Advertisement

Heart Failure Reviews

, Volume 24, Issue 5, pp 647–659 | Cite as

Influence of mitochondrial and systemic iron levels in heart failure pathology

  • Mihai LupuEmail author
  • Diana-Valentina Tudor
  • Gabriela Adriana Filip
Article
  • 195 Downloads

Abstract

Iron deficiency or overload poses an increasingly complex issue in cardiovascular disease, especially heart failure. The potential benefits and side effects of iron supplementation are still a matter of concern, even though current guidelines suggest therapeutic management of iron deficiency. In this review, we sought to examine the iron metabolism and to identify the rationale behind iron supplementation and iron chelation. Cardiovascular disease is increasingly linked with iron dysmetabolism, with an increased proportion of heart failure patients being affected by decreased plasma iron levels and in turn, by the decreased quality of life. Multiple studies have concluded on a benefit of iron administration, even if just for symptomatic relief. However, new studies field evidence for negative effects of dysregulated non-bound iron and its reactive oxygen species production, with concern to heart diseases. The molecular targets of iron usage, such as the mitochondria, are prone to deleterious effects of the polyvalent metal, added by the scarcely described processes of iron elimination. Iron supplementation and iron chelation show promise of therapeutic benefit in heart failure, with the extent and mechanisms of both prospects not being entirely understood. It may be that a state of decreased systemic and increased mitochondrial iron levels proves to be a useful frame for future advancements in understanding the interconnection of heart failure and iron metabolism.

Keywords

Chelation Mitochondria Iron metabolism Anemia Heart failure Hepcidin 

Notes

References

  1. 1.
    Camprubi E, Jordan SF, Vasiliadou R, Lane N (2017) Iron catalysis at the origin of life. IUBMB Life 69(6):373–381Google Scholar
  2. 2.
    Hohenberger J, Ray K, Meyer K (2012) The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nat Commun 3:720Google Scholar
  3. 3.
    Rouault TA (2015) Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat Rev Mol Cell Biol [Internet] 16(1):45–55.  https://doi.org/10.1038/nrm3909 Google Scholar
  4. 4.
    Weiss G (2002) Iron and immunity: a double-edged sword. Eur J Clin Investig 32(SUPPL. 1):70–78Google Scholar
  5. 5.
    Nemeth E, Ganz T (2009) The role of hepcidin in iron metabolism. Acta Haematol 122(2–3):78–86Google Scholar
  6. 6.
    Anderson CP, Shen M, Eisenstein RS, Leibold EA (2012) Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta, Mol Cell Res 1823:1468–1483Google Scholar
  7. 7.
    Anderson SA, Nizzi CP, Chang YI, Deck KM, Schmidt PJ, Galy B, Damnernsawad A, Broman AT, Kendziorski C, Hentze MW, Fleming MD, Zhang J, Eisenstein RS (2013) The IRP1-HIF-2α axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab [Internet] 17(2):282–290.  https://doi.org/10.1016/j.cmet.2013.01.007 Google Scholar
  8. 8.
    Lakhal-Littleton S, Wolna M, Chung YJ, Christian HC, Heather LC, Brescia M et al (2016) An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. Elife. 5:1–25Google Scholar
  9. 9.
    Cohen-Solal A, Leclercq C, Deray G, Lasocki S, Zambrowski JJ, Mebazaa A, de Groote P, Damy T, Galinier M (2014) Iron deficiency: an emerging therapeutic target in heart failure. Heart Int 100(18):1414–1420. Available from.  https://doi.org/10.1136/heartjnl-2014-305669 Google Scholar
  10. 10.
    Kasztura M, Dziegała M, Kobak K, Bania J, Mazur G, Banasiak W et al (2017) Both iron excess and iron depletion impair viability of rat H9C2 cardiomyocytes and L6G8C5 myocytes. Kardiol Pol 75(3):267–275Google Scholar
  11. 11.
    McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E et al (2001) An iron-regulated ferric reductase associated with the absorption of dietary iron. Science (80- ) 291(5509):1755–1759Google Scholar
  12. 12.
    Conrad ME, Umbreit JN, Moore EG (1993) Regulation of iron absorption: proteins involved in duodenal mucosal uptake and transport. J Am Coll Nutr [Internet] 12(6):720–728.  https://doi.org/10.1080/07315724.1993.10718365 Google Scholar
  13. 13.
    Le Blanc S, Garrick MD, Arredondo M (2012) Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism. AJP Cell Physiol [Internet] 302(12):C1780–C1785. Available from:.  https://doi.org/10.1152/ajpcell.00080.2012 Google Scholar
  14. 14.
    Hooda J, Shah A, Zhang L (2014) Heme, an essential nutrient from dietary proteins, critically impacts diverse physiological and pathological processes. Nutrients. 6(3):1080–1102Google Scholar
  15. 15.
    Staron R, Lipinski P, Lenartowicz M, Bednarz A, Gajowiak A, Smuda E et al (2017) Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: duodenal expression profile of genes involved in heme iron absorption. PLoS One 12(7):1–22Google Scholar
  16. 16.
    Donovan A, Brownlie A, Zhou Y, Shepard J (2000) Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature [Internet] 403(6771):776–781.  https://doi.org/10.1038/35001596 Google Scholar
  17. 17.
    Vulpe CD, Kuo YM, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21(2):195–199Google Scholar
  18. 18.
    Ponka P, Lok CN (1999) The transferrin receptor: role in health and disease. Int J Biochem Cell Biol 31:1111–1137Google Scholar
  19. 19.
    Hoffbrand AV, Catovsky D, Tuddenham EGD, Green AR. Postgraduate haematology: sixth edition. 2010Google Scholar
  20. 20.
    Girelli D, Bozzini C, Roetto A, Alberti F, Daraio F, Colombari R, Olivieri O, Corrocher R, Camaschella C (2002) Clinical and pathologic findings in hemochromatosis type 3 due to a novel mutation in transferrin receptor 2 gene. Gastroenterology. 122(5):1295–1302Google Scholar
  21. 21.
    Miles AL, Burr SP, Grice GL, Nathan JA (2017) The vacuolar-ATPase complex and assembly factors, TMEM199 and CCDC115, control HIF1α prolyl hydroxylation by regulating cellular Iron levels. Elife. 6:e22693Google Scholar
  22. 22.
    Jenkitkasemwong S, Wang CY, MacKenzie B, Knutson MD (2012) Physiologic implications of metal-ion transport by ZIP14 and ZIP8. BioMetals. 25(4):643–655Google Scholar
  23. 23.
    Jenkitkasemwong S, Wang CY, Coffey R, Zhang W, Chan A, Biel T, Kim JS, Hojyo S, Fukada T, Knutson MD (2015) SLC39A14 is required for the development of hepatocellular iron overload in murine models of hereditary hemochromatosis. Cell Metab 22(1):138–150Google Scholar
  24. 24.
    Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y (2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem Sci [Internet] 41(3):274–286.  https://doi.org/10.1016/j.tibs.2015.11.012 Google Scholar
  25. 25.
    Wang CY, Jenkitkasemwong S, Duarte S, Sparkman BK, Shawki A, Mackenzie B, Knutson MD (2012) ZIP8 is an iron and zinc transporter whose cell-surface expression is up-regulated by cellular iron loading. J Biol Chem 287(41):34032–34043Google Scholar
  26. 26.
    Philpott CC, Ryu MS, Frey A, Patel S (2017) Cytosolic iron chaperones: proteins delivering iron cofactors in the cytosol of mammalian cells. J Biol Chem 292(31):12764–12771Google Scholar
  27. 27.
    Coffey R, Ganz T (2017) Iron homeostasis: an anthropocentric perspective. J Biol Chem 292(31):12727–12734Google Scholar
  28. 28.
    Chaudhury A, Chander P, Howe PH (2010) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. Rna 16:1449–1462Google Scholar
  29. 29.
    Bresgen N, Eckl PM (2015) Oxidative stress and the homeodynamics of iron metabolism. Biomolecules. 5(2):808–847Google Scholar
  30. 30.
    Theil EC. Ferritin iron minerals are chelator targets, antioxidants, and coated, dietary iron. In: Annals of the New York Academy of Sciences. 2010. p. 197–204Google Scholar
  31. 31.
    Zhu W, Li X, Xie W, Luo F, Kaur D, Andersen JK, Jankovic J, le W (2010) Genetic iron chelation protects against proteasome inhibition-induced dopamine neuron degeneration. Neurobiol Dis 37(2):307–313Google Scholar
  32. 32.
    Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, Netz DJ, Paul VD, Pierik AJ, Richter N, Stümpfig M, Srinivasan V, Stehling O, Mühlenhoff U (2015) The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94(7–9):280–291Google Scholar
  33. 33.
    Hardison RC (1996) A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc Natl Acad Sci [Internet] 93(12):5675–5679. Available from.  https://doi.org/10.1073/pnas.93.12.5675 Google Scholar
  34. 34.
    Wallace DF (2016) The regulation of iron absorption and homeostasis. Clin Biochem Rev [Internet] 37(2):51–62 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28303071%0A http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5198508%0A
  35. 35.
    Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz-Knappe P, Adermann K (2000) LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett 480(2–3):147–150Google Scholar
  36. 36.
    Knutson MD (2017) Iron transport proteins: gateways of cellular and systemic iron homeostasis. J Biol Chem 292(31):12735–12743Google Scholar
  37. 37.
    Brasselagnel C, Karim Z, Letteron P, Bekri S, Bado A, Beaumont C (2011) Intestinal DMT1 cotransporter is down-regulated by hepcidin via proteasome internalization and degradation. Gastroenterol Int 140(4):1261–1271.  https://doi.org/10.1053/j.gastro.2010.12.037 Google Scholar
  38. 38.
    Mena NP, Esparza A, Tapia V, Valdés P, Núñez MT (2008) Hepcidin inhibits apical iron uptake in intestinal cells. Am J Physiol Liver Physiol [Internet] 294(1):G192–G198. Available from:.  https://doi.org/10.1152/ajpgi.00122.2007 Google Scholar
  39. 39.
    Lymboussaki A, Pignatti E, Montosi G, Garuti C, Haile DJ, Pietrangelo A (2003) The role of the iron responsive element in the control of ferroportin1/IREG1/MTP1 gene expression. J Hepatol 39(5):710–715Google Scholar
  40. 40.
    Auguet T, Aragonès G, Berlanga A, Martínez S, Sabench F, Binetti J, Aguilar C, Porras JA, Molina A, del Castillo D, Richart C (2017) Hepcidin in morbidly obese women with nonalcoholic fatty liver disease. PLoS One 12(10):e0187065Google Scholar
  41. 41.
    Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of mammalian iron metabolism. Cell. 142(1):24–38Google Scholar
  42. 42.
    Rishi G, Wallace DF, Subramaniam VN (2015) Hepcidin: regulation of the master iron regulator. Biosci Rep [Internet] 35(3):1–12. Available from:.  https://doi.org/10.1042/BSR20150014 Google Scholar
  43. 43.
    Papanikolaou G, Pantopoulos K (2017) Systemic iron homeostasis and erythropoiesis. IUBMB Life 69(6):399–413Google Scholar
  44. 44.
    Yamamoto K, Kuragano T, Kimura T, Nanami M, Hasuike Y, Nakanishi T (2018) Interplay of adipocyte and hepatocyte: leptin upregulates hepcidin. Biochem Biophys Res Commun 495(1):1548–1554Google Scholar
  45. 45.
    Zabeau L, Peelman F, Tavernier J (2015) Leptin: from structural insights to the design of antagonists. Life Sci 140:49–56Google Scholar
  46. 46.
    Schmidt PJ (2015) Regulation of iron metabolism by hepcidin under conditions of inflammation. J Biol Chem 290(31):18975–18983Google Scholar
  47. 47.
    Cavallaro F, Duca L, Pisani LF, Rigolini R, Spina L, Tontini GE et al (2017) Anti-TNF-mediated modulation of prohepcidin improves iron availability in inflammatory bowel disease, in an IL-6-mediated fashion. Can J Gastroenterol Hepatol 2017Google Scholar
  48. 48.
    Lee P, Peng H, Gelbart T, Wang L, Beutler E (2005) Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A [Internet] 102(6):1906–1910 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=548537&tool=pmcentrez&rendertype=abstract Google Scholar
  49. 49.
    Ganz T (2018) Iron and infection. Int J Hematol 107(1):7–15Google Scholar
  50. 50.
    Liu Q, Davidoff O, Niss K, Haase VH (2012) Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest 122(12):4635–4644Google Scholar
  51. 51.
    Sheftel AD, Lill R (2009) The power plant of the cell is also a smithy: the emerging role of mitochondria in cellular iron homeostasis. Ann Med 41:82–99Google Scholar
  52. 52.
    Shah YM, Xie L (2014) Hypoxia-inducible factors link iron homeostasis and erythropoiesis. Gastroenterol Int 146(3):630–642.  https://doi.org/10.1053/j.gastro.2013.12.031 Google Scholar
  53. 53.
    Haddad S, Wang Y, Galy B, Korf-Klingebiel M, Hirsch V, Baru AM et al (2017) Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur Heart J 38(5):362–372Google Scholar
  54. 54.
    Galy B, Ferring-Appel D, Sauer SW, Kaden S, Lyoumi S, Puy H, Kölker S, Gröne HJ, Hentze MW (2010) Iron regulatory proteins secure mitochondrial iron sufficiency and function. Cell Metab 12(2):194–201Google Scholar
  55. 55.
    Zhao G, Arosio P, Chasteen ND (2006) Iron(II) and hydrogen peroxide detoxification by human H-chain ferritin. An EPR spin-trapping study. Biochemistry. 45(10):3429–3436Google Scholar
  56. 56.
    Miller LL, Miller SC, Torti SV, Tsuji Y, Torti FM (1991) Iron-independent induction of ferritin H chain by tumor necrosis factor. Proc Natl Acad Sci U S A [Internet] 88(11):4946–4950 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=51784&tool=pmcentrez&rendertype=abstract Google Scholar
  57. 57.
    Pham CG, Bubici C, Zazzeroni F, Papa S, Jones J, Alvarez K, Jayawardena S, de Smaele E, Cong R, Beaumont C, Torti FM, Torti SV, Franzoso G (2004) Ferritin heavy chain upregulation by NF-κB inhibits TNFα-induced apoptosis by suppressing reactive oxygen species. Cell. 119(4):529–542Google Scholar
  58. 58.
    Mackenzie EL, Iwasaki K, Tsuji Y (2008) Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxid Redox Signal [Internet] 10(6):997–1030. Available from.  https://doi.org/10.1089/ars.2007.1893 Google Scholar
  59. 59.
    Bond RC, Bryant SM, Watson JJ, Hancox JC, Orchard CH, James AF (2017) Reduced density and altered regulation of rat atrial L-type ca 2+ current in heart failure. Am J Physiol - Hear Circ Physiol [Internet] 312(3):H384–H391. Available from.  https://doi.org/10.1152/ajpheart.00528.2016 Google Scholar
  60. 60.
    Oudit GY, Sun H, Trivieri MG, Koch SE, Dawood F, Ackerley C, Yazdanpanah M, Wilson GJ, Schwartz A, Liu PP, Backx PH (2003) L-type Ca2+channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med 9(9):1187–1194Google Scholar
  61. 61.
    Ludwiczek S, Theurl I, Muckenthaler MU, Jakab M, Mair SM, Theurl M, Kiss J, Paulmichl M, Hentze MW, Ritter M, Weiss G (2007) Ca2+ channel blockers reverse iron overload by a new mechanism via divalent metal transporter-1. Nat Med [Internet] 13(4):448–454 Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17293870 Google Scholar
  62. 62.
    Kumfu S, Chattipakorn S, Chinda K, Fucharoen S, Chattipakorn N (2012) T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice. Eur J Haematol 88(6):535–548Google Scholar
  63. 63.
    Nam H, Wang CY, Zhang L, Zhang W, Hojyo S, Fukada T, Knutson MD (2013) ZIP14 and DMT1 in the liver, pancreas, and heart are differentially regulated by iron deficiency and overload: implications for tissue iron uptake in iron-related disorders. Haematologica. 98(7):1049–1057Google Scholar
  64. 64.
    Omiya S, Hikoso S, Imanishi Y, Saito A, Yamaguchi O, Takeda T, Mizote I, Oka T, Taneike M, Nakano Y, Matsumura Y, Nishida K, Sawa Y, Hori M, Otsu K (2009) Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. J Mol Cell Cardiol [Internet] 46(1):59–66.  https://doi.org/10.1016/j.yjmcc.2008.09.714 Google Scholar
  65. 65.
    Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (2006) Mitoferrin is essential for erythroid iron assimilation. Nature. 440(7080):96–100Google Scholar
  66. 66.
    Nie G, Sheftel AD, Kim SF, Ponka P (2005) Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood. 105(5):2161–2167Google Scholar
  67. 67.
    Crielaard BJ, Lammers T, Rivella S (2017) Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov [Internet] 16(6):400–423.  https://doi.org/10.1038/nrd.2016.248 Google Scholar
  68. 68.
    Filippatos G, Farmakis D, Colet JC, Dickstein K, Lüscher TF, Willenheimer R et al (2013) Intravenous ferric carboxymaltose in iron-deficient chronic heart failure patients with and without anaemia: a subanalysis of the FAIR-HF trial. Eur J Heart Fail 15:1267–1276Google Scholar
  69. 69.
    Jankowska EA, Malyszko J, Ardehali H, Koc-Zorawska E, Banasiak W, Von Haehling S et al (2013) Iron status in patients with chronic heart failure. Eur Heart J 34(11):827–834Google Scholar
  70. 70.
    Pagani A, Nai A, Corna G, Bosurgi L, Rovere-Querini P, Camaschella C, Silvestri L (2011) Low hepcidin accounts for the proinflammatory status associated with iron deficiency. Blood. 118(3):736–746Google Scholar
  71. 71.
    Petrak J, Havlenova T, Krijt M, Behounek M, Franekova J, Cervenka L, Pluhacek T, Vyoral D, Melenovsky V (2019) Myocardial iron homeostasis and hepcidin expression in a rat model of heart failure at different levels of dietary iron intake. Biochim Biophys Acta, Gen Subj 1863(4):703–713Google Scholar
  72. 72.
    Shirazi LF, Bissett J, Romeo F, Mehta JL (2017) Role of inflammation in heart failure. Curr Atheroscler Rep 19(6)Google Scholar
  73. 73.
    Melenovsky V, Petrak J, Mracek T, Benes J, Borlaug BA, Nuskova H, Pluhacek T, Spatenka J, Kovalcikova J, Drahota Z, Kautzner J, Pirk J, Houstek J (2017) Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur J Heart Fail [Internet] 19(4):522–530. Available from.  https://doi.org/10.1002/ejhf.640 Google Scholar
  74. 74.
    Hoes MF, Grote Beverborg N, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, Rodenburg RJ, van Veldhuisen DJ, de Boer RA, van der Meer P (2018) Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail 20(5):910–919Google Scholar
  75. 75.
    Naito Y, Sawada H, Oboshi M, Okuno K, Yasumura S, Okuhara Y, Eguchi A, Nishimura K, Soyama Y, Asakura M, Ishihara M, Tsujino T, Masuyama T (2017) Altered expression of intestinal duodenal cytochrome b and divalent metal transporter 1 might be associated with cardio-renal anemia syndrome. Heart Vessel 32(11):1410–1414Google Scholar
  76. 76.
    Lakhal-Littleton S, Robbins PA (2017) The interplay between iron and oxygen homeostasis with a particular focus on the heart. J Appl Physiol [Internet] 123(4):967–973. Available from.  https://doi.org/10.1152/japplphysiol.00237.2017 Google Scholar
  77. 77.
    Boddaert N, Sang KHLQ, Rötig A, Leroy-Willig A, Gallet S, Brunelle F et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood. 110(1):401–408Google Scholar
  78. 78.
    Sawicki KT, Shang M, Wu R, Chang HC, Khechaduri A, Sato T, Kamide C, Liu T, Naga Prasad SV, Ardehali H (2015) Increased heme levels in the heart lead to exacerbated ischemic injury. J Am Heart Assoc 4(8):e002272Google Scholar
  79. 79.
    Chang H-C, Wu R, Shang M, Sato T, Chen C, Shapiro JS, Liu T, Thakur A, Sawicki KT, Prasad SV, Ardehali H (2016) Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol Med [Internet] 8(3):247–267. Available from.  https://doi.org/10.15252/emmm.201505748 Google Scholar
  80. 80.
    Zou C, Liu X, Xie R, Bao Y, Jin Q, Jia X, Li L, Liu R (2017) Deferiprone attenuates inflammation and myocardial fibrosis in diabetic cardiomyopathy rats. Biochem Biophys Res Commun 486(4):930–936Google Scholar
  81. 81.
    Chang HC, Shapiro JS, Ardehali H (2016) Getting to the “heart” of cardiac disease by decreasing mitochondrial iron. Circ Res 119:1164–1166Google Scholar
  82. 82.
    Klip IT, Comin-Colet J, Voors AA, Ponikowski P, Enjuanes C, Banasiak W et al (2013) Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J [Internet] 165(4):575–582.e3.  https://doi.org/10.1016/j.ahj.2013.01.017 Google Scholar
  83. 83.
    Khechaduri A, Bayeva M, Chang H-C, Ardehali H (2013) Heme levels are increased in human failing hearts. J Am Coll Cardiol [Internet] 61(18):1884–1893 Available from: http://www.ncbi.nlm.nih.gov/pubmed/21959306%5Cn http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3739715/
  84. 84.
    Kali A, Kumar A, Cokic I, Tang RLQ, Tsaftaris SA, Friedrich MG, Dharmakumar R (2013) Chronic manifestation of postreperfusion intramyocardial hemorrhage as regional iron deposition: a cardiovascular magnetic resonance study with ex vivo validation. Circ Cardiovasc Imaging 6(2):218–228Google Scholar
  85. 85.
    Carberry J, Carrick D, Haig C, Ahmed N, Mordi I, McEntegart M, et al. Persistent iron within the infarct core after ST-segment elevation myocardial infarction. Implications for left ventricular remodeling and health outcomes. JACC Cardiovasc Imaging. 2017;Google Scholar
  86. 86.
    Simonis G, Mueller K, Schwarz P, Wiedemann S, Adler G, Strasser RH, Kulaksiz H (2010) The iron-regulatory peptide hepcidin is upregulated in the ischemic and in the remote myocardium after myocardial infarction. Peptides. 31(9):1786–1790Google Scholar
  87. 87.
    Lakhal-Littleton S.(2018) Mechanisms of cardiac iron homeostasis and their importance to heart function. Free Radic Biol Med [Internet]. ; Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891584918313868
  88. 88.
    Jiri P, Tereza H, Matyas K, Matej B, Franekova J, Ludek C et al (2019) Myocardial iron homeostasis and hepcidin expression in a rat model of heart failure at different levels of dietary iron intake. Biochim Biophys Acta - Gen Subj [Internet].  https://doi.org/10.1016/j.bbagen.2019.01.010
  89. 89.
    Fang X, Wang H, Han D, Xie E, Yang X, Wei J et al (2019) Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci [Internet] 24:201821022 Available from:  https://doi.org/10.1073/pnas.1821022116
  90. 90.
    Jankowska EA, Tkaczyszyn M, Suchocki T, Drozd M, von Haehling S, Doehner W, Banasiak W, Filippatos G, Anker SD, Ponikowski P (2016) Effects of intravenous iron therapy in iron-deficient patients with systolic heart failure: a meta-analysis of randomized controlled trials. Eur J Heart Fail [Internet] 18(7):786–795. Available from.  https://doi.org/10.1002/ejhf.473 Google Scholar
  91. 91.
    Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Lüscher TF, Bart B, Banasiak W, Niegowska J, Kirwan BA, Mori C, von Eisenhart Rothe B, Pocock SJ, Poole-Wilson PA, Ponikowski P, FAIR-HF Trial Investigators (2009) Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med [Internet] 361(25):2436–2448. Available from.  https://doi.org/10.1056/NEJMoa0908355 Google Scholar
  92. 92.
    Cappellini MD, Comin-Colet J, de Francisco A, Dignass A, Doehner W, Lam CSP et al (2017) Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Am J Hematol 92(10):1068–1078Google Scholar
  93. 93.
    Beverborg NG, Klip IJT, Meijers WC, Voors AA, Vegter EL, Van Der Wal HH et al (2018) Definition of iron deficiency based on the gold standard of bone marrow iron staining in heart failure patients. Circ Heart Fail 11(2)Google Scholar
  94. 94.
    Cleland JGF, Zhang J, Pellicori P, Dicken B, Dierckx R, Shoaib A, Wong K, Rigby A, Goode K, Clark AL (2016) Prevalence and outcomes of anemia and hematinic deficiencies in patients with chronic heart failure. JAMA Cardiol 1(5):539–547Google Scholar
  95. 95.
    Adams PC (2015) Epidemiology and diagnostic testing for hemochromatosis and iron overload. Int J Lab Hematol 37(S1):25–30Google Scholar
  96. 96.
    Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D et al (2017) Recent advances in cardiovascular magnetic resonance. Circ Cardiovasc Imaging 10(6)Google Scholar
  97. 97.
    Theresa MIC (2015) Iron therapy for the treatment of iron deficiency in chronic heart failure: intravenous or oral? Eur J Heart Fail 17(3):248–262Google Scholar
  98. 98.
    Rognoni C, Venturini S, Meregaglia M, Marmifero M, Tarricone R (2016) Efficacy and safety of ferric carboxymaltose and other formulations in iron-deficient patients: a systematic review and network meta-analysis of randomised controlled trials. Clinical Drug Investigation 36:177–194Google Scholar
  99. 99.
    Pope M, Kalra PR (2018) Iron deficiency in heart failure: to treat or not to treat? Curr Treat Options Cardiovasc Med [Internet] 20(8):65. Available from.  https://doi.org/10.1007/s11936-018-0661-8 Google Scholar
  100. 100.
    Hughes CM, Woodside JV, McGartland C, Roberts MJ, Nicholls DP, McKeown PP (2012) Nutritional intake and oxidative stress in chronic heart failure. Nutr Metab Cardiovasc Dis 22(4):376–382Google Scholar
  101. 101.
    Jankowska EA, Von Haehling S, Anker SD, MacDougall IC, Ponikowski P (2013) Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur Heart J 34(11):816–829Google Scholar
  102. 102.
    Shah R, Agarwal AK (2013) Anemia associated with chronic heart failure: current concepts. Clin Interv Aging 8:111–122Google Scholar
  103. 103.
    Opasich C, Cazzola M, Scelsi L, De Feo S, Bosimini E, Lagioia R et al (2005) Blunted erythropoietin production and defective iron supply for erythropoiesis as major causes of anaemia in patients with chronic heart failure. Eur Heart J 26(21):2232–2237Google Scholar
  104. 104.
    Alexandrakis MG, Tsirakis G (2012) Anemia in heart failure patients. ISRN Hematol [Internet] 2012:1–9 Available from: http://www.hindawi.com/journals/isrn/2012/246915/ Google Scholar
  105. 105.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al (2016) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37(27):2129–2200mGoogle Scholar
  106. 106.
    Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA (2016) The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail 18(7):762–773Google Scholar
  107. 107.
    Melenovsky V, Hlavata K, Sedivy P, Dezortova M, Borlaug BA, Petrak J, Kautzner J, Hajek M (2018) Skeletal muscle abnormalities and iron deficiency in chronic heart failure. An exercise 31P magnetic resonance spectroscopy study of calf muscle. Circ Heart Fail 11(9):e004800Google Scholar
  108. 108.
    Charles-Edwards G, Amaral N, Sleigh A, Ayis S, Catibog N, Mcdonagh T et al (2019) Effect of iron isomaltoside on skeletal muscle energetics in patients with chronic heart failure and iron deficiency : the FERRIC-HF II randomized mechanistic trial. Circulation 44(0)Google Scholar
  109. 109.
    European Association for the Study of the Liver (2010) EASL clinical practice guidelines for HFE hemochromatosis. J Hepatol [Internet] 53(1):3–22.  https://doi.org/10.1016/j.jhep.2010.03.001 Google Scholar
  110. 110.
    Brissot P (2016) Optimizing the diagnosis and the treatment of iron overload diseases. Expert Rev Gastroenterol Hepatol 10(3):359–370Google Scholar
  111. 111.
    Baksi AJ, Pennell DJ.(2014) Randomised controlled trials of iron chelators for the treatment of cardiac siderosis in thalassaemia major. Front Pharmacol. 5(Sep)Google Scholar
  112. 112.
    Sohn YS, Breuer W, Munnich A, Cabantchik ZI (2008) Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. Blood. 111(3):1690–1699Google Scholar
  113. 113.
    Vlachodimitropoulou E, Chen YL, Garbowski M, Koonyosying P, Psaila B, Sola-Visner M, Cooper N, Hider R, Porter J (2017) Eltrombopag: a powerful chelator of cellular or extracellular iron(III) alone or combined with a second chelator. Blood. 130(17):1923–1933Google Scholar
  114. 114.
    Xu X, Sutak R, Richardson DR (2007) Iron chelation by clinically relevant anthracyclines: alteration in expression of iron-regulated genes and atypical changes in intracellular iron distribution and trafficking. Mol Pharmacol 73:833–844Google Scholar
  115. 115.
    Ichikawa Y, Ghanefar M, Bayeva M, Wu R, Khechaduri A, Naga Prasad SV et al (2014) Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 124(2):617–630Google Scholar
  116. 116.
    Fernandes JL, Sampaio EF, Fertrin K, Coelho OR, Loggetto S, Piga A, Verissimo M, Saad ST (2013) Amlodipine reduces cardiac iron overload in patients with thalassemia major: a pilot trial. Am J Med [Internet] 126(9):834–837.  https://doi.org/10.1016/j.amjmed.2013.05.002 Google Scholar
  117. 117.
    Kumfu S, Chattipakorn S, Fucharoen S, Chattipakorn N (2012) Mitochondrial calcium uniporter blocker prevents cardiac mitochondrial dysfunction induced by iron overload in thalassemic mice. BioMetals. 25(6):1167–1175Google Scholar
  118. 118.
    Ishizaka N, Saito K, Mori I, Matsuzaki G, Ohno M, Nagai R (2005) Iron chelation suppresses ferritin upregulation and attenuates vascular dysfunction in the aorta of angiotensin II-infused rats. Arterioscler Thromb Vasc Biol 25(11):2282–2288Google Scholar
  119. 119.
    Zhang X, Lemastersn JJ (2013) Translocation of iron from lysosomes to mitochondria during ischemia predisposes to injury after reperfusion in rat hepatocytes. Free Radic Biol Med 63:243–253Google Scholar
  120. 120.
    Alpendurada F, Smith GC, Carpenter JP, Nair S V., Tanner MA, Banya W, et al.(2012) Effects of combined deferiprone with deferoxamine on right ventricular function in thalassaemia major. J Cardiovasc Magn Reson.Google Scholar
  121. 121.
    Lamas GA, Goertz C, Boineau R, Mark DB, Rozema T, Nahin RL, Lindblad L, Lewis EF, Drisko J, Lee KL, TACT Investigators (2013) Effect of disodium EDTA chelation regimen on cardiovascular events in patients with previous myocardial infarction: the TACT randomized trial. JAMA - J Am Med Assoc 309(12):1241–1250Google Scholar
  122. 122.
    Pennell DJ, Porter JB, Piga A, Lai Y, El-Beshlawy A, Belhoul KM et al (2014) A 1-year randomized controlled trial of deferasirox vs deferoxamine for myocardial iron removal in β-thalassemia major (CORDELIA). Blood. 123:1447–1454Google Scholar
  123. 123.
    Pepe A, Lombardi M, Positano V, Cracolici E, Capra M, Malizia R, Prossomariti L, Marchi D, Midiri M, Maggio A (2006) Evaluation of the efficacy of oral deferiprone in β-thalassemia major by multislice multiecho T2. Eur J Haematol 76(3):183–192Google Scholar
  124. 124.
    Bayeva M, Gheorghiade M, Ardehali H (2013) Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol [Internet] 61(6):599–610.  https://doi.org/10.1016/j.jacc.2012.08.1021 Google Scholar
  125. 125.
    Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L, Mutharasan RK, Wu R, Khechaduri A, Jairaj Naik T, Ardehali H (2012) Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc Natl Acad Sci [Internet] 109(11):4152–4157. Available from.  https://doi.org/10.1073/pnas.1119338109 Google Scholar
  126. 126.
    Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, Anker SD, Pitt B, Pieske B, Filippatos G, Greene SJ, Gheorghiade M (2017) Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14(4):238–250Google Scholar
  127. 127.
    Chen Y-R, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation [Internet]. Circ Res 114:524–537. Available from.  https://doi.org/10.1161/CIRCRESAHA.114.300559 Google Scholar
  128. 128.
    Gammella E, Recalcati S, Rybinska I, Buratti P, Cairo G (2015) Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. Oxidative Med Cell Longev 2015:1–10Google Scholar
  129. 129.
    Lui GYL, Kovacevic Z, Richardson V, Merlot AM, Kalinowski DS, Richardson DR (2015) Targeting cancer by binding iron: dissecting cellular signaling pathways. Oncotarget [Internet] 6(22):18748–18779 Available from: http://www.oncotarget.com/fulltext/4349 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physiology“Iuliu Hatieganu” University of Medicine and PharmacyCluj-NapocaRomania

Personalised recommendations