Advertisement

Heart Failure Reviews

, Volume 24, Issue 5, pp 759–777 | Cite as

Surgical and physiological challenges in the development of left and right heart failure in rat models

  • Michael G. KatzEmail author
  • Anthony S. Fargnoli
  • Sarah M. Gubara
  • Elena Chepurko
  • Charles R. Bridges
  • Roger J. Hajjar
Article
  • 216 Downloads

Abstract

Rodent surgical animal models of heart failure (HF) are critically important for understanding the proof of principle of the cellular alterations underlying the development of the disease as well as evaluating therapeutics. Robust, reproducible rodent models are a prerequisite to the development of pharmacological and molecular strategies for the treatment of HF in patients. Due to the absence of standardized guidelines regarding surgical technique and clear criteria for HF progression in rats, objectivity is compromised. Scientific publications in rats rarely fully disclose the actual surgical details, and technical and physiological challenges. This lack of reporting is one of the main reasons that the outcomes specified in similar studies are highly variable and associated with unnecessary loss of animals, compromising scientific assessment. This review details rat circulatory and coronary arteries anatomy, the surgical details of rat models that recreate the HF phenotype of myocardial infarction, ischemia/reperfusion, left and right ventricular pressure, and volume overload states, and summarizes the technical and physiological challenges of creating HF. The purpose of this article is to help investigators understand the underlying issues of current HF models in order to reduce variable results and ensure successful, reproducible models of HF.

Keywords

Rat heart anatomy and physiology Right heart failure Left heart failure Surgical models 

Abbreviations

HF

Heart failure

LAD

Left anterior descending artery

ECG

Echocardiography

MI

Myocardial infarction

I/R

Ischemia–reperfusion

LV

Left ventricle

MRI

Magnetic resonance imaging

VT

Ventricular tachycardia

VF

Ventricular fibrillation

TAC

Transverse aortic constriction

AAC

Ascending aortic constriction

PA

Pulmonary artery

RV

Right ventricle

IVC

Inferior vena cava

AR

Aortic regurgitation

Qp

Pulmonary blood flow

Qs

Systemic blood flow

Notes

Acknowledgments

The authors wish to acknowledge the Gene Therapy Resource Program (GTRP). We thank Anne Olson for the excellent illustrations.

Funding information

This work was supported by NIH grant 7R01 HL083078-10.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees. No human studies were carried out by the authors for this article.

References

  1. 1.
    Hongo M, Ryoke T, Ross J Jr (1997) Animal models of heart failure: recent developments and perspectives. Trends Cardiovasc Med 7(5):161–167.  https://doi.org/10.1016/S1050-1738(97)00029-7 Google Scholar
  2. 2.
    Patten RD, Hall-Porter MR (2009) Small animal models of heart failure: development of novel therapies, past and present. Circ Heart Fail 2(2):138–144.  https://doi.org/10.1161/CIRCHEARTFAILURE.108.839761 Google Scholar
  3. 3.
    Dong G-H, Xu B, Wang C-T, Qian J-J, Liu H, Huang G, Jing H (2005) A rat model of cardiopulmonary bypass with excellent survival. J Surg Res 123(2):171–175.  https://doi.org/10.1016/j.jss.2004.08.007 Google Scholar
  4. 4.
    Pulido JN, Neal JR, Mantilla CB, Agarwal S, Lee W-Y, Scott PD, Hubmayr RD, Zhan W-Z, Sieck GC, Farrugia G (2011) Inhaled carbon monoxide attenuates myocardial inflammatory cytokine expression in a rat model of cardiopulmonary bypass. J Extra Corpor Technol 43(3):137–143Google Scholar
  5. 5.
    Klocke R, Tian W, Kuhlmann MT, Nikol S (2007) Surgical animal models of heart failure related to coronary heart disease. Cardiovasc Res 74(1):29–38.  https://doi.org/10.1016/j.cardiores.2006.11.026 Google Scholar
  6. 6.
    Michael LH, Ballantyne CM, Zachariah JP, Gould KE, Pocius JS, Taffet GE, Hartley CJ, Pham TT, Daniel SL, Funk E, Entman ML (1999) Myocardial infarction and remodeling in mice: effect of reperfusion. Am J Physiol Heart Circ Physiol 277(2):H660–H668.  https://doi.org/10.1152/ajpheart.1999.277.2.H660 Google Scholar
  7. 7.
    Nossuli TO, Lakshminarayanan V, Baumgarten G, Taffet GE, Ballantyne CM, Michael LH, Entman ML (2000) A chronic mouse model of myocardial ischemia-reperfusion: essential in cytokine studies. Am J Physiol Heart Circ Physiol 278(4):H1049–H1055.  https://doi.org/10.1152/ajpheart.2000.278.4.H1049 Google Scholar
  8. 8.
    Tarnavski O (2009) Mouse surgical models in cardiovascular research. In: DiPetrillo K (ed) Cardiovascular genomics. Methods in molecular biology™ (methods and protocols), vol 573. Humana Press, New York, pp 115–137Google Scholar
  9. 9.
    Tarnavski O, McMullen JR, Schinke M, Nie Q, Kong S, Izumo S (2004) Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol Genomics 16(3):349–360.  https://doi.org/10.1152/physiolgenomics.00041.2003 Google Scholar
  10. 10.
    Halpern MH (1953) The azygos vein system in the rat. Anat Rec 116(1):83–93.  https://doi.org/10.1002/ar.1091160108 Google Scholar
  11. 11.
    Halpern MH (1957) The dual blood supply of the rat heart. Am J Anat 101(1):1–16.  https://doi.org/10.1002/aja.1001010102 Google Scholar
  12. 12.
    Edvardsson N, Hirsch I, Olsson SB (1984) Right ventricular monophasic action potentials in healthy young men. Pacing Clin Electrophysiol 7(5):813–821.  https://doi.org/10.1111/j.1540-8159.1984.tb05622.x Google Scholar
  13. 13.
    Varro A, Lathrop DA, Hester SB, Nanasi PP, Papp JG (1993) Ionic currents and action potentials in rabbit, rat, and Guinea pig ventricular myocytes. Basic Res Cardiol 88(2):93–102Google Scholar
  14. 14.
    Bers DM (1985) Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery. Am J Physiol Heart Circ Physiol 248(3):H366–H381.  https://doi.org/10.1152/ajpheart.1985.248.3.H366 Google Scholar
  15. 15.
    Lamboley CR, Murphy RM, McKenna MJ, Lamb GD (2014) Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle. J Physiol 592(6):1381–1395.  https://doi.org/10.1113/jphysiol.2013.269373 Google Scholar
  16. 16.
    Ahmed S, Rakhawy M, Abdalla A, Assaad E (1978) The comparative anatomy of the blood supply of cardiac ventricles in the albino rat and Guinea-pig. J Anat 126(Pt 1):51–57Google Scholar
  17. 17.
    Johns TN, Olson BJ (1954) Experimental myocardial infarction: I. A method of coronary occlusion in small animals. Ann Surg 140(5):675–682Google Scholar
  18. 18.
    Selye H, Bajusz E, Grasso S, Mendell P (1960) Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11(5):398–407.  https://doi.org/10.1177/000331976001100505 Google Scholar
  19. 19.
    Sievers R, Schmiedl U, Wolfe C, Moseley M, Parmley W, Brasch R, Lipton M (1989) A model of acute regional myocardial ischemia and reperfusion in the rat. Magn Reson Med 10(2):172–181.  https://doi.org/10.1002/mrm.1910100203 Google Scholar
  20. 20.
    Anderson PG, Bishop SP, Peterson JT (2006) Chapter 26 - cardiovascular research. In: Suckow MA, Weisbroth SH, Franklin CL (eds) The laboratory rat (second edition). Academic Press, Burlington, pp 773–802.  https://doi.org/10.1016/B978-012074903-4/50029-7 Google Scholar
  21. 21.
    Liu Y, Yang X-P, Nass O, Sabbah H, Peterson E, Carretero OA (1997) Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol Heart Circ Physiol 272(2):H722–H727.  https://doi.org/10.1152/ajpheart.1997.272.2.H722 Google Scholar
  22. 22.
    Cleland JGF, Torabi A, Khan NK (2005) Epidemiology and management of heart failure and left ventricular systolic dysfunction in the aftermath of a myocardial infarction. Heart 91:ii7–ii13.  https://doi.org/10.1136/hrt.2005.062026 Google Scholar
  23. 23.
    Maslov MY, Foianini S, Orlov MV, Januzzi JL, Lovich MA (2018) A novel paradigm for sacubitril/valsartan: beta-endorphin elevation as a contributor to exercise tolerance improvement in rats with preexisting heart failure induced by pressure overload. J Card Fail 24(11):773–782.  https://doi.org/10.1016/j.cardfail.2018.10.006 Google Scholar
  24. 24.
    Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44(4):503–512.  https://doi.org/10.1161/01.RES.44.4.503 Google Scholar
  25. 25.
    Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA (2008) Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc 3(9):1422–1434.  https://doi.org/10.1038/nprot.2008.138 Google Scholar
  26. 26.
    Fargnoli AS, Katz MG, Williams RD, Kendle AP, Steuerwald N, Bridges CR (2016) Liquid jet delivery method featuring S100A1 gene therapy in the rodent model following acute myocardial infarction. Gene Ther 23(2):151–157.  https://doi.org/10.1038/gt.2015.100 Google Scholar
  27. 27.
    Hollander MR, de Waard GA, Konijnenberg LSF, Meijer-van Putten RME, van den Brom CE, Paauw N, de Vries HE, van de Ven PM, Aman J, Van Nieuw-Amerongen GP, Hordijk PL, Niessen HWM, Horrevoets AJG, Van Royen N (2016) Dissecting the effects of ischemia and reperfusion on the coronary microcirculation in a rat model of acute myocardial infarction. PLoS One 11(7):e0157233.  https://doi.org/10.1371/journal.pone.0157233 Google Scholar
  28. 28.
    Jakovljevic VL, Petkovic A, Bradic J, Jeremic J, Turnic TN, Srejovic I, Zivkovic V (2018) The effects of potassium-cyanide on functional recovery of isolated rat heart after ischemia and reperfusion: role of oxidative stress. Pathophysiology 25(3):177.  https://doi.org/10.1016/j.pathophys.2018.07.042 Google Scholar
  29. 29.
    Wayman NS, McDonald MC, Chatterjee PK, Thiemermann C (2003) Models of coronary artery occlusion and reperfusion for the discovery of novel antiischemic and antiinflammatory drugs for the heart. In: Inflammation protocols, vol 225. Humana Press, New York, pp 199–208Google Scholar
  30. 30.
    Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS, Prabhu SD, Rockman HA, Kass DA, Molkentin JD, Sussman MA (2012) Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 111(1):131–150.  https://doi.org/10.1161/RES.0b013e3182582523 Google Scholar
  31. 31.
    Lindsey ML, Bolli R, JMC J, Du X-J, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Longacre LS, Ripplinger CM, Eyk JEV, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 314(4):H812–H838.  https://doi.org/10.1152/ajpheart.00335.2017 Google Scholar
  32. 32.
    Rigalli A, Di Loreto V (2016) Experimental surgical models in the laboratory rat. CRC Press, Boca RatonGoogle Scholar
  33. 33.
    Motiwala SR, Gaggin HK (2016) Biomarkers to predict reverse remodeling and myocardial recovery in heart failure. Curr Heart Fail Rep 13(5):207–218.  https://doi.org/10.1007/s11897-016-0303-y Google Scholar
  34. 34.
    Golestani R, Wu C, Tio RA, Zeebregts CJ, Petrov AD, Beekman FJ, Dierckx RAJO, Boersma HH, Slart RHJA (2010) Small-animal SPECT and SPECT/CT: application in cardiovascular research. Eur J Nucl Med Mol Imaging 37(9):1766–1777.  https://doi.org/10.1007/s00259-009-1321-8 Google Scholar
  35. 35.
    Martinez PF, Okoshi K, Zornoff LAM, Oliveira SA, Campos DHS, Lima ARR, Damatto RL, Cezar MDM, Bonomo C, Guizoni DM, Padovani CR, Cicogna AC, Okoshi MP (2011) Echocardiographic detection of congestive heart failure in postinfarction rats. J Appl Physiol 111(2):543–551.  https://doi.org/10.1152/japplphysiol.01154.2010 Google Scholar
  36. 36.
    Nahrendorf M, Wiesmann F, Hiller K-H, Han H, Hu K, Waller C, Ruff J, Haase A, Ertl G, Bauer WR (2000) In vivo assessment of cardiac remodeling after myocardial infarction in rats by cine–magnetic resonance imaging. J Cardiovasc Magn Reson 2(3):171–180.  https://doi.org/10.3109/10976640009146565 Google Scholar
  37. 37.
    Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJG, Boerman OC (2009) Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med 50(1):139–147.  https://doi.org/10.2967/jnumed.108.055152 Google Scholar
  38. 38.
    Litwin SE, Katz SE, Morgan JP, Douglas PS (1994) Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat. Circulation 89(1):345–354.  https://doi.org/10.1161/01.CIR.89.1.345 Google Scholar
  39. 39.
    Roberts CS, Maclean D, Maroko P, Kloner RA (1984) Early and late remodeling of the left ventricle after acute myocardial infarction. Am J Cardiol 54(3):407–410.  https://doi.org/10.1016/0002-9149(84)90206-6 Google Scholar
  40. 40.
    Yue P, Long CS, Austin R, Chang KC, Simpson PC, Massie BM (1998) Post-infarction heart failure in the rat is associated with distinct alterations in cardiac myocyte molecular phenotype. J Mol Cell Cardiol 30(8):1615–1630.  https://doi.org/10.1006/jmcc.1998.0727 Google Scholar
  41. 41.
    Pabis FC, Miyague NI, Francisco JC, Woitowicz V, KATd C, Faria-Neto JR, Moisés VA, Guarita-Souza LC (2008) Echocardiographic assessment of myocardial infarction evolution in young and adult rats. Arq Bras Cardiol 91(5):321–326.  https://doi.org/10.1590/S0066-782X2008001700007 Google Scholar
  42. 42.
    Gupta S, Prahash AJ, Anand IS (2000) Myocyte contractile function is intact in the post-infarct remodeled rat heart despite molecular alterations. Cardiovasc Res 48(1):77–88.  https://doi.org/10.1016/S0008-6363(00)00160-7 Google Scholar
  43. 43.
    Morgan EE, Faulx MD, McElfresh TA, Kung TA, Zawaneh MS, Stanley WC, Chandler MP, Hoit BD (2004) Validation of echocardiographic methods for assessing left ventricular dysfunction in rats with myocardial infarction. Am J Physiol Heart Circ Physiol 287(5):H2049–H2053.  https://doi.org/10.1152/ajpheart.00393.2004 Google Scholar
  44. 44.
    Remondino A, Rosenblatt-Velin N, Montessuit C, Tardy I, Papageorgiou I, Dorsaz P-A, Jorge-Costa M, Lerch R (2000) Altered expression of proteins of metabolic regulation during remodeling of the left ventricle after myocardial infarction. J Mol Cell Cardiol 32(11):2025–2034.  https://doi.org/10.1006/jmcc.2000.1234 Google Scholar
  45. 45.
    Rosenblatt-Velin N, Montessuit C, Papageorgiou I, Terrand J, Lerch R (2001) Postinfarction heart failure in rats is associated with upregulation of GLUT-1 and downregulation of genes of fatty acid metabolism. Cardiovasc Res 52(3):407–416.  https://doi.org/10.1016/S0008-6363(01)00393-5 Google Scholar
  46. 46.
    Ceiler DL, Nelissen-Vrancken HMG, De Mey JG, Smits JF (1998) Effect of chronic blockade of angiotensin II-receptor subtypes on aortic compliance in rats with myocardial infarction. J Cardiovasc Pharmacol 31(4):630–633.  https://doi.org/10.1097/00005344-199804000-00024 Google Scholar
  47. 47.
    Goldman S, Raya TE (1995) Rat infarct model of myocardial infarction and heart failure. J Card Fail 1(2):169–177.  https://doi.org/10.1016/1071-9164(95)90019-5 Google Scholar
  48. 48.
    Hasenfuss G (1998) Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39(1):60–76.  https://doi.org/10.1016/S0008-6363(98)00110-2 Google Scholar
  49. 49.
    Hentschke VS, Capalonga L, Rossato DD, Perini JL, Alves JP, Quagliotto E, Stefani GP, Karsten M, Pontes M, Dal Lago P (2017) Functional capacity in a rat model of heart failure: impact of myocardial infarct size. Exp Physiol 102(11):1448–1458.  https://doi.org/10.1113/EP086076 Google Scholar
  50. 50.
    Takahashi M, Tanonaka K, Yoshida H, Koshimizu M, Daicho T, Oikawa R, Takeo S (2006) Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction. J Cardiovasc Pharmacol 47(3):413–421.  https://doi.org/10.1097/01.fjc.0000210074.56614.3b Google Scholar
  51. 51.
    Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E (1981) Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction. Effects on systolic function. Circ Res 49(3):618–626.  https://doi.org/10.1161/01.RES.49.3.618 Google Scholar
  52. 52.
    Anversa P, Beghi C, Kikkawa Y, Olivetti G (1986) Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circ Res 58(1):26–37.  https://doi.org/10.1161/01.RES.58.1.26 Google Scholar
  53. 53.
    Pfeffer MA, Pfeffer JM, Steinberg C, Finn P (1985) Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 72(2):406–412.  https://doi.org/10.1161/01.CIR.72.2.406 Google Scholar
  54. 54.
    Prabhu SD, Chandrasekar B, Murray DR, Freeman GL (2000) β-Adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 101(17):2103–2109.  https://doi.org/10.1161/01.cir.101.17.2103 Google Scholar
  55. 55.
    Minicucci MF, Gaiolla PSA, Martinez PF, Lima AR, Bonomo C, Guizoni DM, Polegato BF, Okoshi MP, Okoshi K, Matsubara BB (2011) Critical infarct size to induce ventricular remodeling, cardiac dysfunction and heart failure in rats. Int J Cardiol 151:242–243.  https://doi.org/10.1016/j.ijcard.2011.06.068 Google Scholar
  56. 56.
    Nozawa E, Kanashiro R, Murad N, Carvalho A, Cravo S, Campos O, Tucci PJF, Moisés VA (2006) Performance of two-dimensional Doppler echocardiography for the assessment of infarct size and left ventricular function in rats. Braz J Med Biol Res 39(5):687–695.  https://doi.org/10.1590/S0100-879X2006000500016 Google Scholar
  57. 57.
    Opitz CF, Mitchell GF, Pfeffer MA, Pfeffer JM (1995) Arrhythmias and death after coronary artery occlusion in the rat: continuous telemetric ECG monitoring in conscious, untethered rats. Circulation 92(2):253–261.  https://doi.org/10.1161/01.CIR.92.2.253 Google Scholar
  58. 58.
    Samsamshariat SA, Movahed M-R (2005) High rate of right ventricular infarction after ligation of mid left anterior descending artery in rats. Cardiovasc Revasc Med 6(1):21–23.  https://doi.org/10.1016/j.carrev.2005.04.005 Google Scholar
  59. 59.
    Samsamshariat SA, Samsamshariat ZA, Movahed M-R (2005) A novel method for safe and accurate left anterior descending coronary artery ligation for research in rats. Cardiovasc Revasc Med 6(3):121–123.  https://doi.org/10.1016/j.carrev.2005.07.001 Google Scholar
  60. 60.
    Levitt MA, Sievers RE, Wolfe CL (1994) Reduction of infarct size during myocardial ischemia and reperfusion by lazaroid U-74500A, a nonglucocorticoid 21-aminosteroid. J Cardiovasc Pharmacol 23(1):136–140.  https://doi.org/10.1097/00005344-199401000-00019 Google Scholar
  61. 61.
    Tang X-L, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121(2):293–305.  https://doi.org/10.1161/CIRCULATIONAHA.109.871905 Google Scholar
  62. 62.
    Opitz CF, Finn PV, Pfeffer MA, Mitchell GF, Pfeffer JM (1998) Effects of reperfusion on arrhythmias and death after coronary artery occlusion in the rat: increased electrical stability independent of myocardial salvage. J Am Coll Cardiol 32(1):261–267.  https://doi.org/10.1016/S0735-1097(98)00173-9 Google Scholar
  63. 63.
    Barrett TD, Hayes ES, Yong SL, Zolotoy AB, Abraham S, Walker MJ (2000) Ischaemia selectivity confers efficacy for suppression of ischaemia-induced arrhythmias in rats. Eur J Pharmacol 398(3):365–374.  https://doi.org/10.1016/S0014-2999(00)00295-8 Google Scholar
  64. 64.
    Canyon SJ, Dobson GP (2004) Protection against ventricular arrhythmias and cardiac death using adenosine and lidocaine during regional ischemia in the in vivo rat. Am J Physiol Heart Circ Physiol 287(3):H1286–H1295.  https://doi.org/10.1161/CIRCULATIONAHA.109.871905 Google Scholar
  65. 65.
    Canyon SJ, Dobson GP (2006) The effect of an adenosine and lidocaine intravenous infusion on myocardial high-energy phosphates and pH during regional ischemia in the rat model in vivo. Can J Physiol Pharmacol 84(8–9):903–912.  https://doi.org/10.1139/y06-035 Google Scholar
  66. 66.
    Curtis M, Macleod B, Walker M (1987) Models for the study of arrhythmias in myocardial ischaemia and infarction: the use of the rat. J Mol Cell Cardiol 19(4):399–419.  https://doi.org/10.1016/S0022-2828(87)80585-0 Google Scholar
  67. 67.
    Bergey JL, Nocella K, McCallum JD (1982) Acute coronary artery occlusion-reperfusion-induced arrhythmias in rats, dogs and pigs: antiarrhythmic evaluation of quinidine, procainamide and lidocaine. Eur J Pharmacol 81(2):205–216.  https://doi.org/10.1016/0014-2999(82)90438-1 Google Scholar
  68. 68.
    Johnston K, MacLeod B, Walker M (1983) Responses to ligation of a coronary artery in conscious rats and the actions of antiarrhythmics. Can J Physiol Pharmacol 61(11):1340–1353.  https://doi.org/10.1139/y83-193 Google Scholar
  69. 69.
    Marshall R, Muir A, WINSLOW E (1982) The effects of postligation administration of org 6001 and disopyramide on early ischaemia-induced arrhythmias in the anaesthetized rat. Br J Pharmacol 76(4):501–503.  https://doi.org/10.1111/j.1476-5381.1982.tb09245.x Google Scholar
  70. 70.
    Agelaki MG, Pantos C, Korantzopoulos P, Tsalikakis DG, Baltogiannis GG, Fotopoulos A, Kolettis TM (2007) Comparative antiarrhythmic efficacy of amiodarone and dronedarone during acute myocardial infarction in rats. Eur J Pharmacol 564(1–3):150–157.  https://doi.org/10.1016/j.ejphar.2007.02.052 Google Scholar
  71. 71.
    Kolettis TM, Agelaki MG, Baltogiannis GG, Vlahos AP, Mourouzis I, Fotopoulos A, Pantos C (2007) Comparative effects of acute vs. chronic oral amiodarone treatment during acute myocardial infarction in rats. Europace 9(11):1099–1104.  https://doi.org/10.1093/europace/eum196 Google Scholar
  72. 72.
    Au T, Curtis M, Walker M (1987) Effects of (-),(+/-), and (+) verapamil on coronary occlusion-induced mortality and infarct size. J Cardiovasc Pharmacol 10(3):327–331.  https://doi.org/10.1097/00005344-198709000-00012 Google Scholar
  73. 73.
    Curtis M, Walker M, Yuswack T (1986) Actions of the verapamil analogues, anipamil and ronipamil, against ischaemia-induced arrhythmias in conscious rats. Br J Pharmacol 88(2):355–361.  https://doi.org/10.1111/j.1476-5381.1986.tb10211.x Google Scholar
  74. 74.
    Kinoshita K, Mitani A, Hearse DJ, Braimbridge MV, Manning AS (1989) Reperfusion-induced arrhythmias in the conscious rat: a comparative study with three calcium antagonists. J Surg Res 47(2):166–172.  https://doi.org/10.1016/0022-4804(89)90083-8 Google Scholar
  75. 75.
    Hock CE, Beck LD, Bodine RC, Reibel DK (1990) Influence of dietary n-3 fatty acids on myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol 259(5):H1518–H1526.  https://doi.org/10.1152/ajpheart.1990.259.5.H1518 Google Scholar
  76. 76.
    Jeuthe S, Dietrich T, Berger F, Kuehne T, Kozerke S, Messroghli DR (2015) Closed-chest small animal model to study myocardial infarction in an MRI environment in real time. Int J Cardiovasc Imaging 31(1):115–121.  https://doi.org/10.1007/s10554-014-0539-0 Google Scholar
  77. 77.
    Barbosa ME, Alenina N, Bader M (2005) Induction and analysis of cardiac hypertrophy in transgenic animal models. In: Molecular cardiology. Humana Press, New York, pp 339–352Google Scholar
  78. 78.
    Feldman AM, Weinberg EO, Ray PE, Lorell BH (1993) Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 73(1):184–192.  https://doi.org/10.1161/01.RES.73.1.184 Google Scholar
  79. 79.
    Litwin SE, Katz SE, Weinberg EO, Lorell BH, Aurigemma GP, Douglas PS (1995) Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy: chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation 91(10):2642–2654.  https://doi.org/10.1161/01.cir.89.1.345 Google Scholar
  80. 80.
    Zaha V, Grohmann J, Göbel H, Geibel A, Beyersdorf F, Doenst T (2003) Experimental model for heart failure in rats-induction and diagnosis. Thorac Cardiovasc Surg 51(04):211–215.  https://doi.org/10.1055/s-2003-42264 Google Scholar
  81. 81.
    Boluyt MO, Robinson KG, Meredith AL, Sen S, Lakatta EG, Crow MT, Brooks WW, Conrad CH, Bing OH (2005) Heart failure after long-term supravalvular aortic constriction in rats. Am J Hypertens 18(2):202–212.  https://doi.org/10.1016/j.amjhyper.2004.08.034 Google Scholar
  82. 82.
    Turcani M, Rupp H (2000) Heart failure development in rats with ascending aortic constriction and angiotensin-converting enzyme inhibition. Br J Pharmacol 130(7):1671–1677.  https://doi.org/10.1038/sj.bjp.0703467 Google Scholar
  83. 83.
    Miyamoto MI, Del Monte F, Schmidt U, DiSalvo TS, Kang ZB, Matsui T, Guerrero JL, Gwathmey JK, Rosenzweig A, Hajjar RJ (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci U S A 97(2):793–798.  https://doi.org/10.1073/pnas.97.2.793 Google Scholar
  84. 84.
    Nair K, Cutilletta A, Zak R, Koide T, Rabinowitz M (1968) Biochemical correlates of cardiac hypertrophy: I. Experimental model; changes in heart weight, RNA content, and nuclear RNA polymerase activity. Circ Res 23(3):451–462.  https://doi.org/10.1161/01.RES.23.3.451 Google Scholar
  85. 85.
    Schunkert H, Dzau V, Tang SS, Hirsch A, Apstein C, Lorell B (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86(6):1913–1920.  https://doi.org/10.1172/JCI114924 Google Scholar
  86. 86.
    Weinberg EO, Schoen FJ, George D, Kagaya Y, Douglas PS, Litwin SE, Schunkert H, Benedict CR, Lorell BH (1994) Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 90(3):1410–1422.  https://doi.org/10.1161/01.CIR.90.3.1410 Google Scholar
  87. 87.
    Cantor EJ, Babick AP, Vasanji Z, Dhalla NS, Netticadan T (2005) A comparative serial echocardiographic analysis of cardiac structure and function in rats subjected to pressure or volume overload. J Mol Cell Cardiol 38(5):777–786.  https://doi.org/10.1016/j.yjmcc.2005.02.012 Google Scholar
  88. 88.
    Ku H-C, Su M-J (2014) DPP4 deficiency preserved cardiac function in abdominal aortic banding rats. PLoS One 9(1):e85634.  https://doi.org/10.1371/journal.pone.0085634 Google Scholar
  89. 89.
    Braun MU, Szalai P, Strasser RH, Borst MM (2003) Right ventricular hypertrophy and apoptosis after pulmonary artery banding: regulation of PKC isozymes. Cardiovasc Res 59(3):658–667.  https://doi.org/10.1016/S0008-6363(03)00470-X Google Scholar
  90. 90.
    Faber MJ, Dalinghaus M, Lankhuizen IM, Steendijk P, Hop WC, Schoemaker RG, Duncker DJ, Lamers JM, Helbing WA (2006) Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Physiol Heart Circ Physiol 291(4):H1580–H1586.  https://doi.org/10.1152/ajpheart.00286.2006 Google Scholar
  91. 91.
    Fujimoto Y, Urashima T, Shimura D, Ito R, Kawachi S, Kajimura I, Akaike T, Kusakari Y, Fujiwara M, Ogawa K (2016) Low cardiac output leads hepatic fibrosis in right heart failure model rats. PLoS One 11(2):e0148666.  https://doi.org/10.1371/journal.pone.0148666 Google Scholar
  92. 92.
    Hirata M, Ousaka D, Arai S, Okuyama M, Tarui S, Kobayashi J, Kasahara S, Sano S (2015) Novel model of pulmonary artery banding leading to right heart failure in rats. Biomed Res Int 2015:1–10.  https://doi.org/10.1155/2015/753210 Google Scholar
  93. 93.
    Hoashi T, Matsumiya G, Miyagawa S, Ichikawa H, Ueno T, Ono M, Saito A, Shimizu T, Okano T, Kawaguchi N (2009) Skeletal myoblast sheet transplantation improves the diastolic function of a pressure-overloaded right heart. J Thorac Cardiovasc Surg 138(2):460–467.  https://doi.org/10.1016/j.jtcvs.2009.02.018 Google Scholar
  94. 94.
    Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, Ockaili R, McCord JM, Voelkel NF (2009) Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120(20):1951–1960.  https://doi.org/10.1161/CIRCULATIONAHA.109.883843 Google Scholar
  95. 95.
    Zierhut W, Zimmer H, Gerdes A (1990) Influence of ramipril on right ventricular hypertrophy induced by pulmonary artery stenosis in rats. J Cardiovasc Pharmacol 16(3):480–486Google Scholar
  96. 96.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367(9507):356–367.  https://doi.org/10.1016/S0140-6736(06)68074-4 Google Scholar
  97. 97.
    Drazner MH (2011) The progression of hypertensive heart disease. Circulation 123(3):327–334.  https://doi.org/10.1161/CIRCULATIONAHA.108.845792 Google Scholar
  98. 98.
    Del Monte F, Butler K, Boecker W, Gwathmey JK, Hajjar RJ (2002) Novel technique of aortic banding followed by gene transfer during hypertrophy and heart failure. Physiol Genomics 9(1):49–56.  https://doi.org/10.1152/physiolgenomics.00035.2001 Google Scholar
  99. 99.
    Bregagnollo EA, Mestrinel MA, Okoshi K, Carvalho FC, Bregagnollo IF, Padovani CR, Cicogna AC (2007) Relative role of left ventricular geometric remodeling and of morphological and functional myocardial remodeling in the transition from compensated hypertrophy to heart failure in rats with supravalvar aortic stenosis. Arq Bras Cardiol 88(2):225–233.  https://doi.org/10.1590/S0066-782X2007000200015 Google Scholar
  100. 100.
    Chaanine AH, Hajjar RJ (2018) Characterization of the differential progression of left ventricular remodeling in a rat model of pressure overload induced heart failure. Does clip size matter?. In: Ishikawa K (eds) Experimental models of cardiovascular diseases. Methods in molecular biology, vol 1816. Humana Press, New York, pp 195–206Google Scholar
  101. 101.
    Chaanine AH, Sreekumaran Nair K, Bergen RH III, Klaus K, Guenzel AJ, Hajjar RJ, Redfield MM (2017) Mitochondrial integrity and function in the progression of early pressure overload–induced left ventricular remodeling. J Am Heart Assoc 6(6):e005869.  https://doi.org/10.1161/JAHA.117.005869 Google Scholar
  102. 102.
    Ajith Kumar G, Binil Raj SKS, Sanjay G (2014) Ascending aortic constriction in rats for creation of pressure overload cardiac hypertrophy model. J Vis Exp (88).  https://doi.org/10.3791/50983
  103. 103.
    Turcani M, Rupp H (1997) Etomoxir improves left ventricular performance of pressure-overloaded rat heart. Circulation 96(10):3681–3686.  https://doi.org/10.1161/01.cir.96.10.3681 Google Scholar
  104. 104.
    Seymour A-ML, Giles L, Ball V, Miller JJ, Clarke K, Carr CA, Tyler DJ (2015) In vivo assessment of cardiac metabolism and function in the abdominal aortic banding model of compensated cardiac hypertrophy. Cardiovasc Res 106(2):249–260.  https://doi.org/10.1093/cvr/cvv101 Google Scholar
  105. 105.
    Pires MD, Salemi VM, Cestari IA, Picard MH, Leirner AA, Mady C, Cestari IN (2003) Noninvasive assessment of hemodynamic parameters in experimental stenosis of the ascending aorta. Artif Organs 27(8):695–700.  https://doi.org/10.1046/j.1525-1594.2003.07276.x Google Scholar
  106. 106.
    Salemi VM, Pires MD, Cestari IN, Cestari IA, Picard MH, Leirner AA, Mady C (2004) Echocardiographic assessment of global ventricular function using the myocardial performance index in rats with hypertrophy. Artif Organs 28(4):332–337.  https://doi.org/10.1111/j.1525-1594.2004.47350.x Google Scholar
  107. 107.
    Shingu Y, Amorim PA, Nguyen TD, Osterholt M, Schwarzer M, Doenst T (2013) Echocardiography alone allows the determination of heart failure stages in rats with pressure overload. Thorac Cardiovasc Surg 61(08):718–725.  https://doi.org/10.1055/s-0032-1326775 Google Scholar
  108. 108.
    Slama M, Ahn J, Varagic J, Susic D, Frohlich ED (2004) Long-term left ventricular echocardiographic follow-up of SHR and WKY rats: effects of hypertension and age. Am J Physiol Heart Circ Physiol 286(1):H181–H185.  https://doi.org/10.1152/ajpheart.00642.2003 Google Scholar
  109. 109.
    Higuchi T, Nekolla SG, Jankaukas A, Weber AW, Huisman MC, Reder S, Ziegler SI, Schwaiger M, Bengel FM (2007) Characterization of Normal and infarcted rat myocardium using a combination of small-animal PET and clinical MRI. J Nucl Med 48(2):288–294Google Scholar
  110. 110.
    Vanhoutte L, Gerber BL, Gallez B, Po C, Magat J, Jean-Luc B, Feron O, Moniotte S (2016) High field magnetic resonance imaging of rodents in cardiovascular research. Basic Res Cardiol 111(4):46.  https://doi.org/10.1007/s00395-016-0565-2 Google Scholar
  111. 111.
    Songstad NT, Johansen D, How O-J, Kaaresen PI, Ytrehus K, Acharya G (2014) Effect of transverse aortic constriction on cardiac structure, function and gene expression in pregnant rats. PLoS One 9(2):e89559.  https://doi.org/10.1371/journal.pone.0089559 Google Scholar
  112. 112.
    Lygate CA, Schneider JE, Hulbert K, ten Hove M, Sebag-Montefiore LM, Cassidy PJ, Clarke K, Neubauer S (2006) Serial high resolution 3D–MRI after aortic banding in mice: band internalization is a source of variability in the hypertrophic response. Basic Res Cardiol 101(1):8–16.  https://doi.org/10.1007/s00395-005-0546-3 Google Scholar
  113. 113.
    Jalal Z, Roubertie F, Fournier E, Dubes V, Benoist D, Naulin J, Delmond S, Durand M, Haissaguerre M, Bernus O (2017) Unexpected internalization of a pulmonary artery band in a porcine model of Tetralogy of Fallot. World J Pediatr Congenit Heart Surg 8(1):48–54.  https://doi.org/10.1177/2150135116668828 Google Scholar
  114. 114.
    Mann DL, Barger PM, Burkhoff D (2012) Myocardial recovery and the failing heart: myth, magic, or molecular target? J Am Coll Cardiol 60(24):2465–2472.  https://doi.org/10.1016/j.jacc.2012.06.062 Google Scholar
  115. 115.
    Brower GL, Janicki JS (2001) Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol 280(2):H674–H683.  https://doi.org/10.1152/ajpheart.2001.280.2.H674 Google Scholar
  116. 116.
    Arsenault M, Plante E, Drolet M-C, Couet J (2002) Experimental aortic regurgitation in rats under echocardiographic guidance. J Heart Valve Dis 11(1):128–134Google Scholar
  117. 117.
    Chancey AL, Brower GL, Peterson JT, Janicki JS (2002) Effects of matrix metalloproteinase inhibition on ventricular remodeling due to volume overload. Circulation 105(16):1983–1988.  https://doi.org/10.1161/01.cir.0000014686.73212.da Google Scholar
  118. 118.
    Gerdes A, Campbell S, Hilbelink D (1988) Structural remodeling of cardiac myocytes in rats with arteriovenous fistulas. Lab Investig 59(6):857–861.  https://doi.org/10.1161/01.CIR.86.2.426 Google Scholar
  119. 119.
    Mickle JP, Menges JT, Day AL, Quisling R, Ballinger W (1981) Experimental aortocaval fistulae in rats. Microsurgery 2(4):283–288.  https://doi.org/10.1002/micr.1920020410 Google Scholar
  120. 120.
    Munakata H, Assmann A, Poudel-Bochmann B, Horstkötter K, Kamiya H, Okita Y, Lichtenberg A, Akhyari P (2013) Aortic conduit valve model with controlled moderate aortic regurgitation in rats. Circ J 77(9):2295–2302.  https://doi.org/10.1253/circj.CJ-12-1439 Google Scholar
  121. 121.
    Ocampo C, Ingram P, Ilbawi M, Arcilla R, Gupta M (2003) Revisiting the surgical creation of volume load by aorto-caval shunt in rats. Mol Cell Biochem 251(1–2):139–143.  https://doi.org/10.1016/S0022-2828(01)90340-2 Google Scholar
  122. 122.
    Plante E, Couet J, Gaudreau M, Dumas M-P, Drolet M-C, Arsenault M (2003) Left ventricular response to sustained volume overload from chronic aortic valve regurgitation in rats. J Card Fail 9(2):128–140.  https://doi.org/10.1054/jcaf.2003.17 Google Scholar
  123. 123.
    Su X, Brower G, Janicki JS, Chen Y-F, Oparil S, Dell'Italia LJ (1999) Differential expression of natriuretic peptides and their receptors in volume overload cardiac hypertrophy in the rat. J Mol Cell Cardiol 31(10):1927–1936.  https://doi.org/10.1006/jmcc.1999.1025 Google Scholar
  124. 124.
    Wei C-C, Lucchesi PA, Tallaj J, Bradley WE, Powell PC, Dell'Italia LJ (2003) Cardiac interstitial bradykinin and mast cells modulate pattern of LV remodeling in volume overload in rats. Am J Physiol Heart Circ Physiol 285(2):H784–H792.  https://doi.org/10.1152/ajpheart.00793.2001 Google Scholar
  125. 125.
    Wu J, Cheng Z, Gu Y, Zou W, Zhang M, Zhu P, Hu S (2015) Aggravated cardiac remodeling post aortocaval fistula in unilateral nephrectomized rats. PLoS One 10(8):e0134579.  https://doi.org/10.1371/journal.pone.0134579 Google Scholar
  126. 126.
    Isoyama S, Grossman W, Wei JY (1988) Effect of age on myocardial adaptation to volume overload in the rat. J Clin Invest 81(6):1850–1857.  https://doi.org/10.1172/JCI113530 Google Scholar
  127. 127.
    Toshihiko U, Tamahito Y, Hiroyuki M, Yujiro H, Mitsuyoshi N (1989) A simple method for producing graded aortic insufficiencies in rats and subsequent development of cardiac hypertrophy. J Pharmacol Methods 22(4):249–257.  https://doi.org/10.1016/0160-5402(89)90004-1 Google Scholar
  128. 128.
    Maslov MY, Foianini S, Mayer D, Orlov MV, Lovich MA (2018) Synergy between sacubitril and valsartan leads to hemodynamic, antifibrotic, and exercise tolerance benefits in rats with preexisting heart failure. Am J Physiol Heart Circ Physiol 316(2):H289–H297.  https://doi.org/10.1152/ajpheart.00579.2018 Google Scholar
  129. 129.
    Desjardins S, Mueller RW, Cauchy MJ (1988) A pressure overload model of congestive heart failure in rats. Cardiovasc Res 22(10):696–702.  https://doi.org/10.1093/cvr/22.10.696 Google Scholar
  130. 130.
    Huang M, LeBlanc MH, Hester RL (1994) Evaluation of the needle technique for producing an arteriovenous fistula. J Appl Physiol 77(6):2907–2911.  https://doi.org/10.1152/jappl.1994.77.6.2907 Google Scholar
  131. 131.
    Liu Z, Hilbelink DR, Crockett WB, Gerdes AM (1991) Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ Res 69(1):52–58.  https://doi.org/10.1161/01.RES.69.1.52 Google Scholar
  132. 132.
    Wang X, Ren B, Liu S, Sentex E, Tappia PS, Dhalla NS (2003) Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat. J Appl Physiol 94(2):752–763.  https://doi.org/10.1152/japplphysiol.00248.2002 Google Scholar
  133. 133.
    Wu J, Cheng Z, Zhang M, Zhu P, Gu Y (2016) Impact of aortocaval shunt flow on cardiac and renal function in unilateral nephrectomized rats. Sci Rep 6:27493.  https://doi.org/10.1038/srep27493 Google Scholar
  134. 134.
    Langer S, Heiss C, Paulus N, Bektas N, Mommertz G, Rowinska Z, Westenfeld R, Jacobs MJ, Fries M, Koeppel TA (2009) Functional and structural response of arterialized femoral veins in a rodent AV fistula model. Nephrol Dial Transplant 24(7):2201–2206.  https://doi.org/10.1093/ndt/gfp033 Google Scholar
  135. 135.
    Kraiss LW, Kirkman TR, Kohler TR, Zierler B, Clowes AW (1991) Shear stress regulates smooth muscle proliferation and neointimal thickening in porous polytetrafluoroethylene grafts. Arterioscler Thromb 11(6):1844–1852.  https://doi.org/10.1161/01.ATV.11.6.1844 Google Scholar
  136. 136.
    Manning E, Skartsis N, Orta AM, Velazquez OC, Liu Z-J, Asif A, Salman LH, Vazquez-Padron RI (2012) A new arteriovenous fistula model to study the development of neointimal hyperplasia. J Vasc Res 49(2):123–131.  https://doi.org/10.1159/000332327 Google Scholar
  137. 137.
    Flaim SF, Minteer WJ, Nellis SH, Clark DP (1979) Chronic arteriovenous shunt: evaluation of a model for heart failure in rat. Am J Physiol Heart Circ Physiol 236(5):H698–H704.  https://doi.org/10.1152/ajpheart.1979.236.5.H698 Google Scholar
  138. 138.
    Stark RJ, Shekerdemian LS (2013) Estimating intracardiac and extracardiac shunting in the setting of complex congenital heart disease. Ann Pediatr Cardiol 6(2):145–151.  https://doi.org/10.4103/0974-2069.115259 Google Scholar
  139. 139.
    Linardi D, Rungatscher A, Morjan M, Marino P, Luciani GB, Mazzucco A, Faggian G (2014) Ventricular and pulmonary vascular remodeling induced by pulmonary overflow in a chronic model of pretricuspid shunt. J Thorac Cardiovasc Surg 148(6):2609–2617.  https://doi.org/10.1016/j.jtcvs.2014.04.044 Google Scholar
  140. 140.
    Garcia R, Diebold S (1990) Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res 24(5):430–432.  https://doi.org/10.1093/cvr/24.5.430 Google Scholar
  141. 141.
    Kimura M, Umemura K, Ohashi K, Nakashima M (1998) Effect of ecadotril, a neutral endopeptidase inhibitor, on myocardial hypertrophy in the rat aortic insufficiency model. Can J Cardiol 14(1):63–68Google Scholar
  142. 142.
    Légaré J-F, Nanton MA, Bryan P, Lee TDG, Ross DB (2000) Aortic valve graft implantation in rats: a new functional model. J Thorac Cardiovasc Surg 120(4):679–685.  https://doi.org/10.1067/mtc.2000.109239 Google Scholar
  143. 143.
    Légaré J-F, Ross DB (2004) Suggestion for functional model to test effects of decellularization of rat aortic valve allografts on leaflet destruction and extracellular matrix remodeling. J Thorac Cardiovasc Surg 128(1):155–156.  https://doi.org/10.1016/j.jtcvs.2004.03.015 Google Scholar
  144. 144.
    Morita H, Tanaka I, Oda T, Ichiyama A, Yamazaki T, Uematsu T, Nakashima M, Yoshimi T (1990) Atrial natriuretic peptide messenger RNA and peptide in rats with aortic valve insufficiency. Peptides 11(4):843–847.  https://doi.org/10.1016/0196-9781(90)90202-G Google Scholar
  145. 145.
    Koike MK, Matsubara BB, Matsubara LS, Frimm CC (2014) Sequential hemodynamic assessment in aortic valve insufficiency in rats. Med Express 1:214–218Google Scholar
  146. 146.
    Chen M, Luo H, Miyamoto T, Atar S, Kobal S, Rahban M, Brasch AV, Makkar R, Neuman Y, Naqvi TZ, Tolstrup K, Siegel RJ (2003) Correlation of echo-Doppler aortic valve regurgitation index with angiographic aortic regurgitation severity. Am J Cardiol 92(5):634–635.  https://doi.org/10.1016/S0002-9149(03)00743-4 Google Scholar
  147. 147.
    Tani LY, Minich LL, Day RW, Orsmond GS, Shaddy RE (1997) Doppler evaluation of aortic regurgitation in children. Am J Cardiol 80(7):927–931.  https://doi.org/10.1016/S0002-9149(97)00547-X Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Michael G. Katz
    • 1
    Email author
  • Anthony S. Fargnoli
    • 1
  • Sarah M. Gubara
    • 1
  • Elena Chepurko
    • 1
  • Charles R. Bridges
    • 1
  • Roger J. Hajjar
    • 1
  1. 1.Cardiovascular Research Center, Department of CardiologyIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations