Advertisement

Heart Failure Reviews

, Volume 24, Issue 6, pp 915–925 | Cite as

Sex differences in anthracycline-induced cardiotoxicity: the benefits of estrogens

  • Christian Cadeddu Dessalvi
  • Alessia Pepe
  • Claudia Penna
  • Alessia Gimelli
  • Rosalinda Madonna
  • Donato Mele
  • Ines Monte
  • Giuseppina Novo
  • Cinzia Nugara
  • Concetta Zito
  • Javid J Moslehi
  • Rudolf A de Boer
  • Alexander R. Lyon
  • Carlo Gabriele TocchettiEmail author
  • Giuseppe Mercuro
Article

Abstract

Anthracyclines are the cornerstone for many oncologic treatments, but their cardiotoxicity has been recognized for several decades. Female subjects, especially before puberty and adolescence, or after menopause, seem to be more at increased risk, with the prognostic impact of this sex issue being less consistent compared to other cardiovascular risk factors. Several studies imply that sex differences could depend on the lack of the protective effect of sex hormones against the anthracycline-initiated damage in cardiac cells, or on differential mitochondria-related oxidative gene expression. This is also reflected by the results obtained with different diagnostic methods, such as cardiovascular biomarkers and imaging techniques (echocardiography, magnetic resonance, and nuclear medicine) in the diagnosis and monitoring of cardiotoxicity, confirming that sex differences exist. The same is true about protective strategies from anthracycline cardiotoxicity. Indeed, first studied to withstand oxidative damage in response to ischemia/reperfusion (I/R) injury, cardioprotection has different outcomes in men and women. A number of studies assessed the differences in I/R response between male and female hearts, with oxidative stress and apoptosis being shared mechanisms between the I/R and anthracyclines heart damage. Sex hormones can modulate these mechanisms, thus confirming their importance in the pathophysiology in cardioprotection not only from the ischemia/reperfusion damage, but also from anthracyclines, fueling further cardio-oncologic research on the topic.

Keywords

Anthracycline cardiotoxicity Gender differences Pathophysiology, monitoring, and protection from anthracycline cardiotoxicity 

Notes

Funding

Carlo Gabriele Tocchetti is funded by a Federico II University/Ricerca di Ateneo grant. Rudolf A de Boer is supported by the Netherlands Heart Foundation (CVON DOSIS, grant 2014-40, CVON SHE-PREDICTS-HF, grant 2017-21, and CVON RED-CVD, grant 2017-11); and the Netherlands Organization for Scientific Research (NWO VIDI, grant 917.13.350).

Compliance with ethical standards

Conflict of interest

Carlo Gabriele Tocchetti received speaking fees from Alere; Rudolf A de Boer: the UMCG, which employs RAdB, has received research grants and/or fees from AstraZeneca, Abbott, Bristol-Myers Squibb, Novartis, Roche, Trevena, and ThermoFisher GmbH. RAdB is a minority shareholder of scPharmaceuticals, Inc. RAdB received personal fees from MandalMed Inc., AstraZeneca, Novartis, Servier, and Vifor. Alexander R. Lyon has received speaker, advisory board or consultancy fees, and/or research grants from Pfizer, Novartis, Servier, Amgen, Clinigen Group, Takeda, Roche, Eisai Ltd., Eli Lily, and Boehringer Ingelheim. Javid Moslehi has served as a consultant/advisor for Novartis, Pfizer, Bristol-Myers Squibb, Takeda/Millennium, Ariad, Acceleron, Vertex, Incyte, Rgenix, Verastem, Pharmacyclics, StemCentRx, Heat Biologics, Daiichi-Sankyo, and Regeneron. All other authors have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Zamorano JL, Lancellotti P, Rodriguez Munoz D et al (2016) 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37:2768–2801PubMedGoogle Scholar
  2. 2.
    Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, Dent S, Douglas PS, Durand JB, Ewer M, Fabian C, Hudson M, Jessup M, Jones LW, Ky B, Mayer EL, Moslehi J, Oeffinger K, Ray K, Ruddy K, Lenihan D (2017) Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 35:893–911Google Scholar
  3. 3.
    Denlinger CS, Sanft T, Baker KS, Broderick G, Demark-Wahnefried W, Friedman DL, Goldman M, Hudson M, Khakpour N, King A, Koura D, Lally RM, Langbaum TS, McDonough AL, Melisko M, Montoya JG, Mooney K, Moslehi JJ, O'Connor T, Overholser L, Paskett ED, Peppercorn J, Pirl W, Rodriguez MA, Ruddy KJ, Silverman P, Smith S, Syrjala KL, Tevaarwerk A, Urba SG, Wakabayashi MT, Zee P, McMillian NR, Freedman-Cass DA (2018) Survivorship, Version 2.2018, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw 16:1216–1247.  https://doi.org/10.6004/jnccn.2018.0078 CrossRefGoogle Scholar
  4. 4.
    Wang H-Y, Yin B-B, Jia D-Y, Hou Y-L (2017) Association between obesity and trastuzumab-related cardiac toxicity in elderly patients with breast cancer. Oncotarget 8(45):79289–79297PubMedPubMedCentralGoogle Scholar
  5. 5.
    Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, Mercurio V, Monte I, Novo G, Parrella P, Pirozzi F, Pecoraro A, Spallarossa P, Zito C, Mercuro G, Pagliaro P, Tocchetti CG (2018) Antineoplastic drug-induced cardiotoxicity: a redox perspective. Front Physiol 9:167.  https://doi.org/10.3389/fphys.2018.00167 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kremer LC, van Dalen EC, Offringa M, Vouˆte PA (2002) Frequency and risk factors of anthracycline-induced clinical heart failure in children: a systematic review. Ann Oncol 13:503–512PubMedGoogle Scholar
  7. 7.
    Suter TM, Ewer MS (2013) Cancer drugs and the heart: importance and management. Eur Heart J 34:1102–1111PubMedGoogle Scholar
  8. 8.
    Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879PubMedGoogle Scholar
  9. 9.
    Ameri P, Canepa M et al (2018) Cancer diagnosis in patients with heart failure: epidemiology, clinical implications and gaps in knowledge. Eur J Heart Fail 20:879–887.  https://doi.org/10.1002/ejhf.1165 CrossRefPubMedGoogle Scholar
  10. 10.
    Mele D, Nardozza M, Spallarossa P, Frassoldati A, Tocchetti CG, Cadeddu C, Madonna R, Malagù M, Ferrari R, Mercuro G (2016) Current views on anthracycline cardiotoxicity. Heart Fail Rev 21:621–634PubMedGoogle Scholar
  11. 11.
    Mehta LS, Watson KE, Barac A, Beckie TM, Bittner V, Cruz-Flores S, Dent S, Kondapalli L, Ky B, Okwuosa T, Piña IL, Volgman AS, American Heart Association Cardiovascular Disease in Women and Special Populations Committee of the Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; and Council on Quality of Care and Outcomes Research (2018) Cardiovascular disease and breast cancer: where these entities intersect: a scientific statement from the American Heart Association. Circulation 137:e30–e66.  https://doi.org/10.1161/CIR.0000000000000556 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kenigsberg B, Wellstein A, Barac A (2018) Left ventricular dysfunction in cancer treatment: is it relevant? JACC Heart Fail 6:87–95.  https://doi.org/10.1016/j.jchf.2017.08.024 CrossRefPubMedGoogle Scholar
  13. 13.
    Chan DSM, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, Navarro Rosenblatt D, Thune I, Vieira R, Norat T (2014) Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol 25:1901–1914.  https://doi.org/10.1093/annonc/mdu04 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mitra MS, Donthamsetty S, White B, Mehendale HM (2008) High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity. Toxicol Appl Pharmacol 231:413–422PubMedGoogle Scholar
  15. 15.
    Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, Murphy M, Stewart SJ, Keefe D (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20(5):1215–1221.  https://doi.org/10.1200/JCO.2002.20.5.1215 CrossRefPubMedGoogle Scholar
  16. 16.
    Ewer MS, Ewer SM (2010) Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol 7(10):564–575.  https://doi.org/10.1038/nrcardio.2010.121 CrossRefPubMedGoogle Scholar
  17. 17.
    Suter TM, Procter M, van Veldhuisen DJ, Muscholl M, Bergh J, Carlomagno C, Perren T, Passalacqua R, Bighin C, Klijn JGM, Ageev FT, Hitre E, Groetz J, Iwata H, Knap M, Gnant M, Muehlbauer S, Spence A, Gelber RD, Piccart-Gebhart MJ (2007) Trastuzumab-associated cardiac adverse effects in the herceptin adjuvant trial. J Clin Oncol 25(25):3859–3865.  https://doi.org/10.1200/JCO.2006.09.1611 CrossRefPubMedGoogle Scholar
  18. 18.
    Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G (2019 Jun 20) From molecular mechanisms to clinical management of antineoplastic drug-induced cardiovascular toxicity: a translational overview. Antioxid Redox Signal 30(18):2110–2153.  https://doi.org/10.1089/ars.2016.6930 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Spallarossa P, Maurea N, Cadeddu C et al (2016) A recommended practical approach to the management of anthracycline-based chemotherapy cardiotoxicity: an opinion paper of the working group on drug cardiotoxicity and cardioprotection, Italian Society of Cardiology. J Cardiovasc Med (Hagerstown) 17(Suppl 1):S84–S92Google Scholar
  20. 20.
    Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR Jr, das Dores Cruz F, Gonçalves Brandão SM, VOC R, Higuchi-Dos-Santos MH, Hajjar LA, Kalil Filho R, Hoff PM, Sahade M, MSM F, de Paula Costa RL, Mano MS, Bittencourt Viana Cruz CB, Abduch MC, Lofrano Alves MS, Guimaraes GV, Issa VS, Bittencourt MS, Bocchi EA (2018) Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol 71(20):2281–2290.  https://doi.org/10.1016/j.jacc.2018.02.049 CrossRefGoogle Scholar
  21. 21.
    Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, Pagano JJ, Chow K, Thompson RB, Vos LJ, Ghosh S, Oudit GY, Ezekowitz JA, Paterson DI (2017 Mar 10) Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J Clin Oncol 35(8):870–877.  https://doi.org/10.1200/JCO.2016.68.783 CrossRefGoogle Scholar
  22. 22.
    Štěrba M, Popelová O, Vávrová A, Jirkovský E, Kovaříková P, Geršl V, Šimůnek T (2013) Oxidative stress, redox signaling, and metal chelation in anthracycline cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal 18:899–929.  https://doi.org/10.1089/ars.2012.4795 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Malorni W, Campesi I, Straface E, Vella S, Franconi F (2007) Redox features of the cell: a gender perspective. Antioxid Redox Signal 9:1779–1801PubMedGoogle Scholar
  24. 24.
    Vijay V, Han T, Moland CL, Kwekel JC, Fuscoe JC, Desai VG (2015) Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages. PLoS One 10:e0117047PubMedPubMedCentralGoogle Scholar
  25. 25.
    Jacquet JM, Bressolle F, Galtier M et al (1990) Doxorubicin and doxorubicinol: intra- and inter-individual variations of pharmacokinetic parameters. Cancer Chemother Pharmacol 27:219–225PubMedGoogle Scholar
  26. 26.
    Dobbs NA, Twelves CJ, Gillies H, James CA, Harper PG, Rubens RD (1995) Gender affects the doxorubicin pharmacokinetics in patients with normal liver biochemistry. Cancer Chemother Pharmacol 36:473–476PubMedGoogle Scholar
  27. 27.
    Wade JR, Kelman AW, Kerr DJ, Robert J, Whiting B (1992) Variability in the pharmacokinetics of epirubicin: a population analysis. Cancer Chemother Pharmacol 29:391–395PubMedGoogle Scholar
  28. 28.
    van Asperen J, van Tellingen O, Tijssen F, Schinkel AH, Beijnen JH (1999) Increased accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking mdr1a P-glycoprotein. Br J Cancer 79:108–113PubMedPubMedCentralGoogle Scholar
  29. 29.
    Lipshultz SE, Lipsitz SR, Mone SM, Goorin AM, Sallan SE, Sanders SP, Orav EJ, Gelber RD, Colan SD (1995) Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med 332:1738–1743PubMedGoogle Scholar
  30. 30.
    Lipshultz SE, Scully RE, Lipsitz SR, Sallan SE, Silverman LB, Miller TL, Barry EV, Asselin BL, Athale U, Clavell LA, Larsen E, Moghrabi A, Samson Y, Michon B, Schorin MA, Cohen HJ, Neuberg DS, Orav EJ, Colan SD (2010) Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol 11:950–961PubMedPubMedCentralGoogle Scholar
  31. 31.
    Krischer JP, Epstein S, Cuthbertson DD, Goorin AM, Epstein ML, Lipshultz SE (1997) Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the pediatric oncology group experience. J Clin Oncol 15:1544–1552PubMedGoogle Scholar
  32. 32.
    Hequet O, Le QH, Moullet I et al (2004) Subclinical late cardiomyopathy after doxorubicin therapy for lymphoma in adults. J Clin Oncol 22:1864–1871PubMedGoogle Scholar
  33. 33.
    Myrehaug S, Pintilie M, Tsang R, Mackenzie R, Crump M, Chen Z, Sun A, Hodgson DC (2008) Cardiac morbidity following modern treatment for Hodgkin lymphoma: supra-additive cardiotoxicity of doxorubicin and radiation therapy. Leuk Lymphoma 49:1486–1493PubMedGoogle Scholar
  34. 34.
    Myrehaug S, Pintilie M, Yun L, Crump M, Tsang RW, Meyer RM, Sussman J, Yu E, Hodgson DC (2010) A population-based study of cardiac morbidity among Hodgkin lymphoma patients with preexisting heart disease. Blood 116:2237–2240PubMedGoogle Scholar
  35. 35.
    Caram MEV, Guo C, Leja M, Smerage J, Henry NL, Giacherio D, Rubenfire M, Schott A, Davis M, Hayes DF, van Poznak C, Cooney KA, Hertz DL, Banerjee M, Griggs JJ (2015) Doxorubicin-induced cardiac dysfunction in unselected patients with a history of early-stage breast cancer. Breast Cancer Res Treat 152:163–172PubMedGoogle Scholar
  36. 36.
    Schmidt KT, Andersen CY (2012) ISFP Practice Committee. Recommendations for fertility preservation in patients with lymphomas. J Assist Reprod Genet 29:473–477.  https://doi.org/10.1007/s10815-012-9787-x CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hershman DL, McBride RB, Eisenberger A, Tsai WY, Grann VR, Jacobson JS (2008) Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin’s lymphoma. J Clin Oncol 26(19):3159–3165PubMedGoogle Scholar
  38. 38.
    Pupo M, Pisano A, Abonante S, Maggiolini M, Musti AM (2014) GPER activates Notch signaling in breast cancer cells and cancer-associated fibroblasts (CAFs). Int J Biochem Cell Biol 46:56–67.  https://doi.org/10.1016/j.biocel.2013.11.011 CrossRefPubMedGoogle Scholar
  39. 39.
    Lubecka K, Kurzava L, Flower K, Buvala H, Zhang H, Teegarden D, Camarillo I, Suderman M, Kuang S, Andrisani O, Flanagan JM, Stefanska B (2016) Stilbenoids remodel the DNA methylation patterns in breast cancer cells and inhibit oncogenic NOTCH signaling through epigenetic regulation of MAML2 transcriptional activity. Carcinogenesis. 37(7):656–668.  https://doi.org/10.1093/carcin/bgw048 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gonzalez Y, Pokrzywinski KL, Rosen ET, Mog S, Aryal B, Chehab LM, Vijay V, Moland CL, Desai VG, Dickey JS, Rao VA (2015) Reproductive hormone levels and differential mitochondria-related oxidative gene expression as potential mechanisms for gender differences in cardiosensitivity to doxorubicin in tumor-bearing spontaneously hypertensive rats. Cancer Chemother Pharmacol 76:447–459PubMedGoogle Scholar
  41. 41.
    Cadeddu Dessalvi C, Deidda M, Mele D et al (2018) Chemotherapy-induced cardiotoxicity: new insights into mechanisms, monitoring, and prevention. J Cardiovasc Med (Hagerstown) 19:315–323.  https://doi.org/10.2459/JCM.0000000000000667 CrossRefGoogle Scholar
  42. 42.
    Masoudi FA, Havranek EP, Smith G, Fish RH, Steiner JF, Ordin DL, Krumholz HM (2003) Gender, age, and heart failure with preserved left ventricular systolic function. J Am Coll Cardiol 41(2):217–223PubMedGoogle Scholar
  43. 43.
    Gori M, Lam CS, Gupta DK, Santos AB, Cheng S, Shah AM, Claggett B, Zile MR, Kraigher-Krainer E, Pieske B, Voors AA, Packer M, Bransford T, Lefkowitz M, McMurray JJ (2014) Solomon SD; PARAMOUNT Investigators. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail 16(5):535–542PubMedGoogle Scholar
  44. 44.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, Ganame J, Sebag IA, Agler DA, Badano LP, Banchs J, Cardinale D, Carver J, Cerqueira M, DeCara JM, Edvardsen T, Flamm SD, Force T, Griffin BP, Jerusalem G, Liu JE, Magalhães A, Marwick T, Sanchez LY, Sicari R, Villarraga HR, Lancellotti P (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 27:911–939PubMedGoogle Scholar
  45. 45.
    Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28(1–39):e14Google Scholar
  46. 46.
    Gerdts E, Okin PM, de Simone G, Cramariuc D, Wachtell K, Boman K, Devereux RB (2008) Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension. 51(4):1109–1114Google Scholar
  47. 47.
    Stokke TM, Hasselberg NE, Smedsrud MK, Sarvari SI, Haugaa KH, Smiseth OA, Edvardsen T, Remme EW (2017) Geometry as a confounder when assessing ventricular systolic function: comparison between ejection fraction and strain. J Am Coll Cardiol 70(8):942–954Google Scholar
  48. 48.
    Civelli M, Cardinale D, Martinoni A, Lamantia G, Colombo N, Colombo A, Gandini S, Martinelli G, Fiorentini C, Cipolla CM (2006) Early reduction in left ventricular contractile reserve detected by dobutamine stress echo predicts high-dose chemotherapy-induced cardiac toxicity. Int J Cardiol 111:120–126PubMedGoogle Scholar
  49. 49.
    Bountioukos M, Doorduijn JK, Roelandt JR, Vourvouri EC, Bax JJ, Schinkel AF, Kertai MD, Sonneveld P, Poldermans D (2003) Repetitive dobutamine stress echocardiography for the prediction of anthracycline cardiotoxicity. Eur J Echocardiogr 4(4):300–305PubMedGoogle Scholar
  50. 50.
    Isner JM, Ferrans VJ, Cohen SR, Witkind BG, Virmani R, Gottdiener JS, Beck JR, Roberts WC (1983) Clinical and morphologic cardiac findings after anthracycline chemother- apy. Analysis of 64 patients at necropsy. Am J Cardiol 51:1167–1174PubMedGoogle Scholar
  51. 51.
    Brouwer CA, Postma A, Vonk JM, Zwart N, van den Berg MP, Bink-Boelkens MT, Dolsma WV, Smit AJ, de Vries EG, Tissing WJ, Gietema JA (2011) Systolic and diastolic dysfunction in long-term adult survivors of childhood cancer. Eur J Cancer 47(16):2453–2462PubMedGoogle Scholar
  52. 52.
    Okuma H, Noto N, Tanikawa S, Kanezawa K, Hirai M, Shimozawa K, Yagasaki H, Shichino H, Takahashi S (2017) Impact of persistent left ventricular regional wall motion abnormalities in childhood cancer survivors after anthracycline therapy: assessment of global left ventricular myocardial performance by 3D speckle-tracking echocardiography. J Cardiol 70(4):396–401PubMedGoogle Scholar
  53. 53.
    Zito C, Longobardo L, Citro R, Galderisi M, Oreto L, Carerj ML, Manganaro R, Cusmà-Piccione M, Todaro MC, Di Bella G, Imbalzano E, Khandheria BK, Carerj S (2018) Ten years of 2D longitudinal strain for early myocardial dysfunction detection: a clinical overview. Biomed Res Int 2018:8979407PubMedPubMedCentralGoogle Scholar
  54. 54.
    Sugimoto T, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, Caballero L, Akhaladze N, Athanassopoulos GD, Barone D, Baroni M, Cardim N, Hagendorff A, Hristova K, Lopez T, de la Morena G, Popescu BA, Moonen M, Penicka M, Ozyigit T, Rodrigo Carbonero JD, van de Veire N, von Bardeleben RS, Vinereanu D, Zamorano JL, Go YY, Rosca M, Calin A, Magne J, Cosyns B, Marchetta S, Donal E, Habib G, Galderisi M, Badano LP, Lang RM, Lancellotti P (2017) Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging 18(8):833–840PubMedGoogle Scholar
  55. 55.
    Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, Gentian D, Iliceto S, Vinereanu D, Badano LP (2014) Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Rev Esp Cardiol (Engl Ed) 67:651–658Google Scholar
  56. 56.
    Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, Tanabe K, Nakatani S, on behalf of the JUSTICE investigators (2012) Normal range of left ventricular 2-dimensional strain: Japanese Ultrasound Speckle Tracking of the Left Ventricle (JUSTICE) study. Circ J 76:2623–2632PubMedGoogle Scholar
  57. 57.
    Barros MVL, Macedo AVS, Sarvari SI, Faleiros MH, Felipe PT, Silva JLP, Edvardsen T (2019) Left ventricular regional wall motion abnormality is a strong predictor of cardiotoxicity in breast cancer patients undergoing chemotherapy. Arq Bras Cardiol 112(1):50–56PubMedPubMedCentralGoogle Scholar
  58. 58.
    Zito C, Longobardo L, Cadeddu C, Monte I, Novo G, Dell'Oglio S, Pepe A, Madonna R, Tocchetti CG, Mele D (2016) Cardiovascular imaging in the diagnosis and monitoring of cardiotoxicity: role of echocardiography. J Cardiovasc Med (Hagerstown) 17(Suppl 1 Special issue on Cardiotoxicity from Antiblastic Drugs and Cardioprotection):e35–e44Google Scholar
  59. 59.
    Aquaro GD, Camastra G, Monti L et al (2016) Reference values of cardiac volumes, dimensions, and new functional parameters by MR: a multicenter, multivendor study. J Magn Reson Imaging 45:1055–1067PubMedGoogle Scholar
  60. 60.
    Jordan JH, D'Agostino RB Jr, Hamilton CA et al (2014) Longitudinal assessment of concurrent changes in left ventricular ejection fraction and left ventricular myocardial tissue characteristics after administration of cardiotoxic chemotherapies using T1-weighted and T2-weighted cardiovascular magnetic resonance. Circ Cardiovasc Imaging 7:872–879PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ylanen K, Poutanen T, Savikurki-Heikkila P, Rinta-Kiikka I, Eerola A, Vettenranta K (2013) Cardiac magnetic resonance imaging in the evaluation of the late effects of anthracyclines among long-term survivors of childhood cancer. J Am Coll Cardiol 61:1539–1547PubMedGoogle Scholar
  62. 62.
    Toro-Salazar OH, Gillan E, O'Loughlin MT et al (2013) Occult cardiotoxicity in childhood cancer survivors exposed to anthracycline therapy. Circ Cardiovasc Imaging 6:873–880PubMedGoogle Scholar
  63. 63.
    Mitoff PR, Gam D, Ivanov J, Al-hesayen A, Azevedo ER, Newton GE, Parker JD, Mak S (2011) Cardiac-specific sympathetic activation in men and women with and without heart failure. Heart. 97(5):382–387.  https://doi.org/10.1136/hrt.2010.199760 CrossRefPubMedGoogle Scholar
  64. 64.
    Mitoff PR, Al-Hesayen A, Azevedo E, Newton GE, Mak S (2007) Sex differences in basal hemodynamics and left ventricular function in humans with and without heart failure. Am Heart J 154(3):575–580PubMedGoogle Scholar
  65. 65.
    Armstrong GT, Plana JC, Zhang N, Srivastava D, Green DM, Ness KK, Daniel Donovan F, Metzger ML, Arevalo A, Durand JB, Joshi V, Hudson MM, Robison LL, Flamm SD (2012) Screening adult survivors of childhood cancer for cardiomyopathy: comparison of echocardiography and cardiac magnetic resonance imaging. J Clin Oncol 30:2876–2884PubMedPubMedCentralGoogle Scholar
  66. 66.
    Tham EB, Haykowsky MJ, Chow K, Spavor M, Kaneko S, Khoo NS, Pagano JJ, Mackie AS, Thompson RB (2013) Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling. J Cardiovasc Magn Reson 15:48PubMedPubMedCentralGoogle Scholar
  67. 67.
    Yu AF, Ky B (2016) Roadmap for biomarkers of cancer therapy cardiotoxicity. Heart. 102:425–430.  https://doi.org/10.1136/heartjnl-2015-307894 CrossRefPubMedGoogle Scholar
  68. 68.
    Daniels LB, Maisel AS (2015) Cardiovascular biomarkers and sex: the case for women. Nat Rev Cardiol 12:588–596.  https://doi.org/10.1038/nrcardio.2015.105 CrossRefPubMedGoogle Scholar
  69. 69.
    Suthahar N, Meijers WC, Ho JE, Gansevoort RT, Voors AA, van der Meer P, Bakker SJL, Heymans S, van Empel V, Schroen B, van der Harst P, van Veldhuisen DJ, de Boer RA (2018) Sex-specific associations of obesity and N-terminal pro-B-type natriuretic peptide levels in the general population. Eur J Heart Fail 20:1205–1214.  https://doi.org/10.1002/ejhf.1209 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754Google Scholar
  71. 71.
    Auner HW, Tinchon C, Linkesch W, Tiran A, Quehenberger F, Link H, Sill H (2003) Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol 82:218–222PubMedGoogle Scholar
  72. 72.
    Levis BE, Binkley PF, Shapiro CL (2017) Cardiotoxic effects of anthracycline-based therapy: what is the evidence and what are the potential harms? Lancet Oncol 18:e445–e456PubMedGoogle Scholar
  73. 73.
    Feola M, Garrone O, Occelli M, Francini A, Biggi A, Visconti G, Albrile F, Bobbio M, Merlano M (2011) Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: effects on left ventricular ejection fraction, troponin I and brain natriuretic peptide. Int J Cardiol 148:194–198PubMedGoogle Scholar
  74. 74.
    Pistillucci G, Ciorra AA, Sciacca V, Raponi M, Rossi R, Veltri E (2015) Troponin I and B-type natriuretic peptide (BNP) as biomarkers for the prediction of cardiotoxicity in patients with breast cancer treated with adjuvant anthracyclines and trastuzumab. Clin Ther 166:e67–e71Google Scholar
  75. 75.
    Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, Plana JC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2014) Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 63:809–816PubMedGoogle Scholar
  76. 76.
    Lecour S, Bøtker HE, Condorelli G et al (2014) ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc Res 104:399–411.  https://doi.org/10.1093/cvr/cvu225 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase andsurvivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907.  https://doi.org/10.1089/ars.2010.3360 CrossRefPubMedGoogle Scholar
  78. 78.
    Hausenloy DJ, Botker HE, Condorelli G et al (2013) Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the heart of the European Society of Cardiology. Cardiovasc Res 98:7–27.  https://doi.org/10.1093/cvr/cvt004 CrossRefPubMedGoogle Scholar
  79. 79.
    Madonna R, Cadeddu C, Deidda M, Giricz Z, Madeddu C, Mele D, Monte I, Novo G, Pagliaro P, Pepe A, Spallarossa P, Tocchetti CG, Varga ZV, Zito C, Geng YJ, Mercuro G, Ferdinandy P (2015) Cardioprotection by gene therapy: a review paper on behalf of the Working Group on Drug Cardiotoxicity and Cardioprotection of the Italian Society of Cardiology. Int J Cardiol 191:203–210.  https://doi.org/10.1016/j.ijcard.2015.04.232 CrossRefPubMedGoogle Scholar
  80. 80.
    Deschamps AM, Murphy E, Sun J (2010) Estrogen receptor activation and cardioprotection in ischemia reperfusion injury. Trends Cardiovasc Med 20(3):73–78.  https://doi.org/10.1016/j.tcm.2010.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Fels JA, Manfredi G (2019) Sex differences in ischemia/reperfusion injury: the role of mitochondrial permeability transition. Neurochem Res.  https://doi.org/10.1007/s11064-019-02769-6 PubMedGoogle Scholar
  82. 82.
    Murphy E, Steenbergen C (2007) Gender-based differences in mechanisms of protection in myocardial ischemia-reperfusion injury. Cardiovasc Res 75(3):478–486PubMedGoogle Scholar
  83. 83.
    Ostadal B, Drahota Z, Houstek J, Milerova M, Ostadalova I, Hlavackova M, Kolar F (2019) Developmental and sex differences in cardiac tolerance to ischemia/reperfusion injury: the role of mitochondria. Can J Physiol Pharmacol:1–7.  https://doi.org/10.1139/cjpp-2019-0060 PubMedGoogle Scholar
  84. 84.
    Ostadal B, Ostadal P (2014) Sex-based differences in cardiac ischaemic injury and protection: therapeutic implications. Br J Pharmacol 171(3):541–554.  https://doi.org/10.1111/bph.12270 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Penna C, Tullio F, Merlino A, Moro F, Raimondo S, Rastaldo R, Perrelli MG, Mancardi D, Pagliaro P (2009) Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Res Cardiol 104(4):390–402.  https://doi.org/10.1007/s00395-008-0762-8 CrossRefPubMedGoogle Scholar
  86. 86.
    Rocca C, Femminò S, Aquila G, Granieri MC, De Francesco EM, Pasqua T, Rigiracciolo DC, Fortini F, Cerra MC, Maggiolini M, Pagliaro P, Rizzo P, Angelone T, Penna C (2018) Notch1 mediates preconditioning protection induced by GPER in normotensive and hypertensive female rat hearts. Front Physiol 9:521.  https://doi.org/10.3389/fphys.2018.00521.eCollection2018
  87. 87.
    Mendelsohn ME, Karas RH (1999) The protective effects of estrogen on the cardiovascular system. N Engl J Med 340:1801–1811PubMedGoogle Scholar
  88. 88.
    Murphy E, Kohr M, Sun J, Nguyen T, Steenbergen C (2012) S-nitrosylation: a radical way to protect the heart. J Mol Cell Cardiol 52:568–577.  https://doi.org/10.1016/j.yjmcc.2011.08.021 CrossRefPubMedGoogle Scholar
  89. 89.
    Bienvenu LA, Morgan J, Reichelt ME, Delbridge LMD, Young MJ (2017) Chronic in vivo nitric oxide deficiency impairs cardiac functional recovery after ischemia in female (but not male) mice. J Mol Cell Cardiol 112:8–15.  https://doi.org/10.1016/j.yjmcc.2017.08.012 CrossRefPubMedGoogle Scholar
  90. 90.
    Shao Q, Fallica J, Casin KM, Murphy E, Steenbergen C, Kohr MJ (2016) Characterization of the sex-dependent myocardial S-nitrosothiol proteome. Am J Physiol Heart Circ Physiol 310:H505–H515.  https://doi.org/10.1152/ajpheart.00681.2015 CrossRefPubMedGoogle Scholar
  91. 91.
    Tong G, Aponte AM, Kohr MJ, Steenbergen C, Murphy E, Sun J (2014) Postconditioning leads to an increase in protein S-nitrosylation. Am J Physiol Heart Circ Physiol 306:H825–H832PubMedPubMedCentralGoogle Scholar
  92. 92.
    Penna C, Angotti C, Pagliaro P (2014) Protein S-nitrosylation in preconditioning and postconditioning. ExpBiol Med (Maywood) 239:647–662Google Scholar
  93. 93.
    Wang F, He Q, Sun Y, Dai X, Yang XP (2010) Female adult mouse cardiomyocytes are protected against oxidative stress. Hypertension 55:1172–1178PubMedPubMedCentralGoogle Scholar
  94. 94.
    Cosper and Leinwand (2011) Cancer causes cardiac atrophy and autophagy in a sexually dimorphic manner. Cancer Res 71:1710–1720PubMedGoogle Scholar
  95. 95.
    Moulin M, Piquereau J, Mateo P, Fortin D, Rucker-Martin C, Gressette M, Lefebvre F, Gresikova M, Solgadi A, Veksler V, Garnier A, Ventura-Clapier R (2015) Sexual dimorphism of doxorubicin-mediated cardiotoxicity: potential role of energy metabolism remodeling. Circ Heart Fail 8:98–108PubMedGoogle Scholar
  96. 96.
    Moulin M, Solgadi A, Veksler V, Garnier A, Ventura-Clapier R, Chaminade P (2015) Sex-specific cardiac cardiolipin remodelling after doxorubicin treatment. Biol Sex Differ 6:20PubMedPubMedCentralGoogle Scholar
  97. 97.
    De Francesco EM, Rocca C, Scavello F et al (2017) Protective role of GPER agonist G-1 on cardiotoxicity induced by doxorubicin. J Cell Physiol 232:1640–1649.  https://doi.org/10.1002/jcp.25585 CrossRefPubMedGoogle Scholar
  98. 98.
    Julicher RH, Sterrenberg L, Haenen GR, Bast A, Noordhoek J (1988) The effect of chronic adriamycin treatment on heart kidney and liver tissue of male and female rat. Arch Toxicol 61:275–281PubMedGoogle Scholar
  99. 99.
    Zhang J, Knapton A, Lipshultz SE, Cochran TR, Hiraragi H, Herman EH (2014) Sex-related differences in mast cell activity and doxorubicin toxicity: a study in spontaneously hypertensive rats. Toxicol Pathol 42:361–375PubMedGoogle Scholar
  100. 100.
    Munoz-Castaneda JR, Montilla P, Munoz MC, Bujalance I, Muntane J, Tunez I (2005) Effect of 17-beta-estradiol administration during adriamycin-induced cardiomyopathy in ovariectomized rat. Eur J Pharmacol 523:86–92PubMedGoogle Scholar
  101. 101.
    Altieri P, Barisione C, Lazzarini E et al (2016) Testosterone antagonizes doxorubicin-induced senescence of cardiomyocytes. J Am Heart Assoc 5(1):pii: e002383Google Scholar
  102. 102.
    Madonna R, Cadeddu C, Deidda M, Mele D, Monte I, Novo G, Pagliaro P, Pepe A, Spallarossa P, Tocchetti CG, Zito C, Mercuro G (2015) Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a position paper of the Italian Working Group on Drug Cardiotoxicity and Cardioprotection. Heart Fail Rev 20:621–631.  https://doi.org/10.1007/s10741-015-9497-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Christian Cadeddu Dessalvi
    • 1
  • Alessia Pepe
    • 2
  • Claudia Penna
    • 3
  • Alessia Gimelli
    • 4
  • Rosalinda Madonna
    • 5
  • Donato Mele
    • 6
  • Ines Monte
    • 7
  • Giuseppina Novo
    • 8
  • Cinzia Nugara
    • 8
  • Concetta Zito
    • 9
  • Javid J Moslehi
    • 10
  • Rudolf A de Boer
    • 11
  • Alexander R. Lyon
    • 12
  • Carlo Gabriele Tocchetti
    • 13
    • 14
    Email author
  • Giuseppe Mercuro
    • 1
  1. 1.Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
  2. 2.Magnetic Resonance Imaging UnitFondazione G. Monasterio C.N.R.- Regione ToscanaPisaItaly
  3. 3.Department of Clinical and Biological SciencesUniversity of TurinTurinItaly
  4. 4.Nuclear Medicine UnitFondazione G. Monasterio C.N.R.- Regione ToscanaPisaItaly
  5. 5.Center of Aging Sciences and Translational Medicine - CESI-MeT“G. d’Annunzio” UniversityChietiItaly
  6. 6.Cardiology Unit, Emergency DepartmentUniversity Hospital of FerraraFerraraItaly
  7. 7.Department of General Surgery and Medical-Surgery Specialities- CardiologyUniversity of CataniaCataniaItaly
  8. 8.Department of CardiologyUniversity of PalermoPalermoItaly
  9. 9.Department of Clinical and Experimental Medicine – CardiologyUniversity of MessinaMessinaItaly
  10. 10.Vanderbilt Ingram Cancer Center, Department of MedicineVanderbilt University Medical CenterNashvilleUSA
  11. 11.University Medical Center Groningen, Department of CardiologyUniversity of GroningenGroningenthe Netherlands
  12. 12.Royal Brompton Hospital and Imperial College LondonLondonUK
  13. 13.Department of Translational Medical SciencesFederico II UniversityNaplesItaly
  14. 14.Interdepartmental Center for Clinical and Translational Research (CIRCET)Federico II UniversityNaplesItaly

Personalised recommendations