Heart Failure Reviews

, Volume 23, Issue 5, pp 733–758 | Cite as

Role of cytokines and inflammation in heart function during health and disease

  • Monika Bartekova
  • Jana Radosinska
  • Marek Jelemensky
  • Naranjan S DhallaEmail author


By virtue of their actions on NF-κB, an inflammatory nuclear transcription factor, various cytokines have been documented to play important regulatory roles in determining cardiac function under both physiological and pathophysiological conditions. Several cytokines including TNF-α, TGF-β, and different interleukins such as IL-1 IL-4, IL-6, IL-8, and IL-18 are involved in the development of various inflammatory cardiac pathologies, namely ischemic heart disease, myocardial infarction, heart failure, and cardiomyopathies. In ischemia-related pathologies, most of the cytokines are released into the circulation and serve as biological markers of inflammation. Furthermore, there is an evidence of their direct role in the pathogenesis of ischemic injury, suggesting cytokines as potential targets for the development of some anti-ischemic therapies. On the other hand, certain cytokines such as IL-2, IL-4, IL-6, IL-8, and IL-10 are involved in the post-ischemic tissue repair and thus are considered to exert beneficial effects on cardiac function. Conflicting reports regarding the role of some cytokines in inducing cardiac dysfunction in heart failure and different types of cardiomyopathies seem to be due to differences in the nature, duration, and degree of heart disease as well as the concentrations of some cytokines in the circulation. In spite of extensive research work in this field of investigation, no satisfactory anti-cytokine therapy for improving cardiac function in any type of heart disease is available in the literature.


Cytokines Ischemic heart disease Myocardial infarction Heart failure Cardiomyopathies Cardiac inflammation 



This work was supported by a grant from the Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic and the Slovak Academy of Sciences (VEGA no. 2/0061/16). The support for the infrastructure for this project was provided by the St. Boniface Hospital Research Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Lackie J (2010) A dictionary of biomedicine. Oxford University Press, ISBN-9780199549351Google Scholar
  2. 2.
    Cohen S (1989) Lymphokines and the immune response. CRC Press, USA, ISBN-0-8493-6427-2Google Scholar
  3. 3.
    Cannon JG (2000) Inflammatory cytokines in non-pathological states. News Physiol Sci 15:298–303PubMedGoogle Scholar
  4. 4.
    Saini HK, Xu Y-J, Zhang M, Liu PP, Kirshenbaum LA, Dhalla NS (2005) Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart. Exp Clin Cardiol 10(4):213–222PubMedPubMedCentralGoogle Scholar
  5. 5.
    Padua RR, Sethi R, Dhalla NS, Kardami E (1995) Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol Cell Biochem 143:129–135PubMedCrossRefGoogle Scholar
  6. 6.
    Parkin J, Cohen B (2001) An overview of the immune system. Lancet 357(9270):1777–1789PubMedCrossRefGoogle Scholar
  7. 7.
    Platanias LC (2005) Mechanisms of type-I- and type-II-interferon-mediated signaling. Nat Rev Immunol 5(5):375–386PubMedCrossRefGoogle Scholar
  8. 8.
    Sun M, Fink PJ (2007) A new class of reverse signaling costimulators belongs to the TNF family. J Immunol 179(7):4307–4312PubMedCrossRefGoogle Scholar
  9. 9.
    Beasley D, Cooper AL (1999) Constitutive expression of interleukin-1alpha precursor promotes human vascular smooth muscle cell proliferation. Am J Phys 276(3 Pt 2):H901–H912Google Scholar
  10. 10.
    Grötzinger J (2002) Molecular mechanisms of cytokine receptor activation. Biochim Biophys Acta 1592(3):215–223PubMedCrossRefGoogle Scholar
  11. 11.
    Arimont M, Sun SL, Leurs R, Smit M, de Esch IJP, de Graaf C (2017) Structural analysis of chemokine receptor-ligand interactions. J Med Chem 60(12):4735–4779PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Heaney ML, Golde DW (1998) Soluble receptors in human disease. J Leukoc Biol 64(2):135–146PubMedCrossRefGoogle Scholar
  13. 13.
    Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li YY, McTiernan C (2000) The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 35(3):537–544PubMedCrossRefGoogle Scholar
  14. 14.
    Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38(2):307–314PubMedCrossRefGoogle Scholar
  15. 15.
    Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118(1):10–24PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132(3):344–362PubMedCrossRefGoogle Scholar
  17. 17.
    Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, van Dam PA (2017) The role of nuclear factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 120:141–150PubMedCrossRefGoogle Scholar
  18. 18.
    Sun SC (2012) The noncanonical NF-κB pathway. Immunol Rev 246(1):125–140PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Caamaño J, Hunter CA (2002) NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev 15(3):414–129PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gordon JW, Shaw JA, Kirshenbaum LA (2011) Multiple facets of NF-κB in the heart: to be or not to NF-κB. Circ Res 108(9):1122–1132PubMedCrossRefGoogle Scholar
  21. 21.
    Regula KM, Baetz D, Kirshenbaum LA (2004) Nuclear factor-kappaB represses hypoxia-induced mitochondrial defects and cell death of ventricular myocytes. Circulation 110(25):3795–3802PubMedCrossRefGoogle Scholar
  22. 22.
    Wu XY, Luo AY, Zhou YR, Ren JH (2014) N-acetylcysteine reduces oxidative stress, nuclear facto-κB activity and cardiomyocyte apoptosis in heart failure. Mol Med Rep 10(2):615–624PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wang RP, Yao Q, Xiao YB, Zhu SB, Yang L, Feng JM, Li DZ, Li XL, Wu JJ, Chen J (2011) Toll-like receptor 4/nuclear factor-kappa B pathway is involved in myocardial injury in a rat chronic stress model. Stress 14(5):567–575PubMedCrossRefGoogle Scholar
  24. 24.
    Pye J, Ardeshirpour F, McCain A, Bellinger DA, Merricks E, Adams J, Elliott PJ, Pien C, Fischer TH, Baldwin AS Jr, Nichols TC (2003) Proteasome inhibition ablates activation of NF-kappa B in myocardial reperfusion and reduces reperfusion injury. Am J Physiol Heart Circ Physiol 284(3):H919–H926PubMedCrossRefGoogle Scholar
  25. 25.
    Frantz S, Hu K, Bayer B, Gerondakis S, Strotmann J, Adamek A, Ertl G, Bauersachs J (2006) Absence of NF-kappaB subunit p50 improves heart failure after myocardial infarction. FASEB J 20(11):1918–1920PubMedCrossRefGoogle Scholar
  26. 26.
    Moss NC, Stansfield WE, Willis MS, Tang RH, Selzman CH (2007) IKKbeta inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 293:H2248–H2253PubMedCrossRefGoogle Scholar
  27. 27.
    Liu CC, Huang Y, Zhang JH, Xu Y, Wu CH (2013) Effect of carvedilol on cardiac dysfunction 4 days after myocardial infarction in rats: role of toll-like receptor 4 and β-arrestin 2. Eur Rev Med Pharmacol Sci 17(15):2103–2110PubMedGoogle Scholar
  28. 28.
    Burma O, Onat E, Uysal A, Ilhan N, Erol D, Ozcan M, Sahna E (2014) Effects of rosuvastatin on ADMA, rhokinase, NADPH oxidase, caveolin-1, hsp 90 and NFkB levels in a rat model of myocardial ischaemia-reperfusion. Cardiovasc J Afr 25(5):212–216PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Burchfield JS, Dong JW, Sakata Y, Gao F, Tzeng HP, Topkara VK, Entman ML, Sivasubramanian N, Mann DL (2010) The cytoprotective effects of tumor necrosis factor are conveyed through tumor necrosis factor receptor-associated factor 2 in the heart. Circ Heart Fail 3(1):157–164PubMedCrossRefGoogle Scholar
  30. 30.
    Tzeng HP, Evans S, Gao F, Chambers K, Topkara VK, Sivasubramanian N, Barger PM, Mann DL (2014) Dysferlin mediates the cytoprotective effects of TRAF2 following myocardial ischemia reperfusion injury. J Am Heart Assoc 3:e000662PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Misra A, Haudek SB, Knuefermann P, Vallejo JG, Chen ZJ, Michael LH, Sivasubramanian N, Olson EN, Entman ML, Mann DL (2003) Nuclear factor-kappaB protects the adult cardiac myocyte against ischemia-induced apoptosis in a murine model of acute myocardial infarction. Circulation 108(25):3075–3078PubMedCrossRefGoogle Scholar
  32. 32.
    Díaz A, Humeres C, González V, Gómez MT, Montt N, Sanchez G, Chiong M, García L (2015) Insulin/NFκB protects against ischemia-induced necrotic cardiomyocyte death. Biochem Biophys Res Commun 467(2):451–457PubMedCrossRefGoogle Scholar
  33. 33.
    Bagul PK, Deepthi N, Sultana R, Banerjee SK (2015) Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB-p65 and histone 3. J Nutr Biochem 26(11):1298–1307PubMedCrossRefGoogle Scholar
  34. 34.
    Padiya R, Chowdhury D, Borkar R, Srinivas R, Pal Bhadra M, Banerjee SK (2014) Garlic attenuates cardiac oxidative stress via activation of PI3K/AKT/Nrf2-Keap1 pathway in fructose-fed diabetic rat. PLoS One 9(5):e94228PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wassef MAE, Tork OM, Rashed LA, Ibrahim W, Morsi H, Rabie DMM (2018) Mitochondrial dysfunction in diabetic cardiomyopathy: effect of mesenchymal stem cell with PPAR-γ agonist or exendin-4. Exp Clin Endocrinol Diabetes 126(1):27–38PubMedCrossRefGoogle Scholar
  36. 36.
    Jovanovic A, Sudar-Milovanovic E, Obradovic M, Pitt SJ, Stewart AJ, Zafirovic S, Stanimirovic J, Radak D, Isenovic ER (2017) Influence of a high-fat diet on cardiac iNOS in female rats. Curr Vasc Pharmacol 15(5):491–500PubMedCrossRefGoogle Scholar
  37. 37.
    Lin KH, Liu CL, Kuo WW, Paul CR, Chen WK, Wen SY, Day CH, Wu HC, Viswanadha VP, Huang CY (2016) Early fluid resuscitation by lactated Ringer’s solution alleviate the cardiac apoptosis in rats with trauma-hemorrhagic shock. PLoS One 11(10):e0165406PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Huang H, Joseph LC, Gurin MI, Thorp EB, Morrow JP (2014) Extracellular signal-regulated kinase activation during cardiac hypertrophy reduces sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) transcription. J Mol Cell Cardiol 75:58–63PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Forman K, Vara E, García C, Kireev R, Cuesta S, Acuña-Castroviejo D, Tresguerres JA (2016) Influence of aging and growth hormone on different members of the NFkB family and IkB expression in the heart from a murine model of senescence-accelerated aging. Exp Gerontol 73:114–120PubMedCrossRefGoogle Scholar
  40. 40.
    Santos DG, Resende MF, Mill JG, Mansur AJ, Krieger JE, Pereira AC (2010) Nuclear factor (NF) kappa B polymorphism is associated with heart function in patients with heart failure. BMC Med Genet 11:89PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mishra A, Srivastava A, Mittal T, Garg N, Mittal B (2013) Role of inflammatory gene polymorphisms in left ventricular dysfunction (LVD) susceptibility in coronary artery disease (CAD) patients. Cytokine 61(3):856–861PubMedCrossRefGoogle Scholar
  42. 42.
    Monden Y, Kubota T, Inoue T, Tsutsumi T, Kawano S, Ide T, Tsutsui H, Sunagawa K (2007) Tumor necrosis factor-alpha is toxic via receptor 1 and protective via receptor 2 in a murine model of myocardial infarction. Am J Physiol Heart Circ Physiol 293(1):H743–H753PubMedCrossRefGoogle Scholar
  43. 43.
    Fang L, Ellims AH, Beale AL, Taylor AJ, Murphy A, Dart AM (2017) Systemic inflammation is associated with myocardial fibrosis, diastolic dysfunction, and cardiac hypertrophy in patients with hypertrophic cardiomyopathy. Am J Transl Res 9(11):5063–5073PubMedPubMedCentralGoogle Scholar
  44. 44.
    Eskandari V, Amirzargar AA, Mahmoudi MJ, Rahnemoon Z, Rahmani F, Sadati S, Rahmati Z, Gorzin F, Hedayat M, Rezaei N (2017) Gene expression and levels of IL-6 and TNFα in PBMCs correlate with severity and functional class in patients with chronic heart failure. Ir J Med Sci.
  45. 45.
    Janczewski AM, Kadokami T, Lemster B, Frye CS, McTiernan CF, Feldman AM (2003) Morphological and functional changes in cardiac myocytes isolated from mice overexpressing TNF-alpha. Am J Physiol Heart Circ Physiol 284(3):H960–H969PubMedCrossRefGoogle Scholar
  46. 46.
    Dibbs ZI, Diwan A, Nemoto S, DeFreitas G, Abdellatif M, Carabello BA, Spinale FG, Feuerstein G, Sivasubramanian N, Mann DL (2003) Targeted overexpression of transmembrane tumor necrosis factor provokes a concentric cardiac hypertrophic phenotype. Circulation 108(8):1002–1008PubMedCrossRefGoogle Scholar
  47. 47.
    Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol 51(4):600–606PubMedCrossRefGoogle Scholar
  48. 48.
    Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, Karch J, Molkentin JD (2017) Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127(10):3770–3783PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ding Z, Yuan J, Liang Y, Wu J, Gong H, Ye Y, Jiang G, Yin P, Li Y, Zhang G, Yang C, Guo J, Chen Z, Wang X, Weng L, Zou Y (2017) Ryanodine receptor type 2 plays a role in the development of cardiac fibrosis under mechanical stretch through TGFβ-1. Int Heart J 58(6):957–961PubMedCrossRefGoogle Scholar
  50. 50.
    Almendral JL, Shick V, Rosendorff C, Atlas SA (2010) Association between transforming growth factor-beta(1) and left ventricular mass and diameter in hypertensive patients. J Am Soc Hypertens 4(3):135–141PubMedCrossRefGoogle Scholar
  51. 51.
    Boluyt MO, O'Neill L, Meredith AL, Bing OH, Brooks WW, Conrad CH, Crow MT, Lakatta EG (1994) Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 75(1):23–32PubMedCrossRefGoogle Scholar
  52. 52.
    Ayça B, Sahin I, Kucuk SH, Akin F, Kafadar D, Avşar M, Avci II, Gungor B, Okuyan E, Dinckal MH (2015) Increased transforming growth factor-β levels associated with cardiac adverse events in hypertrophic cardiomyopathy. Clin Cardiol 38(6):371–377PubMedCrossRefGoogle Scholar
  53. 53.
    Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, Winkelmann K, Michael LH, Lawler J, Entman ML (2005) Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 111(22):2935–2942PubMedCrossRefGoogle Scholar
  54. 54.
    Rueda-Martínez C, Lamas O, Carrasco-Chinchilla F, Robledo-Carmona J, Porras C, Sánchez-Espín G, Navarro MJ, Fernández B (2017) Increased blood levels of transforming growth factor β in patients with aortic dilatation. Interact Cardiovasc Thorac Surg 25(4):571–574PubMedCrossRefGoogle Scholar
  55. 55.
    Meldrum DR (1998) Tumor necrosis factor in the heart. Am J Phys 274(3 Pt 2):R577–R595Google Scholar
  56. 56.
    Jarrah AA, Schwarskopf M, Wang ER, LaRocca T, Dhume A, Zhang S, Hadri L, Hajjar RJ, Schecter AD, Tarzami ST (2017) SDF-1 induces TNF-mediated apoptosis in cardiac myocytes. Apoptosis.
  57. 57.
    Tian M, Yuan YC, Li JY, Gionfriddo MR, Huang RC (2015) Tumor necrosis factor-α and its role as a mediator in myocardial infarction: a brief review. Chronic Dis Transl Med 1(1):18–26PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Waters JP, Pober JS, Bradley JR (2013) Tumour necrosis factor in infectious disease. J Pathol 230(2):132–147PubMedCrossRefGoogle Scholar
  59. 59.
    Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58(2):88–111PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N (2010) Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev 15(6):543–562PubMedCrossRefGoogle Scholar
  61. 61.
    Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan YT, Prabhu SD (2009) Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 119(10):1386–1397PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Higuchi Y, McTiernan CF, Frye CB, McGowan BS, Chan TO, Feldman AM (2004) Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation 109(15):1892–1897PubMedCrossRefGoogle Scholar
  63. 63.
    Finkel MS, Oddis CV, Jacob TD, Watkins SC, Hattler BG, Simmons RL (1992) Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Science 257:387–389PubMedCrossRefGoogle Scholar
  64. 64.
    Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Invest 92:2303–2312PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323(4):236–241PubMedCrossRefGoogle Scholar
  66. 66.
    Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB, Mann DL (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93(4):704–711PubMedCrossRefGoogle Scholar
  67. 67.
    Monden Y, Kubota T, Tsutsumi T, Inoue T, Kawano S, Kawamura N, Ide T, Egashira K, Tsutsui H, Sunagawa K (2007) Soluble TNF receptors prevent apoptosis in infiltrating cells and promote ventricular rupture and remodeling after myocardial infarction. Cardiovasc Res 73:794–805PubMedCrossRefGoogle Scholar
  68. 68.
    Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL (2000) Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A 97:5456–5461PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Nakano M, Knowlton AA, Dibbs Z, Mann DL (1998) Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 97(14):1392–1400PubMedCrossRefGoogle Scholar
  70. 70.
    Valgimigli M, Ceconi C, Malagutti P, Merli E, Soukhomovskaia O, Francolini G, Cicchitelli G, Olivares A, Parrinello G, Percoco G, Guardigli G, Mele D, Pirani R, Ferrari R (2005) Tumor necrosis factor-alpha receptor 1 is a major predictor of mortality and new-onset heart failure in patients with acute myocardial infarction: the Cytokine-Activation and Long-Term Prognosis in Myocardial Infarction (C-ALPHA) study. Circulation 111(7):863–870PubMedCrossRefGoogle Scholar
  71. 71.
    Ping Z, Aiqun M, Jiwu L, Liang S (2017) TNF receptor 1/2 predict heart failure risk in type 2 diabetes mellitus patients. Int Heart J 58(2):245–249PubMedCrossRefGoogle Scholar
  72. 72.
    Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117(9):2692–2701PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hartupee J, Szalai GD, Wang W, Ma X, Diwan A, Mann DL (2017) Impaired protein quality control during left ventricular remodeling in mice with cardiac restricted overexpression of tumor necrosis factor. Circ Heart Fail 10(12):e004252PubMedCrossRefGoogle Scholar
  74. 74.
    Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, Mann DL (2001) Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104(7):826–831PubMedCrossRefGoogle Scholar
  75. 75.
    Jude B, Vetel S, Giroux-Metges MA, Pennec JP (2018) Rapid negative inotropic effect induced by TNF-α in rat heart perfused related to PKC activation. Cytokine 107:65–69PubMedCrossRefGoogle Scholar
  76. 76.
    Braz JC, Gregory K, Pathak A, Zhao W, Sahin B, Klevitsky R, Kimball TF, Lorenz JN, Nairn AC, Liggett SB, Bodi I, Wang S, Schwartz A, Lakatta EG, DePaoli-Roach AA, Robbins J, Hewett TE, Bibb JA, Westfall MV, Kranias EG, Molkentin JD (2004) PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 10(3):248–254PubMedCrossRefGoogle Scholar
  77. 77.
    Hallaq H, Wang DW, Kunic JD, George AL Jr, Wells KS, Murray KT (2012) Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels. Am J Physiol Heart Circ Physiol 302(3):H782–H789PubMedCrossRefGoogle Scholar
  78. 78.
    Xiao GQ, Qu Y, Sun ZQ, Mochly-Rosen D, Boutjdir M (2001) Evidence for functional role of epsilonPKC isozyme in the regulation of cardiac Na(+) channels. Am J Phys Cell Phys 281(5):C1477–C1486CrossRefGoogle Scholar
  79. 79.
    Watson CL, Gold MR (1997) Modulation of Na+ current inactivation by stimulation of protein kinase C in cardiac cells. Circ Res 81(3):380–386PubMedCrossRefGoogle Scholar
  80. 80.
    Duncan DJ, Yang Z, Hopkins PM, Steele DS, Harrison SM (2010) TNF-alpha and IL-1beta increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium 47(4):378–386PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lee JH, Lee TK, Kim IH, Lee JC, Won MH, Park JH, Ahn JH, Shin MC, Ohk TG, Moon JB, Cho JH, Park CW, Tae HJ (2017) Changes in histopathology and tumor necrosis factor-α levels in the hearts of rats following asphyxial cardiac arrest. Clin Exp Emerg Med 4(3):160–167PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Al-Shudiefat AAR, Sharma AK, Bagchi AK, Dhingra S, Singal PK (2013) Oleic acid mitigates TNF-α-induced oxidative stress in rat cardiomyocytes. Mol Cell Biochem 372:75–82PubMedCrossRefGoogle Scholar
  83. 83.
    Rathi SS, Xu Y-J, Dhalla NS (2002) Mechanism of cardioprotective action of TNF-α in the isolated rat heart. Exp Clin Cardiol 7:146–150PubMedPubMedCentralGoogle Scholar
  84. 84.
    Zhang M, Xu Y-J, Saini HK, Turan B, Liu PP, Dhalla NS (2005) TNF-α as a potential mediator of cardiac dysfunction due to intracellular Ca2+-overload. Biochem Biophys Res Commun 327:57–63PubMedCrossRefGoogle Scholar
  85. 85.
    Turan B, Saini HK, Zhang M, Prajapati D, Elimban V, Dhalla NS (2005) Selenium improves cardiac function by attenuating the activation of NF-κB due to ischemia-reperfusion injury. Antioxid Redox Signal 7:1388–1397PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang M, Xu Y-J, Saini HK, Turan B, Liu PP, Dhalla NS (2005) Pentoxifylline attenuates cardiac dysfunction and reduces TNF-α level in the ischemic-reperfused heart. Am J Physiol Heart Circ Physiol 289:H832–H839PubMedCrossRefGoogle Scholar
  87. 87.
    Das S, Babick AP, Xu Y-J, Takeda N, Rodriguez-Leyva D, Dhalla NS (2010) TNF-α mediated signal transduction pathway is a major determinant of apoptosis in dilated cardiomyopathy. J Cell Mol Med 14:1988–1997PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Saghebjoo M, Nezamdoost Z, Ahmadabadi F, Saffari I, Hamidi A (2017) The effect of 12 weeks of aerobic training on serum levels high sensitivity C-reactive protein, tumor necrosis factor-alpha, lipid profile and anthropometric characteristics in middle-age women patients with type 2 diabetes. Diabetes Metab Syndr S1871-4021(17)30379-X.Google Scholar
  89. 89.
    Abd El-Kader SM, Al-Jiffri OH, Al-Shreef FM (2015) Aerobic exercises alleviate symptoms of fatigue related to inflammatory cytokines in obese patients with type 2 diabetes. Afr Health Sci 15(4):1142–1148PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Silva SD Jr, Jara ZP, Peres R, Lima LS, Scavone C, Montezano AC, Touyz RM, Casarini DE, Michelini LC (2017) Temporal changes in cardiac oxidative stress, inflammation and remodeling induced by exercise in hypertension: role for local angiotensin II reduction. PLoS One 12(12):e0189535.Google Scholar
  91. 91.
    Windsor MT, Bailey TG, Perissiou M, Greaves K, Jha P, Leicht AS, Russell FD, Golledge J, Askew CD (2017) Acute inflammatory responses to exercise in patients with abdominal aortic aneurysm. Med Sci Sports Exerc.
  92. 92.
    Koh Y, Park KS (2017) Responses of inflammatory cytokines following moderate intensity walking exercise in overweight or obese individuals. J Exerc Rehabil 13(4):472–476PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Eder L, Joshi AA, Dey AK, Cook R, Siegel EL, Gladman DD, Mehta NN (2017) TNF-α inhibitors are associated with reduced indices of subclinical atherosclerosis in patients with psoriatic disease. Arthritis Rheum.
  94. 94.
    Atzeni F, Carletto A, Foti R, Sebastiani M, Panetta V, Salaffi F, Bonitta G, Iannone F, Gremese E, Govoni M, Marchesoni A, Favalli EG, Gorla R, Ramonda R, Sarzi-Puttini P, Ferraccioli G, Lapadula G; GISEA group (2017) Incidence of cancer in patients with spondyloarthritis treated with anti-TNF drugs. Joint Bone Spine S1297-319X(17)30157-4.Google Scholar
  95. 95.
    Kleinbongard P, Schulz R, Heusch G (2011) TNFα in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 16(1):49–69PubMedCrossRefGoogle Scholar
  96. 96.
    Shi Y, Massagué J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700PubMedCrossRefGoogle Scholar
  97. 97.
    Macias MJ, Martin-Malpartida P, Massagué J (2015) Structural determinants of Smad function in TGF-β signaling. Trends Biochem Sci 40(6):296–308PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Moustakas A, Heldin CH (2005) Non-Smad TGF-beta signals. J Cell Sci 118(Pt 16):3573–3584PubMedCrossRefGoogle Scholar
  99. 99.
    Liu W, Wang X, Mei Z, Gong J, Huang L, Gao X, Zhao Y, Ma J, Qian L (2017) BNIP3L promotes cardiac fibrosis in cardiac fibroblasts through [Ca2+]i-TGF-β-Smad2/3 pathway. Sci Rep 7(1):1906PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lijnen PJ, Petrov VV, Fagard RH (2000) Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab 71(1-2):418–435PubMedCrossRefGoogle Scholar
  101. 101.
    Hein S, Arnon E, Kostin S, Schönburg M, Elsässer A, Polyakova V, Bauer EP, Klövekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991PubMedCrossRefGoogle Scholar
  102. 102.
    Li RK, Li G, Mickle DA, Weisel RD, Merante F, Luss H, Rao V, Christakis GT, Williams WG (1997) Overexpression of transforming growth factor-beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 96(3):874–881PubMedCrossRefGoogle Scholar
  103. 103.
    Fielitz J, Hein S, Mitrovic V, Pregla R, Zurbrügg HR, Warnecke C, Schaper J, Fleck E, Regitz-Zagrosek V (2001) Activation of the cardiac renin-angiotensin system and increased myocardial collagen expression in human aortic valve disease. J Am Coll Cardiol 37(5):1443–1449PubMedCrossRefGoogle Scholar
  104. 104.
    Dai RP, Dheen ST, He BP, Tay SS (2004) Differential expression of cytokines in the rat heart in response to sustained volume overload. Eur J Heart Fail 6(6):693–703PubMedCrossRefGoogle Scholar
  105. 105.
    van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, Schrier PI, van der Laarse A (2002) Stretch-induced paracrine hypertrophic stimuli increase TGF-beta1 expression in cardiomyocytes. Mol Cell Biochem 236(1-2):147-153.Google Scholar
  106. 106.
    Yuan J, Chen H, Ge D, Xu Y, Xu H, Yang Y, Gu M, Zhou Y, Zhu J, Ge T, Chen Q, Gao Y, Wang Y, Li X, Zhao Y (2017) Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem 42(6):2207–2219PubMedCrossRefGoogle Scholar
  107. 107.
    Su SA, Yang D, Wu Y, Xie Y, Zhu W, Cai Z, Shen J, Fu Z, Wang Y, Jia L, Wang Y, Wang JA, Xiang M (2017) EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-β/Smad3 signaling. Circ Res 121(6):617–627PubMedCrossRefGoogle Scholar
  108. 108.
    Yue Y, Meng K, Pu Y, Zhang X (2017) Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pract 133:124–130PubMedCrossRefGoogle Scholar
  109. 109.
    Niu HM, Liu CL (2017) The aberrant expression of Smad6 and TGF-β in obesity linked cardiac disease. Eur Rev Med Pharmacol Sci 21(1):138–142PubMedGoogle Scholar
  110. 110.
    Koitabashi N, Danner T, Zaiman AL, Pinto YM, Rowell J, Mankowski J, Zhang D, Nakamura T, Takimoto E, Kass DA (2011) Pivotal role of cardiomyocyte TGF-beta signaling in the murine pathological response to sustained pressure overload. J Clin Invest 121:2301–2312PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Zeglinski MR, Roche P, Hnatowich M, Jassal DS, Wigle JT, Czubryt MP, Dixon IMC (2016) TGFβ1 regulates scleraxis expression in primary cardiac myofibroblasts by a Smad-independent mechanism. Am J Physiol Heart Circ Physiol 310:H239–H249PubMedCrossRefGoogle Scholar
  112. 112.
    Zeglinski MR, Hnatowich M, Jassal DS, Dixon IMC (2015) SnoN as a novel negative regulator of TGF-β/Smad signaling: a target for tailoring organ fibrosis. Am J Physiol Heart Circ Physiol 308(2):H75–H82PubMedCrossRefGoogle Scholar
  113. 113.
    Ghavami S, Cunnington RH, Gupta S, Yeganeh B, Filomeno KL, Freed DH, Chen S, Klonisch T, Halayko AJ, Ambrose E, Singal R, Dixon IMC (2015) Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis 6:1696–1706CrossRefGoogle Scholar
  114. 114.
    Yeh HM, Lin TT, Yeh CF, Huang HS, Chang SN, Lin JW, Tsai CT, Lai LP, Huang YY, Chu CL (2017) Biomarkers and echocardiography for evaluating the improvement of the ventricular diastolic function after surgical relief of hydronephrosis. PLoS One 12(11):e0188597PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Rubiś P, Wiśniowska-Śmiałek S, Dziewięcka E, Rudnicka-Sosin L, Kozanecki A, Podolec P (2017) Prognostic value of fibrosis-related markers in dilated cardiomyopathy: a link between osteopontin and cardiovascular events. Adv Med Sci 63(1):160–166PubMedCrossRefGoogle Scholar
  116. 116.
    Bansal T, Chatterjee E, Singh J, Ray A, Kundu B, Thankamani V, Sengupta S, Sarkar S (2017) Arjunolic acid, a peroxisome proliferator-activated receptor α agonist, regresses cardiac fibrosis by inhibiting non-canonical TGF-β signaling. J Biol Chem 292(40):16440–16462PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Hillebrand M, Millot N, Sheikhzadeh S, Rybczynski M, Gerth S, Kölbel T, Keyser B, Kutsche K, Robinson PN, Berger J, Mir TS, Zeller T, Blankenberg S, von Kodolitsch Y, Goldmann B (2014) Total serum transforming growth factor-β1 is elevated in the entire spectrum of genetic aortic syndromes. Clin Cardiol 37(11):672–679PubMedCrossRefGoogle Scholar
  118. 118.
    Liao S, Bodmer J, Pietras D, Azhar M, Doetschman T, Schultz Jel J (2009) Biological functions of the low and high molecular weight protein isoforms of fibroblast growth factor-2 in cardiovascular development and disease. Dev Dyn 238(2):249–264PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Santiago JJ, McNaughton LJ, Koleini N, Ma X, Bestvater B, Nickel BE, Fandrich RR, Wigle JT, Freed DH, Arora RC, Kardami E (2014) High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling. PLoS One 9:e97281–e97297PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Srisakuldee W, Makazan Z, Nickel BE, Zhang F, Thliveris JA, Pasumarthi KB, Kardami E (2014) The FGF-2-triggered protection of cardiac subsarcolemmal mitochondria from calcium overload is mitochondrial connexin 43-dependent. Cardiovasc Res 103:72–80PubMedCrossRefGoogle Scholar
  121. 121.
    Dinarello CA (2011) Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117(14):3720–3732PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Opal SM, De Palo VA (2000) Anti-inflammatory cytokines. Chest 117(4):1162–1172PubMedCrossRefGoogle Scholar
  123. 123.
    Weisensee D, Bereiter-Hahn J, Schoeppe W, Löw-Friedrich I (1993) Effects of cytokines on the contractility of cultured cardiac myocytes. Int J Immunopharmacol 15(5):581–587PubMedCrossRefGoogle Scholar
  124. 124.
    Evans HG, Lewis MJ, Shah AM (1993) Interleukin-1 beta modulates myocardial contraction via dexamethasone sensitive production of nitric oxide. Cardiovasc Res 27(8):1486–1490PubMedCrossRefGoogle Scholar
  125. 125.
    Long CS (2001) The role of interleukin-1 in the failing heart. Heart Fail Rev 6(2):81–94PubMedCrossRefGoogle Scholar
  126. 126.
    Werdan K, Müller-Werdan U (1996) Elucidating molecular mechanisms of septic cardiomyopathy—the cardiomyocyte model. Mol Cell Biochem 163-164:291–303PubMedCrossRefGoogle Scholar
  127. 127.
    Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA (2001) Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1beta. Proc Natl Acad Sci U S A 98(5):2871–2876PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Cha J, Wang Z, Ao L, Zou N, Dinarello CA, Banerjee A, Fullerton DA, Meng X (2008) Cytokines link Toll-like receptor 4 signaling to cardiac dysfunction after global myocardial ischemia. Ann Thorac Surg 85(5):1678–1685PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123(6):594–604PubMedCrossRefGoogle Scholar
  130. 130.
    Yu Z, Wang S, Zhang X, Li Y, Zhao Q, Liu T (2017) Pterostilbene protects against myocardial ischemia/reperfusion injury via suppressing oxidative/nitrative stress and inflammatory response. Int Immunopharmacol 43:7–15PubMedCrossRefGoogle Scholar
  131. 131.
    Zhao ZG, Tang ZZ, Zhang WK, Li JG (2015) Protective effects of embelin on myocardial ischemia-reperfusion injury following cardiac arrest in a rabbit model. Inflammation 38(2):527–533PubMedCrossRefGoogle Scholar
  132. 132.
    Ebrahimi H, Badalzadeh R, Mohammadi M, Yousefi B (2014) Diosgenin attenuates inflammatory response induced by myocardial reperfusion injury: role of mitochondrial ATP-sensitive potassium channels. J Physiol Biochem 70(2):425–432PubMedCrossRefGoogle Scholar
  133. 133.
    Deng Y, Yang M, Xu F, Zhang Q, Zhao Q, Yu H, Li D, Zhang G, Lu A, Cho K, Teng F, Wu P, Wang L, Wu W, Liu X, Guo DA, Jiang B (2015) Combined salvianolic acid B and ginsenoside Rg1 exerts cardioprotection against ischemia/reperfusion injury in rats. PLoS One 10(8):e0135435PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Birnbaum Y, Birnbaum GD, Birnbaum I, Nylander S, Ye Y (2016) Ticagrelor and rosuvastatin have additive cardioprotective effects via adenosine. Cardiovasc Drugs Ther 30(6):539–550PubMedCrossRefGoogle Scholar
  135. 135.
    Hadi NR, Al-Amran F, Yousif M, Zamil ST (2013) Antiapoptotic effect of simvastatin ameliorates myocardial ischemia/reperfusion injury. ISRN Pharmacol 2013:815094PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Varma A, Das A, Hoke NN, Durrant DE, Salloum FN, Kukreja RC (2012) Anti-inflammatory and cardioprotective effects of tadalafil in diabetic mice. PLoS One 7(9):e45243PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Grothusen C, Hagemann A, Attmann T, Braesen J, Broch O, Cremer J, Schoettler J (2012) Impact of an interleukin-1 receptor antagonist and erythropoietin on experimental myocardial ischemia/reperfusion injury. Sci World J:737585.Google Scholar
  138. 138.
    Toldo S, Schatz AM, Mezzaroma E, Chawla R, Stallard TW, Stallard WC, Jahangiri A, Van Tassell BW, Abbate A (2012) Recombinant human interleukin-1 receptor antagonist provides cardioprotection during myocardial ischemia reperfusion in the mouse. Cardiovasc Drugs Ther 26(3):273–276PubMedCrossRefGoogle Scholar
  139. 139.
    Ohki S, Oshima K, Tsutsumi H, Koike N, Matsumoto K, Takeyoshi I (2009) The suppression of proinflammatory cytokines improves heart function from non-heart-beating donors following transplantation in a canine model. Int Heart J 50(2):235–245PubMedCrossRefGoogle Scholar
  140. 140.
    Suzuki K, Murtuza B, Smolenski RT, Sammut IA, Suzuki N, Kaneda Y, Yacoub MH (2001) Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation 104:I308–I313PubMedCrossRefGoogle Scholar
  141. 141.
    Mauro AG, Mezzaroma E, Torrado J, Kundur P, Joshi P, Stroud K, Quaini F, Lagrasta CA, Abbate A, Toldo S (2017) Reduction of myocardial ischemia-reperfusion injury by inhibiting interleukin-1 alpha. J Cardiovasc Pharmacol 69(3):156–160PubMedCrossRefGoogle Scholar
  142. 142.
    Wang Y, Yan X, Mi S, Li Z, Wang Y, Zhu H, Sun X, Zhao B, Zhao C, Zou Y, Hu K, Ding X, Sun A, Ge J (2017) Naoxintong attenuates ischaemia/reperfusion injury through inhibiting NLRP3 inflammasome activation. J Cell Mol Med 21(1):4–12PubMedCrossRefGoogle Scholar
  143. 143.
    Huang J, Li Y, Zhang J, Liu Y, Lu Q (2017) The growth hormone secretagogue hexarelin protects rat cardiomyocytes from in vivo ischemia/reperfusion injury through interleukin-1 signaling pathway. Int Heart J 58(2):257–263PubMedCrossRefGoogle Scholar
  144. 144.
    Lange LG, Schreiner GF (1992) Immune cytokines and cardiac disease. Trends Cardiovasc Med 2(4):145–151PubMedCrossRefGoogle Scholar
  145. 145.
    Francis SE, Holden H, Holt CM, Duff GW (1998) Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J Mol Cell Cardiol 30(2):215–223PubMedCrossRefGoogle Scholar
  146. 146.
    Luo B, Wang F, Li B, Dong Z, Liu X, Zhang C, An F (2013) Association of nucleotide-binding oligomerization domain-like receptor 3 inflammasome and adverse clinical outcomes in patients with idiopathic dilated cardiomyopathy. Clin Chem Lab Med 51(7):1521–1528PubMedCrossRefGoogle Scholar
  147. 147.
    Krajinovic M, Mestroni L, Severini GM, Pinamonti B, Camerini F, Falaschi A, Giacca M (1994) Absence of linkage between idiopathic dilated cardiomyopathy and candidate genes involved in the immune function in a large Italian pedigree. J Med Genet 31(10):766–771PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Munger MA, Johnson B, Amber IJ, Callahan KS, Gilbert EM (1996) Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 77(9):723–727PubMedCrossRefGoogle Scholar
  149. 149.
    Matsumori A, Yamada T, Suzuki H, Matoba Y, Sasayama S (1994) Increased circulating cytokines in patients with myocarditis and cardiomyopathy. Br Heart J 72(6):561–566PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Satoh M, Tamura G, Segawa I, Tashiro A, Hiramori K, Satodate R (1996) Expression of cytokine genes and presence of enteroviral genomic RNA in endomyocardial biopsy tissues of myocarditis and dilated cardiomyopathy. Virchows Arch 427(5):503–509PubMedCrossRefGoogle Scholar
  151. 151.
    Eriksson U, Kurrer MO, Sonderegger I, Iezzi G, Tafuri A, Hunziker L, Suzuki S, Bachmaier K, Bingisser RM, Penninger JM, Kopf M (2003) Activation of dendritic cells through the interleukin-1 receptor 1 is critical for the induction of autoimmune myocarditis. J Exp Med 197(3):323–331PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Blyszczuk P, Kania G, Dieterle T, Marty RR, Valaperti A, Berthonneche C, Pedrazzini T, Berger CT, Dirnhofer S, Matter CM, Penninger JM, Lüscher TF, Eriksson U (2009) Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circ Res 105(9):912–920PubMedCrossRefGoogle Scholar
  153. 153.
    Pan HY, Sun HM, Xue LJ, Pan M, Wang YP, Kido H, Zhu JH (2014) Ectopic trypsin in the myocardium promotes dilated cardiomyopathy after influenza A virus infection. Am J Physiol Heart Circ Physiol 307(6):H922–H932PubMedCrossRefGoogle Scholar
  154. 154.
    Song ZC, Wang ZS, Bai JH, Li Z, Hu J (2012) Emodin, a naturally occurring anthraquinone, ameliorates experimental autoimmune myocarditis in rats. Tohoku J Exp Med 227(3):225–230PubMedCrossRefGoogle Scholar
  155. 155.
    Ukimura A, Terasaki F, Fujioka S, Deguchi H, Kitaura Y, Isomura T, Suma H (2003) Quantitative analysis of cytokine mRNA expression in hearts from patients with nonischemic dilated cardiomyopathy (DCM). J Card Surg 18(Suppl 2):S101–S108PubMedCrossRefGoogle Scholar
  156. 156.
    Aleksova A, Beltrami AP, Carriere C, Barbati G, Lesizza P, Perrieri-Montanino M, Isola M, Gentile P, Salvioni E, Not T, Agostoni P, G1 S (2017) Interleukin-1β levels predict long-term mortality and need for heart transplantation in ambulatory patients affected by idiopathic dilated cardiomyopathy. Oncotarget 8(15):25131–25140Google Scholar
  157. 157.
    Kragel AH, Travis WD, Steis RG, Rosenberg SA, Roberts WC (1990) Myocarditis or acute myocardial infarction associated with interleukin-2 therapy for cancer. Cancer 66(7):1513–1516PubMedCrossRefGoogle Scholar
  158. 158.
    Eisner RM, Husain A, Clark JI (2004) Case report and brief review: IL-2-induced myocarditis. Cancer Investig 22(3):401–404CrossRefGoogle Scholar
  159. 159.
    Yan W, Song Y, Zhou L, Jiang J, Yang F, Duan Q, Che L, Shen Y, Song H, Wang L (2017) Immune cell repertoire and their mediators in patients with acute myocardial infarction or stable angina pectoris. Int J Med Sci 14(2):181–190PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Marriott JB, Goldman JH, Keeling PJ, Baig MK, Dalgleish AG, McKenna WJ (1996) Abnormal cytokine profiles in patients with idiopathic dilated cardiomyopathy and their asymptomatic relatives. Heart 75(3):287–290PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Kuethe F, Braun RK, Foerster M, Schlenker Y, Sigusch HH, Kroegel C, Figulla HR (2006) Immunopathogenesis of dilated cardiomyopathy. Evidence for the role of TH2-type CD4+T lymphocytes and association with myocardial HLA-DR expression. J Clin Immunol 26(1):33–39PubMedCrossRefGoogle Scholar
  162. 162.
    Cao CM, Xia Q, Tu J, Chen M, Wu S, Wong TM (2004) Cardioprotection of interleukin-2 is mediated via kappa-opioid receptors. J Pharmacol Exp Ther 309(2):560–567PubMedCrossRefGoogle Scholar
  163. 163.
    Bouchentouf M, Williams P, Forner KA, Cuerquis J, Michaud V, Paradis P, Schiffrin EL, Galipeau J (2011) Interleukin-2 enhances angiogenesis and preserves cardiac function following myocardial infarction. Cytokine 56(3):732–738PubMedCrossRefGoogle Scholar
  164. 164.
    Martins TB, Anderson JL, Muhlestein JB, Horne BD, Carlquist JF, Roberts WL, Carlquist JF (2006) Risk factor analysis of plasma cytokines in patients with coronary artery disease by a multiplexed fluorescent immunoassay. Am J Clin Pathol 125(6):906–913PubMedCrossRefGoogle Scholar
  165. 165.
    Szkodzinski J, Hudzik B, Osuch M, Romanowski W, Szygula-Jurkiewicz B, Polonski L, Zubelewicz-Szkodzinska B (2011) Serum concentrations of interleukin-4 and interferon-gamma in relation to severe left ventricular dysfunction in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Heart Vessel 26(4):399–407CrossRefGoogle Scholar
  166. 166.
    Diny NL, Baldeviano GC, Talor MV, Barin JG, Ong S, Bedja D, Hays AG, Gilotra NA, Coppens I, Rose NR, Čiháková D (2017) Eosinophil-derived IL-4 drives progression of myocarditis to inflammatory dilated cardiomyopathy. J Exp Med 214(4):943–957PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Roselló-Lletí E, Rivera M, Bertomeu V, Cortés R, Jordán A, González-Molina A (2007) Interleukin-4 and cardiac fibrosis in patients with heart failure. Rev Esp Cardiol 60(7):777–780PubMedCrossRefGoogle Scholar
  168. 168.
    Peng H, Sarwar Z, Yang XP, Peterson EL, Xu J, Janic B, Rhaleb N, Carretero OA, Rhaleb NE (2015) Profibrotic role for interleukin-4 in cardiac remodeling and dysfunction. Hypertension 66(3):582–589PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, Adachi H, Yashiro K, Suzuki K (2016) Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest 126(6):2151–6216PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Shintani Y, Ito T, Fields L, Shiraishi M, Ichihara Y, Sato N, Podaru M, Kainuma S, Tanaka H, Suzuki K (2017) IL-4 as a repurposed biological drug for myocardial infarction through augmentation of reparative cardiac macrophages: proof-of-concept data in mice. Sci Rep 7(1):6877PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Wan F, Yan K, Xu D, Qian Q, Liu H, Li M, Xu W (2017) Vγ1+γδT, early cardiac infiltrated innate population dominantly producing IL-4, protect mice against CVB3 myocarditis by modulating IFNγ+ T response. Mol Immunol 81:16–25PubMedCrossRefGoogle Scholar
  172. 172.
    Zhang Y, Zhang M, Li X, Tang Z, Wang X, Zhong M, Suo Q, Zhang Y, Lv K (2016) Silencing micro RNA-155 attenuates cardiac injury and dysfunction in viral myocarditis via promotion of M2 phenotype polarization of macrophages. Sci Rep 6:22613PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Kosmala W, Przewlocka-Kosmala M, Mazurek W (2005) Proinflammatory cytokines and myocardial viability in patients after acute myocardial infarction. Int J Cardiol 101(3):449–456PubMedCrossRefGoogle Scholar
  174. 174.
    Wilkowska A, Pikuła M, Rynkiewicz A, Wdowczyk-Szulc J, Trzonkowski P, Landowski J (2015) Increased plasma pro-inflammatory cytokine concentrations after myocardial infarction and the presence of depression during next 6-months. Psychiatr Pol 49(3):455–464PubMedCrossRefGoogle Scholar
  175. 175.
    Zhao XJ, Liu XL, He GX, Xu HP (2014) Effects of single-dose atorvastatin on interleukin-6, interferon gamma, and myocardial no-reflow in a rabbit model of acute myocardial infarction and reperfusion. Braz J Med Biol Res 47(3):245–251PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Chandrasekar B, Mitchell DH, Colston JT, Freeman GL (1999) Regulation of CCAAT/Enhancer binding protein, interleukin-6, interleukin-6 receptor, and gp130 expression during myocardial ischemia/reperfusion. Circulation 99(3):427–433PubMedCrossRefGoogle Scholar
  177. 177.
    Anderson DR, Poterucha JT, Mikuls TR, Duryee MJ, Garvin RP, Klassen LW, Shurmur SW, Thiele GM (2013) IL-6 and its receptors in coronary artery disease and acute myocardial infarction. Cytokine 62(3):395–400PubMedCrossRefGoogle Scholar
  178. 178.
    Fahmi A, Smart N, Punn A, Jabr R, Marber M, Heads R (2013) p42/p44-MAPK and PI3K are sufficient for IL-6 family cytokines/gp130 to signal to hypertrophy and survival in cardiomyocytes in the absence of JAK/STAT activation. Cell Signal 25(4):898–909PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Nishino M, Kimura T, Kanda T, Kotajima N, Yoshida A, Kuwabara A, Tamama K, Fukumura Y, Kobayashi I (2000) Circulating interleukin-6 significantly correlates to thyroid hormone in acute myocardial infarction but not in chronic heart failure. J Endocrinol Investig 23(8):509–514CrossRefGoogle Scholar
  180. 180.
    Debrunner M, Schuiki E, Minder E, Straumann E, Naegeli B, Mury R, Bertel O, Frielingsdorf J (2008) Proinflammatory cytokines in acute myocardial infarction with and without cardiogenic shock. Clin Res Cardiol 97(5):298–305PubMedCrossRefGoogle Scholar
  181. 181.
    Fanola CL, Morrow DA, Cannon CP, Jarolim P, Lukas MA, Bode C, Hochman JS, Goodrich EL, Braunwald E, O'Donoghue ML (2017) Interleukin-6 and the risk of adverse outcomes in patients after an acute coronary syndrome: observations from the SOLID-TIMI 52 (Stabilization of Plaque Using Darapladib-Thrombolysis in Myocardial Infarction 52) trial. J Am Heart Assoc 6(10):e005637PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Held C, White HD, Stewart RAH, Budaj A, Cannon CP, Hochman JS, Koenig W, Siegbahn A, Steg PG, Soffer J, Weaver WD, Östlund O, Wallentin L, STABILITY Investigators (2017) Inflammatory biomarkers interleukin-6 and C-reactive protein and outcomes in stable coronary heart disease: experiences from the STABILITY (Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy) trial. J Am Heart Assoc 6(10):e005077PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Mayfield AE, Kanda P, Nantsios A, Parent S, Mount S, Dixit S, Ye B, Seymour R, Stewart DJ, Davis DR (2017) Interleukin-6 mediates post-infarct repair by cardiac explant-derived stem cells. Theranostics 7(19):4850–4861 eCollection 2017PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Parissis JT, Adamopoulos SN, Venetsanou KF, Karas SM, Kremastinos DT (2003) Elevated plasma amylase levels in advanced chronic heart failure secondary to ischemic or idiopathic dilated cardiomyopathy: correlation with circulating interleukin-6 activity. J Interf Cytokine Res 23(6):329–333CrossRefGoogle Scholar
  185. 185.
    Högye M, Mándi Y, Csanády M, Sepp R, Buzás K (2004) Comparison of circulating levels of interleukin-6 and tumor necrosis factor-alpha in hypertrophic cardiomyopathy and in idiopathic dilated cardiomyopathy. Am J Cardiol 94(2):249–251PubMedCrossRefGoogle Scholar
  186. 186.
    Liaquat A, Asifa GZ, Zeenat A, Javed Q (2014) Polymorphisms of tumor necrosis factor-alpha and interleukin-6 gene and C-reactive protein profiles in patients with idiopathic dilated cardiomyopathy. Ann Saudi Med 34(5):407–414PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Liaquat A, Shauket U, Ahmad W, Javed Q (2015) The tumor necrosis factor-α -238G/A and IL-6 -572G/C gene polymorphisms and the risk of idiopathic dilated cardiomyopathy: a meta-analysis of 25 studies including 9493 cases and 13,971 controls. Clin Chem Lab Med 53(2):307–318PubMedCrossRefGoogle Scholar
  188. 188.
    Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193:1007–1008PubMedCrossRefGoogle Scholar
  189. 189.
    Kim HP, Imbert J, Leonard WJ (2006) Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev 17(5):349–366PubMedCrossRefGoogle Scholar
  190. 190.
    Liao W, Lin JX, Leonard WJ (2011) IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr Opin Immunol 23(5):598–604PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Citterio G, Fragasso G, Rossetti E, Di Lucca G, Bucci E, Foppoli M, Guerrieri R, Matteucci P, Polastri D, Scaglietti U, Tresoldi M, Chierchia SL, Rugarli C (1996) Isolated left ventricular filling abnormalities may predict interleukin-2-induced cardiovascular toxicity. J Immunother Emphasis Tumor Immunol 19(2):134–141PubMedCrossRefGoogle Scholar
  192. 192.
    Mazzone A, De Servi S, Vezzoli M, Fossati G, Mazzucchelli I, Gritti D, Ottini E, Mussini A, Specchia G (1999) Plasma levels of interleukin 2, 6, 10 and phenotypic characterization of circulating T lymphocytes in ischemic heart disease. Atherosclerosis 145(2):369–374PubMedCrossRefGoogle Scholar
  193. 193.
    Quinaglia e Silva JC, Coelho-Filho OR, Andrade JM, Quinaglia T, Modolo RG, Almeida BO, van der Geest RJ, Jerosch-Herold M, Coelho OR, Sposito AC, Brasilia Heart Study Group (2014) Peri-infarct zone characterized by cardiac magnetic resonance imaging is directly associated with the inflammatory activity during acute phase myocardial infarction. Inflammation 37(3):678–685PubMedGoogle Scholar
  194. 194.
    Li SH, Chen WJ, Yan M, Shu YW, Liao YH (2015) Expression of coinhibitory PD-L1 on CD4+CD25+FOXP3+ regulatory T cells is elevated in patients with acute coronary syndrome. Coron Artery Dis 26(7):598–603PubMedCrossRefGoogle Scholar
  195. 195.
    Nabata T, Fukuo K, Morimoto S, Kitano S, Momose N, Hirotani A, Nakahashi T, Nishibe A, Hata S, Niinobu T, Suhara T, Shimizu M, Ohkuma H, Sakurai S, Nishimaki H, Ogihara T (1997) Interleukin-2 modulates the responsiveness to angiotensin II in cultured vascular smooth muscle cells. Atherosclerosis 133(1):23–30PubMedCrossRefGoogle Scholar
  196. 196.
    Blum A, Sclarovsky S, Shohat B (1995) T lymphocyte activation in stable angina pectoris and after percutaneous transluminal coronary angioplasty. Circulation 91(1):20–22PubMedCrossRefGoogle Scholar
  197. 197.
    Abbate A, Vecile E, Fiotti N, Giansante C, Guarnieri G, Di Sciascio G, Dobrina A (2003) Plasma concentrations of interleukin-2 soluble receptor in mild ischaemic left ventricular dysfunction. Eur J Heart Fail 5(1):23–25PubMedCrossRefGoogle Scholar
  198. 198.
    Limas CJ, Goldenberg IF, Limas C (1995) Soluble interleukin-2 receptor levels in patients with dilated cardiomyopathy. Correlation with disease severity and cardiac autoantibodies. Circulation 91(3):631–634PubMedCrossRefGoogle Scholar
  199. 199.
    Caforio AL, Goldman JH, Baig MK, Mahon NJ, Haven AJ, Souberbielle BE, Holt DW, Dalgleish AG, McKenna WJ (2001) Elevated serum levels of soluble interleukin-2 receptor, neopterin and beta-2-microglobulin in idiopathic dilated cardiomyopathy: relation to disease severity and autoimmune pathogenesis. Eur J Heart Fail 3(2):155–163PubMedCrossRefGoogle Scholar
  200. 200.
    Koch M, Savvatis K, Scheeler M, Dhayat S, Bonaventura K, Pohl T, Riad A, Bulfone-Paus S, Schultheiss HP, Tschöpe C (2010) Immunosuppression with an interleukin-2 fusion protein leads to improved LV function in experimental ischemic cardiomyopathy. Int Immunopharmacol 10(2):207–212PubMedCrossRefGoogle Scholar
  201. 201.
    Borg N, Alter C, Görldt N, Jacoby C, Ding Z, Steckel B, Quast C, Bönner F, Friebe D, Temme S, Flögel U, Schrader J (2017) CD73 on T cells orchestrates cardiac wound healing after myocardial infarction by purinergic metabolic reprogramming. Circulation 136(3):297–313PubMedCrossRefGoogle Scholar
  202. 202.
    Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE (1999) The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol 17:701–738PubMedCrossRefGoogle Scholar
  203. 203.
    Mowen KA, Glimcher LH (2004) Signaling pathways in Th2 development. Immunol Rev 202:203–222PubMedCrossRefGoogle Scholar
  204. 204.
    Luzina IG, Keegan AD, Heller NM, Rook GAW, Shea-Donohue T, Atamas SP (2012) Regulation of inflammation by interleukin-4: a review of “alternatives”. J Leukoc Biol 92(4):753–764PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS, Hamilton JA (1989) Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci U S A 86:3803–3807PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Major J, Fletcher JE, Hamilton TA (2002) IL-4 pretreatment selectively enhances cytokine and chemokine production in lipopolysaccharide-stimulated mouse peritoneal macrophages. J Immunol 168:2456–2463PubMedCrossRefGoogle Scholar
  207. 207.
    Paffen E, Medina P, de Visser MC, van Wijngaarden A, Zorio E, Estellés A, Rosendaal FR, España F, Bertina RM, Doggen CJ (2008) The -589C>T polymorphism in the interleukin-4 gene (IL-4) is associated with a reduced risk of myocardial infarction in young individuals. J Thromb Haemost 6(10):1633–1638PubMedCrossRefGoogle Scholar
  208. 208.
    Cheng X, Liao YH, Ge H, Li B, Zhang J, Yuan J, Wang M, Liu Y, Guo Z, Chen J, Zhang J, Zhang L (2005) TH1/TH2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol 25(3):246–253PubMedCrossRefGoogle Scholar
  209. 209.
    Moro C, Jouan MG, Rakotovao A, Toufektsian MC, Ormezzano O, Nagy N, Tosaki A, de Leiris J, Boucher F (2007) Delayed expression of cytokines after reperfused myocardial infarction: possible trigger for cardiac dysfunction and ventricular remodeling. Am J Physiol Heart Circ Physiol 293(5):H3014–H3019PubMedCrossRefGoogle Scholar
  210. 210.
    Lachtermacher S, Esporcatte BL, Montalvão F, Costa PC, Rodrigues DC, Belem L, Rabischoffisky A, Faria Neto HC, Vasconcellos R, Iacobas S, Iacobas DA, Dohmann HF, Spray DC, Goldenberg RC, Campos-de-Carvalho AC (2010) Cardiac gene expression and systemic cytokine profile are complementary in a murine model of post-ischemic heart failure. Braz J Med Biol Res 43(4):377–389PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Zhang S, Liu X, Sun C, Yang J, Wang L, Liu J, Gong L, Jing Y (2016) Apigenin attenuates experimental autoimmune myocarditis by modulating Th1/Th2 cytokine balance in mice. Inflammation 39(2):678–686PubMedCrossRefGoogle Scholar
  212. 212.
    Bossa AS, Salemi VM, Ribeiro SP, Rosa DS, Ferreira LR, Ferreira SC, Nishiya AS, Mady C, Kalil J, Cunha-Neto E (2014) Plasma cytokine profile in tropical endomyocardial fibrosis: predominance of TNF-a, IL-4 and IL-10. PLoS One 9(10):e108984PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Tanaka T, Narazaki M, Kishimoto T (2014) IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6(10):a016295PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Mihara M, Hashizume M, Yoshida H, Suzuki M, Shiina M (2012) IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 122(4):143–159CrossRefGoogle Scholar
  215. 215.
    Miyao Y, Yasue H, Ogawa H, Misumi I, Masuda T, Sakamoto T, Morita E (1993) Elevated plasma interleukin-6 levels in patients with acute myocardial infarction. Am Heart J 126(6):1299–1304PubMedCrossRefGoogle Scholar
  216. 216.
    Jong WM, Ten Cate H, Linnenbank AC, de Boer OJ, Reitsma PH, de Winter RJ, Zuurbier CJ (2016) Reduced acute myocardial ischemia-reperfusion injury in IL-6-deficient mice employing a closed-chest model. Inflamm Res 65(6):489–499PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Hartman MH, Vreeswijk-Baudoin I, Groot HE, van de Kolk KW, de Boer RA, Mateo Leach I, Vliegenthart R, Sillje HH, van der Harst P (2016) Inhibition of interleukin-6 receptor in a murine model of myocardial ischemia-reperfusion. PLoS One 11(12):e0167195PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Kleveland O, Kunszt G, Bratlie M, Ueland T, Broch K, Holte E, Michelsen AE, Bendz B, Amundsen BH6, Espevik T9, Aakhus S10, Damås JK9, Aukrust P11, Wiseth R6, Gullestad L (2016) Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur Heart J 37(30):2406–2413PubMedCrossRefGoogle Scholar
  219. 219.
    Holte E, Kleveland O, Ueland T, Kunszt G, Bratlie M, Broch K, Michelsen AE, Bendz B, Amundsen BH, Aakhus S, Damås JK, Gullestad L, Aukrust P, Wiseth R (2017) Effect of interleukin-6 inhibition on coronary microvascular and endothelial function in myocardial infarction. Heart 103(19):1521–1527PubMedCrossRefGoogle Scholar
  220. 220.
    Gabriel AS, Martinsson A, Wretlind B, Ahnve S (2004) IL-6 levels in acute and post myocardial infarction: their relation to CRP levels, infarction size, left ventricular systolic function, and heart failure. Eur J Intern Med 15(8):523–528PubMedCrossRefGoogle Scholar
  221. 221.
    Dawn B, Xuan YT, Guo Y, Rezazadeh A, Stein AB, Hunt G, Wu WJ, Tan W, Bolli R (2004) IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovasc Res 64(1):61–71PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Roig E, Orús J, Paré C, Azqueta M, Filella X, Perez-Villa F, Heras M, Sanz G (1998) Serum interleukin-6 in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol 82(5):688–690PubMedCrossRefGoogle Scholar
  223. 223.
    Matsumura T, Tsushima K, Ohtaki E, Misu K, Tohbaru T, Asano R, Nagayama M, Kitahara K, Umemura J, Sumiyoshi T, Hosoda S (2002) Effects of carvedilol on plasma levels of interleukin-6 and tumor necrosis factor-alpha in nine patients with dilated cardiomyopathy. J Cardiol 39(5):253–257PubMedGoogle Scholar
  224. 224.
    Plenz G, Song ZF, Reichenberg S, Tjan TD, Robenek H, Deng MC (1998) Left-ventricular expression of interleukin-6 messenger-RNA higher in idiopathic dilated than in ischemic cardiomyopathy. Thorac Cardiovasc Surg 46(4):213–216PubMedCrossRefGoogle Scholar
  225. 225.
    Ma LP, Premaratne G, Bollano E, Lindholm C, Fu M (2012) Interleukin-6-deficient mice resist development of experimental autoimmune cardiomyopathy induced by immunization of β1-adrenergic receptor. Int J Cardiol 155(1):20–25PubMedCrossRefGoogle Scholar
  226. 226.
    Fontes JA, Rose NR, Čiháková D (2015) The varying faces of IL-6: from cardiac protection to cardiac failure. Cytokine 74(1):62–68PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843(11):2563–2582PubMedCrossRefGoogle Scholar
  228. 228.
    Alfaro C, Sanmamed MF, Rodríguez-Ruiz ME, Teijeira Á, Oñate C, González Á, Ponz M, Schalper KA, Pérez-Gracia JL, Melero I (2017) Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 60:24–31PubMedCrossRefGoogle Scholar
  229. 229.
    Oz MC, Liao H, Naka Y, Seldomridge A, Becker DN, Michler RE, Smith CR, Rose EA, Stern DM, Pinsky DJ (1995) Ischemia-induced interleukin-8 release after human heart transplantation. A potential role for endothelial cells. Circulation 92:II428–II432PubMedCrossRefGoogle Scholar
  230. 230.
    Wan S, Marchant A, DeSmet JM, Antoine M, Zhang H, Vachiery JL, Goldman M, Vincent JL, LeClerc JL (1996) Human cytokine responses to cardiac transplantation and coronary artery bypass grafting. J Thorac Cardiovasc Surg 111(2):469–477PubMedCrossRefGoogle Scholar
  231. 231.
    Abe Y, Kawakami M, Kuroki M, Yamamoto T, Fujii M, Kobayashi H, Yaginuma T, Kashii A, Saito M, Matsushima K (1993) Transient rise in serum interleukin-8 concentration during acute myocardial infarction. Br Heart J 70(2):132–134PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Dybdahl B, Slørdahl SA, Waage A, Kierulf P, Espevik T, Sundan A (2005) Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart 91(3):299–304PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Zarrouk-Mahjoub S, Zaghdoudi M, Amira Z, Chebi H, Khabouchi N, Finsterer J, Mechmeche R, Ghazouani E (2016) Pro- and anti-inflammatory cytokines in post-infarction left ventricular remodeling. Int J Cardiol 221:632–636PubMedCrossRefGoogle Scholar
  234. 234.
    Lu L, Wei P, Cao Y, Zhang Q, Liu M, Liu XD, Wang ZL, Zhang PY (2016) Effect of total peony glucoside pretreatment on NF-κB and ICAM-1 expression in myocardial tissue of rat with myocardial ischemia-reperfusion injury. Genet Mol Res 15(4)Google Scholar
  235. 235.
    Kukielka GL, Smith CW, LaRosa GJ, Manning AM, Mendoza LH, Daly TJ, Hughes BJ, Youker KA, Hawkins HK, Michael LH et al (1995) Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo. J Clin Invest 95(1):89–103PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Hu L, Cai N, Jia H (2017) Pterostilbene attenuates myocardial ischemia-reperfusion injury via the phosphatidylinositol 3'-kinase-protein kinase B signaling pathway. Exp Ther Med 14(6):5509–5514PubMedPubMedCentralGoogle Scholar
  237. 237.
    Boyle EM Jr, Kovacich JC, Hèbert CA, Canty TG Jr, Chi E, Morgan EN, Pohlman TH, Verrier ED (1998) Inhibition of interleukin-8 blocks myocardial ischemia-reperfusion injury. J Thorac Cardiovasc Surg 116(1):114–121PubMedCrossRefGoogle Scholar
  238. 238.
    Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler AA 3rd, Kukreja RC (2005) HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 289(2):H542–H548PubMedCrossRefGoogle Scholar
  239. 239.
    Cavusoglu E, Marmur JD, Yanamadala S, Chopra V, Hegde S, Nazli A, Singh KP, Zhang M, Eng C (2015) Elevated baseline plasma IL-8 levels are an independent predictor of long-term all-cause mortality in patients with acute coronary syndrome. Atherosclerosis 242(2):589–594PubMedCrossRefGoogle Scholar
  240. 240.
    Zhang X, Zhang B, Zhang M, Han Y, Zhao Y, Meng Z, Li X, Kang J, Yan C (2011) Interleukin-8 gene polymorphism is associated with acute coronary syndrome in the Chinese Han population. Cytokine 56(2):188–191PubMedCrossRefGoogle Scholar
  241. 241.
    Dominguez-Rodriguez A, Abreu-Gonzalez P, Garcia-Gonzalez M, Ferrer J (2006) Prognostic value of interleukin-8 as a predictor of heart failure in patients with myocardial infarction and percutaneous intervention. Int J Cardiol 111(1):158-160.Google Scholar
  242. 242.
    Husebye T, Eritsland J, Arnesen H, Bjørnerheim R, Mangschau A, Seljeflot I, Andersen GØ (2014) Association of interleukin 8 and myocardial recovery in patients with ST-elevation myocardial infarction complicated by acute heart failure. PLoS One 9(11):e112359PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Velásquez IM, Frumento P, Johansson K, Berglund A, de Faire U, Leander K, Gigante B (2014) Association of interleukin 8 with myocardial infarction: results from the Stockholm Heart Epidemiology Program. Int J Cardiol 172(1):173–178PubMedCrossRefGoogle Scholar
  244. 244.
    Frangogiannis NG, Entman ML (2005) Chemokines in myocardial ischemia. Trends Cardiovasc Med 15(5):163–169PubMedCrossRefGoogle Scholar
  245. 245.
    Haleagrahara N, Chakravarthi S, Mathews L (2011) Insulin like growth factor-1 (IGF-1) causes overproduction of IL-8, an angiogenic cytokine and stimulates neovascularization in isoproterenol-induced myocardial infarction in rats. Int J Mol Sci 12(12):8562–8574PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Schömig K, Busch G, Steppich B, Sepp D, Kaufmann J, Stein A, Schömig A, Ott I (2006) Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. Eur Heart J 27(9):1032–1037PubMedCrossRefGoogle Scholar
  247. 247.
    Zhao X, Zhang W, Xing D, Li P, Fu J, Gong K, Hage FG, Oparil S, Chen YF (2013) Endothelial cells overexpressing IL-8 receptor reduce cardiac remodeling and dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 305(4):H590–H598PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Kaur K, Sharma AK, Singal PK (2006) Significance of changes in TNF-alpha and IL-10 levels in the progression of heart failure subsequent to myocardial infarction. Am J Physiol Heart Circ Physiol 291(1):H106–H113PubMedCrossRefGoogle Scholar
  249. 249.
    El Azab SR, Rosseel PM, de Lange JJ, Groeneveld AB, van Strik R, van Wijk EM, Scheffer GJ (2002) Dexamethasone decreases the pro- to anti-inflammatory cytokine ratio during cardiac surgery. Br J Anaesth 88(4):496–501PubMedCrossRefGoogle Scholar
  250. 250.
    Adamopoulos S, Parissis JT, Paraskevaidis I, Karatzas D, Livanis E, Georgiadis M, Karavolias G, Mitropoulos D, Degiannis D, Kremastinos DT (2003) Effects of growth hormone on circulating cytokine network, and left ventricular contractile performance and geometry in patients with idiopathic dilated cardiomyopathy. Eur Heart J 24(24):2186–2196PubMedCrossRefGoogle Scholar
  251. 251.
    Zhang W, Xing B, Yang L, Shi J, Zhou X (2015) Icaritin attenuates myocardial ischemia and reperfusion injury via anti-inflammatory and anti-oxidative stress effects in rats. Am J Chin Med 43(6):1083–1097PubMedCrossRefGoogle Scholar
  252. 252.
    Chang C, Ji Q, Wu B, Yu K, Zeng Q, Xin S, Liu J, Zhou Y (2015) Chemerin 15-Ameliorated cardiac ischemia-reperfusion injury is associated with the induction of alternatively activated macrophages. Mediat Inflamm 2015:563951CrossRefGoogle Scholar
  253. 253.
    Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marbán L, Marbán E (2017) Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med 9(3):337–352PubMedPubMedCentralCrossRefGoogle Scholar
  254. 254.
    Chen H, Jing XY, Shen YJ, Wang TL, Ou C, Lu SF, Cai Y, Li Q, Ding YJ, Yu XC, Zhu BM (2018) Stat5-dependent cardioprotection in late remote ischemia preconditioning. Cardiovasc Res doi. [Epub ahead of print]
  255. 255.
    Dhingra S, Bagchi AK, Ludke AL, Sharma AK, Singal PK (2011) Akt regulates IL-10 mediated suppression of TNFα-induced cardiomyocyte apoptosis by upregulating Stat3 phosphorylation. PLoS One 6(9):e25009PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Dhingra S, Sharma AK, Singla DK, Singal PK (2007) p38 and ERK1/2 MAPKs mediate the interplay of TNF-alpha and IL-10 in regulating oxidative stress and cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 293(6):H3524–H3531PubMedCrossRefGoogle Scholar
  257. 257.
    Dhingra S, Sharma AK, Arora RC, Slezak J, Singal PK (2009) IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res 82(1):59–66PubMedCrossRefGoogle Scholar
  258. 258.
    Bagchi AK, Sharma A, Dhingra S, Lehenbauer Ludke AR, Al-Shudiefat AA, Singal PK (2013) Interleukin-10 activates Toll-like receptor 4 and requires MyD88 for cardiomyocyte survival. Cytokine 61(1):304–314PubMedCrossRefGoogle Scholar
  259. 259.
    Bagchi AK, Akolkar G, Mandal S, Ayyappan P, Yang X, Singal PK (2017) Toll-like receptor 2 dominance over Toll-like receptor 4 in stressful conditions for its detrimental role in the heart. Am J Physiol Heart Circ Physiol 312(6):H1238–H1247PubMedCrossRefGoogle Scholar
  260. 260.
    Kesherwani V, Chavali V, Hackfort BT, Tyagi SC, Mishra PK (2015) Exercise ameliorates high fat diet induced cardiac dysfunction by increasing interleukin 10. Front Physiol 6:124PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Ukimura A, Terasaki F, Fujioka S, Deguchi H, Kitaura Y, Isomura T, Suma H (2003) Quantitative analysis of cytokine mRNA expression in hearts from patients with nonischemic dilated cardiomyopathy (DCM). J Card Surg 18:S101–S108PubMedCrossRefGoogle Scholar
  262. 262.
    Guo Y, Cen Z, Wei B, Wu W, Zhou Q (2015) Increased circulating interleukin 10-secreting B cells in patients with dilated cardiomyopathy. Int J Clin Exp Pathol 8(7):8107–8114PubMedPubMedCentralGoogle Scholar
  263. 263.
    Izumi T, Nishii M (2012) Diagnostic and prognostic biomarkers in acute myocarditis. Interleukin-10. Herz 37(6):627–631PubMedCrossRefGoogle Scholar
  264. 264.
    Santoro F, Tarantino N, Ferraretti A, Ieva R, Musaico F, Guastafierro F, Di Martino L, Di Biase M, Brunetti ND (2016) Serum interleukin 6 and 10 levels in Takotsubo cardiomyopathy: increased admission levels may predict adverse events at follow-up. Atherosclerosis 254:28–34PubMedCrossRefGoogle Scholar
  265. 265.
    Seta Y, Kanda T, Tanaka T, Arai M, Sekiguchi K, Yokoyama T, Kurimoto M, Tamura J, Kurabayashi M (2000) Interleukin 18 in acute myocardial infarction. Heart 84(6):668PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Kawasaki D, Tsujino T, Morimoto S, Masai M, Masutani M, Ohyanagi M, Kashiwamura S, Okamura H, Masuyama T (2005) Plasma interleukin-18 concentration: a novel marker of myocardial ischemia rather than necrosis in humans. Coron Artery Dis 16(7):437–441PubMedCrossRefGoogle Scholar
  267. 267.
    Yamaoka-Tojo M, Tojo T, Inomata T, Machida Y, Osada K, Izumi T (2002) Circulating levels of interleukin 18 reflect etiologies of heart failure: Th1/Th2 cytokine imbalance exaggerates the pathophysiology of advanced heart failure. J Card Fail 8(1):21–27PubMedCrossRefGoogle Scholar
  268. 268.
    Woldbaek PR, Tønnessen T, Henriksen UL, Florholmen G, Lunde PK, Lyberg T, Christensen G (2003) Increased cardiac IL-18 mRNA, pro-IL-18 and plasma IL-18 after myocardial infarction in the mouse; a potential role in cardiac dysfunction. Cardiovasc Res 59(1):122–131PubMedCrossRefGoogle Scholar
  269. 269.
    Mallat Z, Heymes C, Corbaz A, Logeart D, Alouani S, Cohen-Solal A, Seidler T, Hasenfuss G, Chvatchko Y, Shah AM, Tedgui A (2004) Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. FASEB J 18(14):1752–1754PubMedCrossRefGoogle Scholar
  270. 270.
    Dinarello CA (2001) Novel targets for interleukin 18 binding protein. Ann Rheum Dis 60 Suppl 3:iii18-24.Google Scholar
  271. 271.
    Gu H, Xie M, Xu L, Zheng X, Yang Y, Lv X (2015) The protective role of interleukin-18 binding protein in a murine model of cardiac ischemia/reperfusion injury. Transpl Int 28(12):1436–1444PubMedCrossRefGoogle Scholar
  272. 272.
    Venkatachalam K, Prabhu SD, Reddy VS, Boylston WH, Valente AJ, Chandrasekar B (2009) Neutralization of interleukin-18 ameliorates ischemia/reperfusion-induced myocardial injury. J Biol Chem 284(12):7853–7865PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Westphal E, Rohrbach S, Buerke M, Behr H, Darmer D, Silber RE, Werdan K, Loppnow H (2008) Altered interleukin-1 receptor antagonist and interleukin-18 mRNA expression in myocardial tissues of patients with dilatated cardiomyopathy. Mol Med 14(1-2):55–63PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Kanda T, Tanaka T, Sekiguchi K, Seta Y, Kurimoto M, Wilson McManus JE, Nagai R, Yang D, McManus BM, Kobayashi I (2000) Effect of interleukin-18 on viral myocarditis: enhancement of interferon- gamma and natural killer cell activity. J Mol Cell Cardiol 32(12):2163–2171PubMedCrossRefGoogle Scholar
  275. 275.
    Yoshida A, Kand T, Tanaka T, Yokoyama T, Kurimoto M, Tamura J, Kobayashi I (2002) Interleukin-18 reduces expression of cardiac tumor necrosis factor-alpha and atrial natriuretic peptide in a murine model of viral myocarditis. Life Sci 70(11):1225–1234PubMedCrossRefGoogle Scholar
  276. 276.
    Glück B, Schmidtke M, Merkle I, Stelzner A, Gemsa D (2001) Persistent expression of cytokines in the chronic stage of CVB3-induced myocarditis in NMRI mice. J Mol Cell Cardiol 33(9):1615–1626PubMedCrossRefGoogle Scholar
  277. 277.
    Fairweather D, Yusung S, Frisancho S, Barrett M, Gatewood S, Steele R, Rose NR (2003) IL-12 receptor beta 1 and Toll-like receptor 4 increase IL-1 beta- and IL-18-associated myocarditis and coxsackievirus replication. J Immunol 170(9):4731–4737PubMedCrossRefGoogle Scholar
  278. 278.
    Esper L, Utsch L, Soriani FM, Brant F, Esteves Arantes RM, Campos CF, Pinho V, Souza DG, Teixeira MM, Tanowitz HB, Vieira LQ, Machado FS (2014) Regulatory effects of IL-18 on cytokine profiles and development of myocarditis during Trypanosoma cruzi infection. Microbes Infect 16(6):481–490PubMedCrossRefGoogle Scholar
  279. 279.
    van Hout GP, Bosch L, Ellenbroek GH, de Haan JJ, van Solinge WW, Cooper MA, Arslan F, de Jager SC, Robertson AA, Pasterkamp G, Hoefer IE (2017) The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 38(11):828–836PubMedGoogle Scholar
  280. 280.
    Su Z, Lin R, Chen Y, Shu X, Zhang H, Nie R, Wang J, Xie S (2015) Knockdown of EMMPRIN improves adverse remodeling mediated by IL-18 in the post-infarcted heart. Am J Transl Res 7(10):1908–1916PubMedPubMedCentralGoogle Scholar
  281. 281.
    Mosser DM, Zhang X (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226:205–218PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Kaur K, Dhingra S, Slezak J, Sharma AK, Bajaj A, Singal PK (2009) Biology of TNFalpha and IL-10, and their imbalance in heart failure. Heart Fail Rev 14(2):113–123PubMedCrossRefGoogle Scholar
  283. 283.
    Huber SA, Feldman AM, Sartini D (2006) Coxsackievirus B3 induces T regulatory cells, which inhibit cardiomyopathy in tumor necrosis factor-alpha transgenic mice. Circ Res 99(10):1109–1116PubMedCrossRefGoogle Scholar
  284. 284.
    Dinarello CA (2000) Interleukin-18, a proinflammatory cytokine. Eur Cytokine Netw 11(3):483–486PubMedGoogle Scholar
  285. 285.
    Biet F, Locht C, Kremer L (2002) Immunoregulatory functions of interleukin 18 and its role in defense against bacterial pathogens. J Mol Med 80(3):147–162PubMedCrossRefGoogle Scholar
  286. 286.
    Chandrasekar B, Colston JT, de la Rosa SD, Rao PP, Freeman GL (2003) TNF-alpha and H2O2 induce IL-18 and IL-18R beta expression in cardiomyocytes via NF-kappa B activation. Biochem Biophys Res Commun 303(4):1152–1158PubMedCrossRefGoogle Scholar
  287. 287.
    Mallat Z, Henry P, Fressonnet R, Alouani S, Scoazec A, Beaufils P, Chvatchko Y, Tedgui A (2002) Increased plasma concentrations of interleukin-18 in acute coronary syndromes. Heart 88(5):467–469PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Suchanek H, Myśliwska J, Siebert J, Wieckiewicz J, Hak Ł, Szyndler K, Kartanowicz D (2005) High serum interleukin-18 concentrations in patients with coronary artery disease and type 2 diabetes mellitus. Eur Cytokine Netw 16(3):177–185PubMedGoogle Scholar
  289. 289.
    Blankenberg S, Luc G, Ducimetière P, Arveiler D, Ferrières J, Amouyel P, Evans A, Cambien F, Tiret L, PRIME Study Group (2003) Interleukin-18 and the risk of coronary heart disease in European men: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation 108(20):2453–2459PubMedCrossRefPubMedCentralGoogle Scholar
  290. 290.
    Koenig W, Khuseyinova N, Baumert J, Thorand B, Loewel H, Chambless L, Meisinger C, Schneider A, Martin S, Kolb H, Herder C (2006) Increased concentrations of C-reactive protein and IL-6 but not IL-18 are independently associated with incident coronary events in middle-aged men and women: results from the MONICA/KORA Augsburg case-cohort study, 1984-2002. Arterioscler Thromb Vasc Biol 26(12):2745–2751PubMedCrossRefGoogle Scholar
  291. 291.
    Jefferis BJ, Whincup PH, Welsh P, Wannamethee SG, Rumley A, Ebrahim S, Lawlor DA, Lowe GD (2013) Prospective study of IL-18 and risk of MI and stroke in men and women aged 60-79 years: a nested case-control study. Cytokine 61(2):513–520PubMedPubMedCentralCrossRefGoogle Scholar
  292. 292.
    Opstad TB, Arnesen H, Pettersen AÅ, Seljeflot I (2016) Combined elevated levels of the proinflammatory cytokines IL-18 and IL-12 are associated with clinical events in patients with coronary artery disease: an observational study. Metab Syndr Relat Disord 14(5):242–248PubMedCrossRefGoogle Scholar
  293. 293.
    Opstad TB, Pettersen AÅ, Arnesen H, Seljeflot I (2013) The co-existence of the IL-18+183 A/G and MMP-9 -1562 C/T polymorphisms is associated with clinical events in coronary artery disease patients. PLoS One 8(9):e74498PubMedPubMedCentralCrossRefGoogle Scholar
  294. 294.
    Jadranko S, Tokmadzic VS, Danijel K, Igor M, Nada VD, Sanja B, Marijana R, Ana LB, Gordana L (2017) Endothelial dysfunction mediated by interleukin-18 in patients with ischemic heart disease undergoing coronary artery bypass grafting surgery. Med Hypotheses 104:20–24PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Monika Bartekova
    • 1
    • 2
  • Jana Radosinska
    • 1
    • 2
  • Marek Jelemensky
    • 1
  • Naranjan S Dhalla
    • 3
    • 4
    Email author
  1. 1.Institute for Heart Research, Centre of Experimental MedicineSlovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Institute of Physiology, Faculty of MedicineComenius University in BratislavaBratislavaSlovak Republic
  3. 3.Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CenterWinnipegCanada
  4. 4.Department of Physiology and Pathophysiology, Max Rady College of MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations