Heart Failure Reviews

, Volume 24, Issue 6, pp 905–914 | Cite as

The influence of sex on left ventricular remodeling in arterial hypertension

  • Marijana TadicEmail author
  • Cesare Cuspidi
  • Guido Grassi


Hypertension represents one of the most important and most frequent cardiovascular risk factors responsible for heart failure (HF) development. Both sexes are equally affected by arterial hypertension. The difference is lying in the fact that prevalence of hypertension as well as hypertension-induced target organ damage varies during lifetime due to substantial variation of sex hormones in women. Left ventricular (LV) structural, functional, and mechanical changes induced by hypertension are well-known complications that occur in both sexes and they are responsible for HF development. However, their prevalence is significantly different between women and men, which could potentially explain the variation in HF occurrence and prognosis between the sexes. Studies have shown that the prevalence of left ventricular hypertrophy is higher in men. The data are not consistent regarding LV diastolic dysfunction and a similar report has been given for LV mechanical changes. Most investigations agree that LV longitudinal strain is lower among hypertensive men. However, even in the healthy population, men have lower LV longitudinal strain and the cutoff values are still missing. Therefore, it would be difficult to draw the conclusion that LV mechanical dysfunction is more prevalent among men. The main mechanisms responsible for sex-related LV remodeling are sex hormones and their influence on biohumoral systems. This review provides an updated overview of the available data about sex-related LV remodeling, as well as potential mechanisms for these changes, in the patients with arterial hypertension.


Arterial hypertension Sex Left ventricular hypertrophy Diastolic function Strain Pathophysiology 


Compliance with ethical standards

Conflict of interest

The paper “The influence of sex on left ventricular remodeling in arterial hypertension” has not been submitted elsewhere, it is not under review, or published previously. There is no possible conflict of interest. All authors are aware of and approve the manuscript being submitted to this journal.


  1. 1.
    Zhang Y, Moran AE (2017) Trends in the prevalence, awareness, treatment and control of hypertension among adults in the United States, 1999–2014. Hypertension 70:736–742PubMedPubMedCentralGoogle Scholar
  2. 2.
    Ramirez LA, Sullivan JC (2018) Sex differences in hypertension: where we have been and where we are going. Am J Hypertens 31:1247–1254PubMedGoogle Scholar
  3. 3.
    Colafella KMM, Denton KM (2018) Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 14(3):185–201PubMedGoogle Scholar
  4. 4.
    Krumholz HM, Larson M, Levy D (1993) Sex differences in cardiac adaptation to isolated systolic hypertension. Am J Cardiol 72(3):310–313PubMedGoogle Scholar
  5. 5.
    Masiha S, Sundström J, Lind L (2011) Left ventricular geometric patterns and adaptations to hemodynamics are similar in elderly men and women. BMC Cardiovasc Disord 11:25PubMedPubMedCentralGoogle Scholar
  6. 6.
    Tadic M, Cuspidi C, Celic V, Ivanovic B, Pencic B, Grassi G (2019) The influence of sex on left ventricular strain in hypertensive population. J Hypertens 37(1):50–56PubMedGoogle Scholar
  7. 7.
    Redfield MM, Jacobsen SJ, Borlaug BA, Rodeheffer RJ, Kass DA (2005) Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 112(15):2254–2262PubMedGoogle Scholar
  8. 8.
    Hung CL, Gonçalves A, Shah AM, Cheng S, Kitzman D, Solomon SD (2017) Age- and sex-related influence on left ventricular mechanics in elderly individuals free of prevalent heart failure: the ARIC study (Atherosclerosis Risk in Communities). Circ Cardiovasc Imaging 10(1)Google Scholar
  9. 9.
    Kuznetsova T, Cauwenberghs N, Knez J, Yang WY, Herbots L, D'hooge J, Haddad F, Thijs L, Voigt JU, Staessen JA (2016) Additive prognostic value of left ventricular systolic dysfunction in a population-based cohort. Circ Cardiovasc Imaging 9(7)Google Scholar
  10. 10.
    Salem JE, Nguyen LS, Hammoudi N, Preud’homme G, Hulot JS, Leban M, Funck-Brentano C, Touraine P, Isnard R, Bachelot A, CARDIOHCS Study Group (2018) Complex association of sex hormones on left ventricular systolic function: insight into sexual dimorphism. J Am Soc Echocardiogr 31(2):231–240PubMedGoogle Scholar
  11. 11.
    Dubey RK, Oparil S, Imthurn B, Jackson EK (2002) Sex hormones and hypertension. Cardiovasc Res 53:688–708PubMedGoogle Scholar
  12. 12.
    Fischer M, Baessler A, Schunkert H (2002) Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res 53(3):672–677PubMedGoogle Scholar
  13. 13.
    Di Giosia P, Giorgini P, Stamerra CA, Petrarca M, Ferri C, Sahebkar A (2018) Gender differences in epidemiology, pathophysiology, and treatment of hypertension. Curr Atheroscler Rep 20(3):13PubMedGoogle Scholar
  14. 14.
    Hinojosa-Laborde C, Lange DL, Haywood JR (2000) Role of female sex hormones in the development and reversal of Dahl hypertension. Hypertension. 35:484–489PubMedGoogle Scholar
  15. 15.
    Reckelhoff JF, Zhang H, Granger JP (1998) Testosterone exacerbates hypertension and reduces pressure-natriuresis in male spontaneously hypertensive rats. Hypertension. 31:435–439PubMedGoogle Scholar
  16. 16.
    Kawecka-Jaszcz K, Czarnecka D, Olszanecka A, Rajzer M, Jankowski P (2002) The effect of hormone replacement therapy on arterial blood pressure and vascular compliance in postmenopausal women with arterial hypertension. J Hum Hypertens 16(7):509–516PubMedGoogle Scholar
  17. 17.
    Carrasquilla GD, Frumento P, Berglund A, Borgfeldt C, Bottai M, Chiavenna C, Eliasson M, Engström G, Hallmans G, Jansson JH, Magnusson PK, Nilsson PM, Pedersen NL, Wolk A, Leander K (2017) Postmenopausal hormone therapy and risk of stroke: a pooled analysis of data from population-based cohort studies. PLoS Med 14(11):e1002445PubMedPubMedCentralGoogle Scholar
  18. 18.
    Drøyvold WB, Midthjell K, Nilsen TI, Holmen J (2005) Change in body mass index and its impact on blood pressure: a prospective population study. Int J Obes 29(6):650–655Google Scholar
  19. 19.
    Wilsgaard T, Schirmer H, Arnesen E (2000) Impact of body weight on blood pressure with a focus on sex differences: the Tromso study, 1986-1995. Arch Intern Med 160(18):2847–2853PubMedGoogle Scholar
  20. 20.
    Yanes LL, Reckelhoff JF (2011) Postmenopausal hypertension. Am J Hypertens 24(7):740–749PubMedGoogle Scholar
  21. 21.
    Mayet J, Hughes A (2003) Cardiac and vascular pathophysiology in hypertension. Heart. 89(9):1104–1109PubMedPubMedCentralGoogle Scholar
  22. 22.
    Pickering TG (1986) Pathophysiology of systemic hypertension. Am J Cardiol 58(8):12D–15DPubMedGoogle Scholar
  23. 23.
    Norton JM (2001) Toward consistent definitions for preload and afterload. Adv Physiol Educ 25(1–4):53–61PubMedGoogle Scholar
  24. 24.
    Cabral AM, Vasquez EC, Moyses MR, Antonio A (1988) Sex hormone modulation of ventricular hypertrophy in sino-aortic denervated rats. Hypertension 11(Suppl 1):93–97Google Scholar
  25. 25.
    Babiker FA, Lips D, Meyer R, Delvaux E, Zandberg P, Janssen B, van Eys G, Grohé C, Doevendans PA (2006) Estrogen receptor beta protects the murine heart against left ventricular hypertrophy. Arterioscler Thromb Vasc Biol 26(7):1524–1530PubMedGoogle Scholar
  26. 26.
    Dannenberg AL, Levy D, Garrison RJ (1989) Impact of age on echocardiographic left ventricular mass in a healthy population (the Framingham Study). Am J Cardiol 64:1066–1068PubMedGoogle Scholar
  27. 27.
    Hayward CS, Webb CM, Collins P (2001) Effect of sex hormones on cardiac mass. Lancet 357:1354–1356PubMedGoogle Scholar
  28. 28.
    Marsh JD, LehmannMH RRH, Gwathmey JK, Green GE, Schiebinger RJ (1998) Androgen receptors mediate hypertrophy in cardiac myocytes. Circulation 98:256–261PubMedGoogle Scholar
  29. 29.
    Zwadlo C, Schmidtmann E, Szaroszyk M, Kattih B, Froese N, Hinz H, Schmitto JD, Widder J, Batkai S, Bähre H, Kaever V, Thum T, Bauersachs J, Heineke J (2015) Antiandrogenic therapy with finasteride attenuates cardiac hypertrophy and left ventricular dysfunction. Circulation. 131(12):1071–1081PubMedGoogle Scholar
  30. 30.
    Vlachopoulos C, Pietri P, Ioakeimidis N, Aggelis A, Terentes-Printzios D, Abdelrasoul M, Gourgouli I, Stefanadis C, Tousoulis D (2016) Inverse association of total testosterone with central haemodynamics and left ventricular mass in hypertensive men. Atherosclerosis. 250:57–62PubMedGoogle Scholar
  31. 31.
    Gerdts E, Okin PM, de Simone G, Cramariuc D, Wachtell K, Boman K, Devereux RB (2008) Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension. 51(4):1109–1114PubMedGoogle Scholar
  32. 32.
    Muiesan ML, Paini A, Aggiusti C, Bertacchini F, Rosei CA, Salvetti M (2018) Hypertension and organ damage in women. High Blood Press Cardiovasc Prev 25(3):245–252PubMedGoogle Scholar
  33. 33.
    Mori T, Kai H, Kajimoto H, Koga M, Kudo H, Takayama N, Yasuoka S, Anegawa T, Kai M, Imaizumi T (2011) Enhanced cardiac inflammation and fibrosis in ovariectomized hypertensive rats: a possible mechanisms of diastolic function in postmenopausal women. Hypertens Res 34(4):496–502PubMedGoogle Scholar
  34. 34.
    Tinetti M, Gysel M, Farias J, Ferrer M, Lombardero M, Baranchuk A (2015) Left ventricular filling pressure in male patients with type 2 diabetes and normal versus low total testosterone levels. Cardiol J 22(2):206–211PubMedGoogle Scholar
  35. 35.
    Yildirim E, Karabulut O, Yuksel UC, Celik M, Bugan B, Gokoglan Y, Ulubay M, Gungor M, Koklu M (2017) Echocardiographic evaluation of diastolic functions in patients with polycystic ovary syndrome: a comperative study of diastolic functions in sub-phenotypes of polycystic ovary syndrome. Cardiol J 24(4):364–373PubMedGoogle Scholar
  36. 36.
    Faconti L, Bruno RM, Buralli S, Barzacchi M, Dal Canto E, Ghiadoni L, Taddei S (2017) Arterial-ventricular coupling and parameters of vascular stiffness in hypertensive patients: role of gender. JRSM Cardiovasc Dis 6:204800401769227Google Scholar
  37. 37.
    Costa-Hong VA, Muela HCS, Macedo TA, Sales ARK, Bortolotto LA (2018) Gender differences of aortic wave reflection and influence of menopause on central blood pressure in patients with arterial hypertension. BMC Cardiovasc Disord 18:123PubMedPubMedCentralGoogle Scholar
  38. 38.
    Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M, Pearson G, Sinha S, Arai A, Lima JA, Bluemke DA (2006) Cardiovascular function in Multi-Ethnic Study of Atherosclerosis: normal values by age, sex, and ethnicity. AJR Am J Roentgenol 186:S357–S365PubMedGoogle Scholar
  39. 39.
    Chung AK, Das SR, Leonard D, Peshock RM, Kazi F, Abdullah SM, Canham RM, Levine BD, Drazner MH (2006) Women have higher left ventricular ejection fractions than men independent of differences in left ventricular volume: the Dallas Heart Study. Circulation. 113:1597–1604PubMedGoogle Scholar
  40. 40.
    Yoneyama K, Gjesdal O, Choi EY, Wu CO, Hundley WG, Gomes AS, Liu CY, McClelland RL, Bluemke DA, Lima JA (2012) Age, sex, and hypertension-related remodeling influences left ventricular torsion assessed by tagged cardiac magnetic resonance in asymptomatic individuals: the multi-ethnic study of atherosclerosis. Circulation 126(21):2481–2490PubMedPubMedCentralGoogle Scholar
  41. 41.
    Shi J, Pan C, Kong D, Cheng L, Shu X (2016) Left ventricular longitudinal and circumferential layer-specific myocardial strains and their determinants in healthy subjects. Echocardiography 33:510–518Google Scholar
  42. 42.
    Petitto M, Esposito R, Sorrentino R, Lembo M, Luciano F, De Roberto AM, La Mura L, Pezzullo E, Maffei S, Galderisi M, Lancellotti P (2018) Sex-specific echocardiographic reference values: the women’s point of view. J Cardiovasc Med (Hagerstown) 19(10):527–535Google Scholar
  43. 43.
    Cuspidi C, Rescaldani M, Sala C, Negri F, Grassi G, Mancia G (2012) Prevalence of electrocardiographic left ventricular hypertrophy in human hypertension: an updated review. J Hypertens 30(11):2066–2073PubMedGoogle Scholar
  44. 44.
    Izzo R, Losi MA, Stabile E, Lönnebakken MT, Canciello G, Esposito G, Barbato E, De Luca N, Trimarco B, de Simone G (2017) Development of left ventricular hypertrophy in treated hypertensive outpatients: the Campania Salute Network. Hypertension. 69(1):136–142PubMedGoogle Scholar
  45. 45.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322(22):1561–1566PubMedGoogle Scholar
  46. 46.
    Cuspidi C, Sala C, Lonati L, Negri F, Rescaldani M, Re A, Meani S, Mancia G (2013) Metabolic syndrome, left ventricular hypertrophy and carotid atherosclerosis in hypertension: a gender-based study. Blood Press 22(3):138–143PubMedGoogle Scholar
  47. 47.
    Ambale Venkatesh B, Volpe GJ, Donekal S, Mewton N, Liu CY, Shea S, Liu K, Burke G, Wu C, Bluemke DA, Lima JA (2014) Association of longitudinal changes in left ventricular structure and function with myocardial fibrosis: the Multi-Ethnic Study of Atherosclerosis study. Hypertension 64(3):508–515PubMedGoogle Scholar
  48. 48.
    Cipollini F, Arcangeli E, Greco E, Franconi F, Pettinà G, Seghieri G (2012) Gender difference in the relation blood pressure-left ventricular mass and geometry in newly diagnosed arterial hypertension. Blood Press 21(4):255–264PubMedGoogle Scholar
  49. 49.
    Heesen WF, Beltman FW, May JF, Smit AJ, de Graeff PA, Havinga TK, Schuurman FH, van der Veur E, Hamer JP, Meyboom-de Jong B, Lie KI (1997) High prevalence of concentric remodeling in elderly individuals with isolated systolic hypertension from a population survey. Hypertension. 29(2):539–543PubMedGoogle Scholar
  50. 50.
    de Simone G, Devereux RB, Izzo R, Girfoglio D, Lee ET, Howard BV, Roman MJ (2013) Lack of reduction of left ventricular mass in treated hypertension: the Strong Heart Study. J Am Heart Assoc 2(3):e000144PubMedPubMedCentralGoogle Scholar
  51. 51.
    Gerdts E, Izzo R, Mancusi C, Losi MA, Manzi MV, Canciello G, De Luca N, Trimarco B, de Simone G (2018) Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network). Int J Cardiol 258:257–261PubMedGoogle Scholar
  52. 52.
    Lønnebakken MT, Izzo R, Mancusi C, Gerdts E, Losi MA, Canciello G, Giugliano G, De Luca N, Trimarco B, de Simone G (2017) Left ventricular hypertrophy regression during antihypertensive treatment in an outpatient clinic (the Campania Salute Network). J Am Heart Assoc 6(3)Google Scholar
  53. 53.
    Verdecchia P, Porcellati C, Reboldi G, Gattobigio R, Borgioni C, Pearson TA, Ambrosio G (2001) Left ventricular hypertrophy as an independent predictor of acute cerebrovascular events in essential hypertension. Circulation. 104(17):2039–2044PubMedGoogle Scholar
  54. 54.
    Okin PM, Bang CN, Wachtell K, Hille DA, Kjeldsen SE, Dahlöf B, Devereux RB (2013) Relationship of sudden cardiac death to new-onset atrial fibrillation in hypertensive patients with left ventricular hypertrophy. Circ Arrhythm Electrophysiol 6(2):243–251PubMedGoogle Scholar
  55. 55.
    Os I, Franco V, Kjeldsen SE, Manhem K, Devereux RB, Gerdts E, Hille DA, Lyle PA, Okin PM, Dahlöf B, Oparil S (2008) Effects of losartan in women with left ventricular hypertrophy: results from the Losartan Intervention for Endpoint Reduction in Hypertension Study. Hypertension 51(4):1103–1108PubMedGoogle Scholar
  56. 56.
    Eng J, McClelland RL, Gomes AS, Hundley WG, Cheng S, Wu CO, Carr JJ, Shea S, Bluemke DA, Lima JA (2016) Adverse left ventricular remodeling and age assessed with cardiac MR imaging: the Multi-Ethnic Study of Atherosclerosis. Radiology 278(3):714–722PubMedGoogle Scholar
  57. 57.
    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355(3):251–259PubMedGoogle Scholar
  58. 58.
    Russo C, Jin Z, Palmieri V, Homma S, Rundek T, Elkind MS, Sacco RL, Di Tullio MR (2012) Arterial stiffness and wave reflection: sex differences and relationship with left ventricular diastolic function. Hypertension 60(2):362–368PubMedPubMedCentralGoogle Scholar
  59. 59.
    Shim CY, Park S, Choi D, Yang WI, Cho IJ, Choi EY, Chung N, Ha JW (2011) Sex differences in central hemodynamics and their relationship to left ventricular diastolic function. J Am Coll Cardiol 57(10):1226–1233PubMedGoogle Scholar
  60. 60.
    Fujimoto N, Okada Y, Shibata S, Best SA, Bivens TB, Levine BD, Fu Q (2013) Effects of sex and hypertension subtype on hemodynamics and left ventricular diastolic function in older patients with stage 1 hypertension. J Hypertens 31(11):2282–2289PubMedGoogle Scholar
  61. 61.
    Biering-Sørensen T, Biering-Sørensen SR, Olsen FJ, Sengeløv M, Jørgensen PG, Mogelvang R, Shah AM, Jensen JS (2017) Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: the Copenhagen City Heart Study. Circ Cardiovasc Imaging 10(3)Google Scholar
  62. 62.
    Kamimura D, Suzuki T, Wang W, deShazo M, Hall JE, Winniford MD, Kullo IJ, Mosley TH, Butler KR, Hall ME (2018) Higher plasma leptin levels are associated with reduced left ventricular mass and left ventricular diastolic stiffness in black women: insights from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Hypertens Res 41(8):629–638PubMedPubMedCentralGoogle Scholar
  63. 63.
    Krzesiński P, Stańczyk A, Gielerak G, Uziębło-Życzkowska B, Kurpaska M, Piotrowicz K, Skrobowski A (2015) Sex determines cardiovascular hemodynamics in hypertension. J Hum Hypertens 29(10):610–617PubMedGoogle Scholar
  64. 64.
    Marwick TH (2018) Ejection fraction pros and cons: JACC state-of-the art review. J Am Coll Cardiol 72(19):2360–2379PubMedGoogle Scholar
  65. 65.
    Hayward CS, Kalnins WV, Kelly RP (2001) Gender-related differences in left ventricular chamber function. Cardiovasc Res 49(2):340–350PubMedGoogle Scholar
  66. 66.
    Cauwenberghs N, Knez J, Boggia J, D’hooge J, Yang WY, Wei FF, Thijs L, Staessen JA, Kuznetsova T (2018) Doppler indexes of left ventricular systolic and diastolic function in relation to haemodynamic load components in a general population. J Hypertens 36(4):867–875PubMedGoogle Scholar
  67. 67.
    Nayor M, Enserro DM, Xanthakis V, Larson MG, Benjamin EJ, Aragam J, Mitchell GF, Vasan RS (2018) Comorbidities and cardiometabolic disease: relationship with longitudinal changes in diastolic function. JACC Heart Fail 6(4):317–325PubMedPubMedCentralGoogle Scholar
  68. 68.
    Medvedofsky D, Maffessanti F, Weinert L, Tehrani DM, Narang A, Addetia K, Mediratta A, Besser SA, Maor E, Patel AR, Spencer KT, Mor-Avi V, Lang RM (2018) 2D and 3D echocardiography-derived indices of left ventricular function and shape relationship with mortality. JACC Cardiovasc Imaging 11(11):1569–1579PubMedGoogle Scholar
  69. 69.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. J Am Soc Echocardiogr 28:1–39PubMedGoogle Scholar
  70. 70.
    Cikes M, Solomon SD (2016) Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J 37(21):1642–1650PubMedGoogle Scholar
  71. 71.
    Mendes PR, Kiyota TA, Cipolli JA, Schreiber R, Paim LR, Bellinazzi VR, Matos-Souza JR, Sposito AC, Nadruz W Jr (2015) Gender influences the relationship between lung function and cardiac remodeling in hypertensive subjects. Hypertens Res 38(4):264–268PubMedGoogle Scholar
  72. 72.
    Bella JN, Palmieri V, Roman MJ, Paranicas MF, Welty TK, Lee ET, Fabsitz RR, Howard BV, Devereux RB (2006) Gender differences in left ventricular systolic function in American Indians (from the Strong Heart Study). Am J Cardiol 98(6):834–837PubMedGoogle Scholar
  73. 73.
    Opdahl A, Helle-Valle T, Skulstad H, Smiseth OA (2015) Strain, strain rate, torsion, and twist: echocardiographic evaluation. Curr Cardiol Rep 17(3):568PubMedGoogle Scholar
  74. 74.
    Sareen N, Ananthasubramaniam K (2016) Strain imaging: from physiology to practical applications in daily practice. Cardiol Rev 24(2):56–69PubMedGoogle Scholar
  75. 75.
    Stöhr EJ, Shave RE, Baggish AL, Weiner RB (2016) Left ventricular twist mechanics in the context of normal physiology and cardiovascular disease: review of studies using speckle tracking echocardiography. Am J Physiol Heart Circ Physiol 311(3):H633–H644PubMedGoogle Scholar
  76. 76.
    Saito M, Khan F, Stoklosa T, Iannaccone A, Negishi K, Marwick TH (2016) Prognostic implications of LV strain risk score in asymptomatic patients with hypertensive heart disease. JACC Cardiovasc Imaging 9(8):911–921PubMedGoogle Scholar
  77. 77.
    Kuznetsova T, Nijs E, Cauwenberghs N, Knez J, Thijs L, Haddad F, Yang WY, Kerkhof PL, Voigt JU, Staessen JA (2019) Temporal changes in left ventricular longitudinal strain in general population: clinical correlates and impact on cardiac remodeling. Echocardiography 36:458–468. CrossRefPubMedGoogle Scholar
  78. 78.
    Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, Gentian D, Iliceto S, Vinereanu D, Badano LP (2014) Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Rev Esp Cardiol (Engl Ed) 67(8):651–658Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Internal Medicine and CardiologyCharité–Universitätsmedizin BerlinBerlinGermany
  2. 2.Clinical Research UnitUniversity of Milan-Bicocca and Istituto Auxologico Italiano IRCCSMedaItaly
  3. 3.Clinica Medica, Department of Medicine and SurgeryUniversity Milano-BicoccaMilanItaly

Personalised recommendations