart failure


Arginine vasopressin


Blood urea nitrogen


Chronic heart failure


Chronic kidney disease


Estimated glomerular filtration rate


Heart failure


Heart failure with a mid-range ejection fraction


Heart failure with a preserved ejection fraction


Heart failure with a reduced ejection fraction


Mineralocorticoid receptor antagonist


Neutrophil gelatinase–associated lipocalin


Renin-angiotensin-aldosterone system


Renal blood flow


Serum creatinine


Worsening renal function


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Heywood JT, Fonarow GC (2007) High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE Database. J Card Fail 13:422–430PubMedCrossRefGoogle Scholar
  2. 2.
    Klein L, Massie BM, Leimberger JD et al (2008) Admission or changes in renal function during hospitalization for worsening heart failure predict post discharge survival. Results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circ Heart Fail 1:25–33PubMedCrossRefGoogle Scholar
  3. 3.
    Smith GL, Lichtman JH, Bracken MB et al (2006) Renal impairment and outcomes in heart failure systematic review and meta-analysis. J Am Coll Cardiol 47:1987–1996PubMedCrossRefGoogle Scholar
  4. 4.
    Damman K, Tang WH, Testani JM, McMurray JJ (2014) Terminology and definition of changes renal function in heart failure. Eur Heart J 35:3413–3416PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Damman K, Testani JM (2015) The kidney in heart failure: an update. Eur Heart J 36:1437–1444PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Savarese G, Xu H, Trevisan M et al (2019) Incidence, predictors, and outcome associations of dyskalemia in heart failure with preserved, mid-range, and reduced ejection fraction. JACC Heart Fail 7:65–76PubMedCrossRefGoogle Scholar
  7. 7.
    Testani JM, Hanberg JS, Arroyo JP et al (2016) Hypochloraemia is strongly and independently associated with mortality in patients with chronic heart failure. Eur J Heart Fail 18:660–668PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Palazzuoli A, Ruocco G (2018) Heart-kidney interactions in cardiorenal syndrome type 1. Adv Chronic Kidney Dis 25:408–417PubMedCrossRefGoogle Scholar
  9. 9.
    Palazzuoli A, Lombardi C, Ruocco G et al (2016) Chronic kidney disease and worsening renal function in acute heart failure: different phenotypes with similar prognostic impact? Eur Heart J Acute Cardiovasc Care 5:534–548PubMedCrossRefGoogle Scholar
  10. 10.
    Ronco C, Cicoira MA, McCullough PA (2012) Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol 60:1031–1042PubMedCrossRefGoogle Scholar
  11. 11.
    Saltzman HE, Sharma K, Mather PJ, Rubin S, Adams S, Whellan DJ (2007) Renal dysfunction in heart failure patients: what is the evidence? Heart Fail Rev 12:37–47PubMedCrossRefGoogle Scholar
  12. 12.
    Testani JM, Coca SG, McCauley BD, Shannon RP, Kimmel SE (2011) Impact of changes in blood pressure during the treatment of acute decompensated heart failure on renal and clinical outcomes. Eur J Heart Fail 13:877–884PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mullens W, Abrahams Z, Francis GS et al (2009) Importance of venous congestion for worsening renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Schrier RW, Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341:577–585PubMedCrossRefGoogle Scholar
  15. 15.
    Cotter G, Metra M, Milo-Cotter O, Dittrich HC, Gheorghiade M (2008) Fluid overload in acute heart failure-redistribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail 10:165–169PubMedCrossRefGoogle Scholar
  16. 16.
    Mullens W, Verbrugge FH, Nijst P, Tang WHW (2017) Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J 38:1872–1882PubMedCrossRefGoogle Scholar
  17. 17.
    Verbrugge FH, Dupont M, Steels P et al (2014) The kidney in congestive heart failure: ‘are natriuresis, sodium, and diuretics really the good, the bad and the ugly?’. Eur J Heart Fail 16:133–142PubMedCrossRefGoogle Scholar
  18. 18.
    Mullens W, Abrahams Z, Skouri HN et al (2008) Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol 51:300–306PubMedCrossRefGoogle Scholar
  19. 19.
    Mullens W, Abrahams Z, Francis GS, Taylor DO, Starling RC, Tang WH (2008) Prompt reduction in intraabdominal pressure following large volume mechanical fluid removal improves renal insufficiency in refractory decompensated heart failure. J Card Fail 14:508–514PubMedCrossRefGoogle Scholar
  20. 20.
    Jessup M, Costanzo MR (2009) The cardiorenal syndrome do we need a change of strategy of a change of tactics? J Am Coll Cardiol 53:597–599PubMedCrossRefGoogle Scholar
  21. 21.
    Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B (2005) The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J 26:11–17PubMedCrossRefGoogle Scholar
  22. 22.
    Liang KV, Williams AW, Greene EL, Redfield MM (2008) Acute decompensated heart failure and the cardiorenal syndrome. Crit Care Med 36:S75–S88PubMedCrossRefGoogle Scholar
  23. 23.
    Cruz DN, Gheorghiade M, Palazzuoli A, Ronco C, Bagshaw SM (2011) Epidemiology and outcome of the cardio-renal syndrome. Heart Fail Rev 16:531–542PubMedCrossRefGoogle Scholar
  24. 24.
    Damman K, Valente MA, Voors AA et al (2014) Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J 35:455–469PubMedCrossRefGoogle Scholar
  25. 25.
    Nohria A, Hasselblad V, Stebbins A et al (2008) Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol 51:1268–1274PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Metra M, Nodari S, Parrinello G et al (2008) Worsening renal function in patients hospitalised for acute heart failure: clinical implications and prognostic significance. Eur J Heart Fail 10:188–195PubMedCrossRefGoogle Scholar
  27. 27.
    Voors AA, Dittrich HC, Massie BM et al (2011) Effects of the adenosine A1 receptor antagonist rolofylline on renal function in patients with acute heart failure and renal dysfunction: results from PROTECT (Placebo-Controlled Randomized Study of the Selective Adenosine A1 Receptor Antagonist Rolofylline for Patients Hospitalized with Acute Decompensated Heart Failure and Volume Overload to Assess Treatment Effect on Congestion and Renal Function). J Am Coll Cardiol 57:1899–1907PubMedCrossRefGoogle Scholar
  28. 28.
    Cowie MR, Komajda M, Murray-Thomas T, Underwood J, Ticho B, on behalf of the POSH Investigators (2006) Prevalence and impact of worsening renal function in patients hospitalized with decompensated heart failure: results of the prospective outcomes study in heart failure (POSH). Eur Heart J 27:1216–1222PubMedCrossRefGoogle Scholar
  29. 29.
    Krumholz HM, Chen Y, Vaccarino V et al (2000) Correlates and impact on outcomes of worsening renal function in patients >=65 years of age with heart failure. Am J Cardiol 85:1110–1113PubMedCrossRefGoogle Scholar
  30. 30.
    Gottlieb SS, Abraham W, Butler J et al (2002) The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail 8:136–141PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Metra M, Cotter G (2013) Davison BA et al; RELAX-AHF Investigators. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the Relaxin in Acute Heart Failure (RELAX-AHF) development program: correlation with outcomes. J Am Coll Cardiol 61:196–206PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Waikar SS, Bonventre JV (2009) Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 20:672–679PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ather S, Bavishi C, McCauley MD et al (2013) Worsening renal function is not associated with response to treatment in acute heart failure. Int J Cardiol 167:1912–1917PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Van Deursen VM, Hernandez AF, Stebbins A et al (2014) Nesiritide, renal function, and associated outcomes during hospitalization for acute decompensated heart failure: results from the Acute Study of Clinical Effectiveness of Nesiritide and Decompensated Heart Failure (ASCEND-HF). Circulation. 130:958–965PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Testani JM, McCauley BD, Chen J, Coca SG, Cappola TP, Kimmel SE (2011) Clinical characteristics and outcomes of patients with improvement in renal function during the treatment of decompensated heart failure. J Card Fail 17:993–1000PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Damman K, Jaarsma T, Voors AA et al (2009) Both in- and out-hospital worsening of renal function predict outcome in patients with heart failure: results from the Coordinating Study Evaluating Outcome of Advising and Counseling in Heart Failure (COACH). Eur J Heart Fail 11:847–854PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Breidthardt T, Sabti Z, Ziller R et al (2017) Diagnostic and prognostic value of cystatin C in acute heart failure. Clin Biochem 50:1007–1013PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lemoine S, Panaye M, Pelletier C et al (2016) Cystatin C-creatinine based glomerular filtration rate equation in obese chronic kidney disease patients: impact of deindexation and gender. Am J Nephrol 44:63–70PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kervella D, Lemoine S, Sens F et al (2017) Cystatin C versus creatinine for gfr estimation in CKD due to heart failure. Am J Kidney Dis 69:321–323PubMedCrossRefGoogle Scholar
  40. 40.
    Kazory A (2010) Emergence of blood urea nitrogen as a biomarker of neurohormonal activation in heart failure. Am J Cardiol 106:694–700PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Palazzuoli A, Ruocco G, Pellicori P et al (2019) The prognostic role of different renal function phenotypes in patients with acute heart failure. Int J Cardiol 276:198–203PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ruocco G, Pellegrini M, De Gori C, Franci B, Nuti R, Palazzuoli A (2016) The prognostic combined role of B-type natriuretic peptide, blood urea nitrogen and congestion signs persistence in patients with acute heart failure. J Cardiovasc Med (Hagerstown) 17:818–827CrossRefGoogle Scholar
  43. 43.
    Aronson D, Mittleman MA, Burger AJ (2004) Elevated blood urea nitrogen level as predictor of mortality in patients admitted for decompensated heart failure. Am J Med 116:466–473PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Matsue Y, van der Meer P, Damman K et al (2017 Mar) Blood urea nitrogen-to-creatinine ratio in the general population and in patients with acute heart failure. Heart. 103:407–413PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Brisco MA, Coca SG, Chen J et al (2013) Blood urea nitrogen/creatinine ratio identifies a high-risk but potentially reversible form of renal dysfunction in patients with decompensated heart failure. Circ Heart Fail 6:233–239PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Testani JM, Damman K, Brisco MA et al (2014) A combined-biomarker approach to clinical phenotyping renal dysfunction in heart failure. J Card Fail 20:912–919PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Cruz D, Goh CY, Palazzuoli A et al (2011) Laboratory parameters of cardiac and kidney dysfunction in cardio-renal syndromes. Heart Fail Rev 16:545–551PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Soni SS, Ronco C, Katz N, Cruz DN (2009) Early diagnosis of acute kidney injury: the promise of novel biomarkers. Blood Purif 28:165–174PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Maisel AS, Wettersten N, van Veldhuisen DJ et al (2016) Neutrophil gelatinase-associated lipocalin for acute kidney injury during acute heart failure hospitalizations: the AKINESIS study. J Am Coll Cardiol 68:1420–1431PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ruocco G, Nuti R, Giambelluca A et al (2017) The paradox of transient worsening renal function in patients with acute heart failure: the role of B-type natriuretic peptide and diuretic response. J Cardiovasc Med (Hagerstown) 18:851–858CrossRefGoogle Scholar
  51. 51.
    Fudim M, Loungani R, Doerfler SM et al (2018) Worsening renal function during decongestion among patients hospitalized for heart failure: findings from the Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness (ESCAPE) trial. Am Heart J 204:163–173PubMedCrossRefGoogle Scholar
  52. 52.
    Metra M, Cotter G, Senger S et al (2018) Prognostic significance of creatinine increases during an acute heart failure admission in patients with and without residual congestion: a post hoc analysis of the PROTECT data. Circ Heart Fail 11:e004644PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Blair JE, Pang PS, Schrier RW, EVEREST Investigators et al (2011) Changes in renal function during hospitalization and soon after discharge in patients admitted for worsening heart failure in the placebo group of the EVEREST trial. Eur Heart J 32:2563–2572PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Aronson D, Burger AJ (2010) The relationship between transient and persistent worsening renal function and mortality in patients with acute decompensated heart failure. J Card Fail 16:541–547PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Palazzuoli A, Ruocco G, Ronco C, McCullough PA (2015) Loop diuretics in acute heart failure: beyond the decongestive relief for the kidney. Crit Care 19:296PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Beldhuis IE, Streng KW, van der Meer P et al (2019) Trajectories of changes in renal function in patients with acute heart failure. J Card Fail.
  57. 57.
    Núñez J, Garcia S, Núñez E et al (2017) Early serum creatinine changes and outcomes in patients admitted for acute heart failure: the cardio-renal syndrome revisited. Eur Heart J Acute Cardiovasc Care 6:430–440PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Brisco MA, Zile MR, Hanberg JS et al (2016) Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies: insights from the DOSE trial. J Card Fail 22:753–760PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Boulos J, Darawsha W, Abassi ZA, Azzam ZS, Aronson D (2019) Treatment patterns of patients with acute heart failure who develop acute kidney injury. ESC Heart Fail 6:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Mullens W, Damman K, Harjola VP et al (2019) The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 21:137–155PubMedCrossRefGoogle Scholar
  61. 61.
    Kuriyama A, Urushidani S (2019) Continuous versus intermittent administration of furosemide in acute decompensated heart failure: a systematic review and meta-analysis. Heart Fail Rev 24:31–39PubMedCrossRefGoogle Scholar
  62. 62.
    Felker GM, Lee KL, Bull DA, NHLBI Heart Failure Clinical Research Network et al (2011) Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364:797–805PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Palazzuoli A, Pellegrini M, Ruocco G et al (2014) Continuous versus bolus intermittent loop diuretic infusion in acutely decompensated heart failure: a prospective randomized trial. Crit Care 18:R134PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Verbrugge FH (2018) Editor's Choice-Diuretic resistance in acute heart failure. Eur Heart J Acute Cardiovasc Care 7:379–389PubMedCrossRefGoogle Scholar
  65. 65.
    ter Maaten JM, Dunning AM, Valente MA et al (2015) Diuretic response in acute heart failure-an analysis from ASCEND-HF. Am Heart J 170:313–321PubMedCrossRefGoogle Scholar
  66. 66.
    Valente MA, Voors AA, Damman K et al (2014) Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J 35:1284–1293PubMedCrossRefGoogle Scholar
  67. 67.
    Mullens W, Verbrugge FH, Nijst P et al (2018) Rationale and design of the ADVOR (Acetazolamide in Decompensated Heart Failure with Volume Overload) trial. Eur J Heart Fail 20:1591–1600PubMedCrossRefGoogle Scholar
  68. 68.
    Moranville MP, Choi S, Hogg J, Anderson AS, Rich JD (2015) Comparison of metolazone versus chlorothiazide in acute decompensated heart failure with diuretic resistance. Cardiovasc Ther 33:42–49PubMedCrossRefGoogle Scholar
  69. 69.
    Brisco-Bacik MA, Ter Maaten JM, Houser SR et al (2018) Outcomes associated with a strategy of adjuvant metolazone or high-dose loop diuretics in acute decompensated heart failure: a propensity analysis. J Am Heart Assoc 7:e009149PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bistola V, Simitsis P, Farmakis D et al (2018) Association of mineralocorticoid receptor antagonist use and in-hospital outcomes in patients with acute heart failure. Clin Res Cardiol 107:76–86PubMedCrossRefGoogle Scholar
  71. 71.
    Verbrugge FH, Martens P, Ameloot K et al (2018) Spironolactone to increase natriuresis in congestive heart failure with cardiorenal syndrome. Acta Cardiol 27:1–8Google Scholar
  72. 72.
    Greene SJ, Felker GM, Giczewska A, Kalogeropoulos AP, Ambrosy AP, Chakraborty H, DeVore AD, Fudim M, McNulty SE, Mentz RJ, Vaduganathan M, Hernandez AF, Butler J (2019) Spironolactone in acute heart failure patients with renal dysfunction and risk factors for diuretic resistance: from the ATHENA-HF trial. Can J Cardiol. PubMedCrossRefGoogle Scholar
  73. 73.
    Ljungman S, Laragh JH, Cody RJ (1990) Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs 39(Suppl 4):10–21 discussion 22PubMedCrossRefGoogle Scholar
  74. 74.
    Leithe ME, Margorien RD, Hermiller JB, Unverferth DV, Leier CV (1984) Relationship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure. Circulation 69:57–64PubMedCrossRefGoogle Scholar
  75. 75.
    Smilde TD, Damman K, van der Harst P, Navis G, Westenbrink BD, Voors AA, Boomsma F, van Veldhuisen DJ, Hillege HL (2009) Differential associations between renal function and “modifiable” risk factors in patients with chronic heart failure. Clin Res Cardiol 98:121–129PubMedCrossRefGoogle Scholar
  76. 76.
    Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53:582–588PubMedCrossRefGoogle Scholar
  77. 77.
    Damman K, Voors AA, Hillege HL, Navis G, Lechat P, van Veldhuisen DJ, Dargie HJ (2010) CIBIS-2 Investigators and Committees. Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur J Heart Fail 12:974–982PubMedCrossRefGoogle Scholar
  78. 78.
    Brouwers FP, de Boer RA, van der Harst P, Voors AA, Gansevoort RT, Bakker SJ, Hillege HL, van Veldhuisen DJ, van Gilst WH (2013) Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur Heart J 34:1424–1431PubMedCrossRefGoogle Scholar
  79. 79.
    Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, van Heerebeek L, Hillege HL, Lam CS, Navis G, Voors AA (2016) Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail 18:588–598PubMedCrossRefGoogle Scholar
  80. 80.
    Paulus WJ, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271PubMedCrossRefGoogle Scholar
  81. 81.
    Valente MA, Hillege HL, Navis G, Voors AA, Dunselman PH, van Veldhuisen DJ, Damman K (2014) The Chronic Kidney Disease Epidemiology Collaboration equation outperforms the Modification of Diet in Renal Disease equation for estimating glomerular filtration rate in chronic systolic heart failure. Eur J Heart Fail 16:86–94PubMedCrossRefGoogle Scholar
  82. 82.
    Jackson CE, Solomon SD, Gerstein HC, Zetterstrand S, Olofsson B, Michelson EL, Granger CB, Swedberg K, Pfeffer MA, Yusuf S, McMurray JJ, CHARM Investigators and Committees. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet 2009;374:543–550CrossRefGoogle Scholar
  83. 83.
    Brisco MA, Zile MR, Ter Maaten JM, Hanberg JS, Wilson FP, Parikh C, Testani JM (2016) The risk of death associated with proteinuria in heart failure is restricted to patients with an elevated blood urea nitrogen to creatinine ratio. Int J Cardiol 215:521–526PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Damman K, Masson S, Hillege HL, Maggioni AP, Voors AA, Opasich C, van Veldhuisen DJ, Montagna L, Cosmi F, Tognoni G, Tavazzi L, Latini R (2011) Clinical outcome of renal tubular damage in chronic heart failure. Eur Heart J 32:2705–2712PubMedCrossRefGoogle Scholar
  85. 85.
    Damman K, Masson S, Hillege HL, Voors AA, van Veldhuisen DJ, Rossignol P, Proietti G, Barbuzzi S, Nicolosi GL, Tavazzi L, Maggioni AP, Latini R (2013) Tubular damage and worsening renal function in chronic heart failure. JACC Heart Fail 1:417–424PubMedCrossRefGoogle Scholar
  86. 86.
    Damman K, Ng Kam Chuen MJ, MacFadyen RJ, Lip GY, Gaze D, Collinson PO, Hillege HL, van Oeveren W, Voors AA, van Veldhuisen DJ (2011) Volume status and diuretic therapy in systolic heart failure and the detection of early abnormalities in renal and tubular function. J Am Coll Cardiol 57:2233–2241PubMedCrossRefGoogle Scholar
  87. 87.
    Matsue Y, Ter Maaten JM, Struck J, Metra M, O'Connor CM, Ponikowski P, Teerlink JR, Cotter G, Davison B, Cleland JG, Givertz MM, Bloomfield DM, Dittrich HC, van Veldhuisen DJ, van der Meer P, Damman K, Voors AA (2017) Clinical correlates and prognostic value of proenkephalin in acute and chronic heart failure. J Card Fail 23:231–239PubMedCrossRefGoogle Scholar
  88. 88.
    Ng LL, Squire IB, Jones DJL, Cao TH, Chan DCS, Sandhu JK, Quinn PA, Davies JE, Struck J, Hartmann O, Bergmann A, Mebazaa A, Gayat E, Arrigo M, Akiyama E, Sabti Z, Lohrmann J, Twerenbold R, Herrmann T, Schumacher C, Kozhuharov N, Mueller C, Network GREAT (2017) Proenkephalin, renal dysfunction, and prognosis in patients with acute heart failure: a GREAT Network study. J Am Coll Cardiol 69:56–69PubMedCrossRefGoogle Scholar
  89. 89.
    Martens P, Dupont M, Verbrugge FH, Damman K, Degryse N, Nijst P, Reynders C, Penders J, Tang WHW, Testani J, Mullens W (2019) Urinary sodium profiling in chronic heart failure to detect development of acute decompensated heart failure. JACC Heart Fail. 7:404–414PubMedCrossRefGoogle Scholar
  90. 90.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force Members, Document Reviewers (2016) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18:891–975PubMedCrossRefGoogle Scholar
  91. 91.
    Damman K, Tang WH, Felker GM, Lassus J, Zannad F, Krum H, McMurray JJ (2014) Current evidence on treatment of patients with chronic systolic heart failure and renal insufficiency: practical considerations from published data. J Am Coll Cardiol 63:853–871PubMedCrossRefGoogle Scholar
  92. 92.
    Ghali JK, Wikstrand J, van Veldhuisen DJ, Fagerberg B, Goldstein S, Hjalmarson A, Johansson P, Kjekshus J, Ohlsson L, Samuelsson O, Waagstein F, Wedel H (2009) The influence of renal function on clinical outcome and response to beta-blockade in systolic heart failure: insights from Metoprolol CR/XL Randomized Intervention Trial in Chronic HF (MERIT-HF). J Card Fail 15:310–318PubMedCrossRefGoogle Scholar
  93. 93.
    Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B, EMPHASIS-HF Study Group (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21PubMedCrossRefGoogle Scholar
  94. 94.
    Vardeny O, Wu DH, Desai A, Rossignol P, Zannad F, Pitt B, Solomon SD, RALES Investigators (2012) Influence of baseline and worsening renal function on efficacy of spironolactone in patients with severe heart failure: insights from RALES (Randomized Aldactone Evaluation Study). J Am Coll Cardiol 60:2082–2089PubMedCrossRefGoogle Scholar
  95. 95.
    Ferreira JP, Abreu P, McMurray JJV, van Veldhuisen DJ, Swedberg K, Pocock SJ, Vincent J, Lins K, Rossignol P, Pitt B, Zannad F (2019) Renal function stratified dose comparisons of eplerenone versus placebo in the EMPHASIS-HF trial. Eur J Heart Fail 21:345–351PubMedCrossRefGoogle Scholar
  96. 96.
    Damman K, Gori M, Claggett B, Jhund PS, Senni M, Lefkowitz MP, Prescott MF, Shi VC, Rouleau JL, Swedberg K, Zile MR, Packer M, Desai AS, Solomon SD, McMurray JJV (2018) Renal effects and associated outcomes during angiotensin-neprilysin inhibition in heart failure. JACC Heart Fail 6:489–498PubMedCrossRefGoogle Scholar
  97. 97.
    Van Bommel RJ, Mollema SA, Borleffs CJ, Bertini M, Ypenburg C, Marsan NA, Delgado V, Van Der Wall EE, Schalij MJ, Bax JJ (2011) Impaired renal function is associated with echocardiographic nonresponse and poor prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 57:549–555PubMedCrossRefGoogle Scholar
  98. 98.
    Hoke U, Khidir MJ, van der Velde ET, Schalij MJ, Bax JJ, Delgado V, Marsan NA (2015) Cardiac resynchronization therapy in CKD stage 4 patients. Clin J Am Soc Nephrol 10:1740–1748PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Martens P, Verbrugge FH, Boonen L, Nijst P, Dupont M, Mullens W (2018) Value of routine investigations to predict loop diuretic down-titration success in stable heart failure. Int J Cardiol 250:171–175PubMedCrossRefGoogle Scholar
  100. 100.
    Voors AA, Gori M, Liu LC, Claggett B, Zile MR, Pieske B, McMurray JJ, Packer M, Shi V, Lefkowitz MP, Solomon SD, Investigators PARAMOUNT (2015) Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 17:510–517PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cardiovascular Diseases Unit, Department of Internal Medicine, Le Scotte HospitalUniversity of SienaSienaItaly
  2. 2.Cardiology SectionRegina Montis Regalis HospitalCuneoItaly
  3. 3.Department of Cardiology, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands

Personalised recommendations