Advertisement

Heart Failure Reviews

, Volume 23, Issue 5, pp 609–629 | Cite as

Therapy for heart failure with preserved ejection fraction: current status, unique challenges, and future directions

  • Bharathi Upadhya
  • Mark J. Haykowsky
  • Dalane W. KitzmanEmail author
Article

Abstract

Heart failure (HF) with preserved ejection fraction (HFpEF) is the most common form of HF. Among elderly women, HFpEF comprises more than 80% of incident HF cases. Adverse outcomes—exercise intolerance, poor quality of life, frequent hospitalizations, and reduced survival—approach those of classic HF with reduced EF (HFrEF). However, despite its importance, our understanding of the pathophysiology of HFpEF is incomplete, and despite intensive efforts, optimal therapy remains uncertain, as most trials to date have been negative. This is in stark contrast to management of HFrEF, where dozens of positive trials have established a broad array of effective, guidelines-based therapies that definitively improve a range of clinically meaningful outcomes. In addition to providing an overview of current management status, we examine evolving data that may help explain this paradox, overcome past challenges, provide a roadmap for future success, and that underpin a wave of new trials that will test novel approaches based on these insights.

Keywords

Heart failure Preserved ejection fraction Therapy 

Notes

Compliance with ethical standards

Potential financial conflict of interest

D.W.K. declares the following relationships: consultant for Abbvie, Bayer, Merck, Medtronic, GSK, Relypsa, Regeneron, Merck, Corvia Medical, DCRI, and Actavis, research grant funding from Novartis, St. Luke’s Medical Center, and stock ownership in Gilead Sciences.

B.U. has received research funding from Novartis and Corvia.

References

  1. 1.
    Kitzman DW, Gardin JM, Gottdiener JS et al (2001) Importance of heart failure with preserved systolic function in patients > or = 65 years of age. CHS Research Group. Cardiovascular Health Study. Am J Cardiol 87:413–419PubMedCrossRefGoogle Scholar
  2. 2.
    Aurigemma GP, Gottdiener JS, Shemanski L, Gardin JM, Kitzman DW (2001) Predictive value of systolic and diastolic function for incident congestive heart failure in the elderly: The Cardiovacular Health Study. J Am Coll Cardiol 37:1042–1048PubMedCrossRefGoogle Scholar
  3. 3.
    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259PubMedCrossRefGoogle Scholar
  4. 4.
    Dunlay SM, Redfield MM, Weston SA et al (2009) Hospitalizations after heart failure diagnosis: a community perspective. J Am Coll Cardiol 54:1695–1702PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Yancy CW, Jessup M, Bozkurt B et al (2017) 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure. J Am Coll Cardiol 70:776–803PubMedCrossRefGoogle Scholar
  6. 6.
    Wright JT Jr, Williamson JD, Whelton PK et al (2015) A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 373:2103–2116PubMedCrossRefGoogle Scholar
  7. 7.
    Upadhya B, Rocco M, Lewis CE et al (2017) Effect of intensive blood pressure treatment on heart failure events in the systolic blood pressure reduction intervention trial. Circ Heart Fail 10:e003613PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Williamson JD, Supiano MA, Applegate WB et al (2016) Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged >/=75 years: a randomized clinical trial. JAMA 315:2673–2682PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lindenfeld J, Albert NM, Boehmer JP et al. HFSA 2010 Comprehensive Heart Failure Practice Guideline. J Card Fail 2010;16:e1-194.Google Scholar
  10. 10.
    Ather S, Chan W, Bozkurt B et al (2012) Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol 59:998–1005PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Shah SJ, Gheorghiade M (2008) Heart failure with preserved ejection fraction: treat now by treating comorbidities. JAMA 300:431–433PubMedCrossRefGoogle Scholar
  12. 12.
    Murad K, Kitzman D (2011) Frailty and multiple comorbidities in the elderly patient with heart failure: implications for management. Heart Fail Rev 17:581–588CrossRefGoogle Scholar
  13. 13.
    Borlaug BA, Olson TP, Lam CSP et al (2010) Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol 56:845–854PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hwang SJ, Melenovsky V, Borlaug BA (2014) Implications of coronary artery disease in heart failure with preserved ejection fraction. J Am Coll Cardiol 63:2817–2827PubMedCrossRefGoogle Scholar
  15. 15.
    Rusinaru D, Houpe D, Szymanski C, Levy F, Marechaux S, Tribouilloy C (2014) Coronary artery disease and 10-year outcome after hospital admission for heart failure with preserved and with reduced ejection fraction. Eur J Heart Fail 16:967–976PubMedCrossRefGoogle Scholar
  16. 16.
    Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM (2015) Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131:550–559PubMedCrossRefGoogle Scholar
  17. 17.
    Yancy CW, Jessup M, Bozkurt B et al (2013) ACCF/AHA guideline for the management of heart-failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62:e147–e239PubMedCrossRefGoogle Scholar
  18. 18.
    Gandhi SK, Powers JC, Nomeir AM et al (2001) The pathogenesis of acute pulmonary edema associated with hypertension. N Engl J Med 344:17–22PubMedCrossRefGoogle Scholar
  19. 19.
    Kramer K, Kirkman P, Kitzman DW, Little WC (2000) Flash pulmonary edema: association with hypertension, reocurrence despite coronary revascularization. Am Heart J 140:451–455PubMedCrossRefGoogle Scholar
  20. 20.
    Zakeri R, Borlaug BA, McNulty SE et al (2014) Impact of atrial fibrillation on exercise capacity in heart failure with preserved ejection fraction: a RELAX trial ancillary study. Circ Heart Fail 7:123–130PubMedCrossRefGoogle Scholar
  21. 21.
    Lam CS, Rienstra M, Tay WT et al (2016) Atrial fibrillation in heart failure with preserved ejection fraction: association with exercise capacity, left ventricular filling pressures, natriuretic peptides, and left atrial volume. JACC Heart Fail 5:92–98PubMedCrossRefGoogle Scholar
  22. 22.
    Machino-Ohtsuka T, Seo Y, Ishizu T et al (2013) Efficacy, safety, and outcomes of catheter ablation of atrial fibrillation in patients with heart failure with preserved ejection fraction. J Am Coll Cardiol 62:1857–1865PubMedCrossRefGoogle Scholar
  23. 23.
    Cohen RA, Tong X (2010) Vascular oxidative stress: the common link in hypertensive and diabetic vascular disease. J Cardiovasc Pharmacol 55:308–316PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Yusuf S, Pfeffer MA, Swedberg K et al (2003) Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362:777–781PubMedCrossRefGoogle Scholar
  25. 25.
    Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J (2006) The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 27:2338–2345PubMedCrossRefGoogle Scholar
  26. 26.
    Massie BM, Carson PE, McMurray JJ et al (2008) Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med 359:2456–2467PubMedCrossRefGoogle Scholar
  27. 27.
    Pitt B, Pfeffer M, Assmann S et al (2014) Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370:1383–1392PubMedCrossRefGoogle Scholar
  28. 28.
    Dunlay SM, Weston SA, Redfield MM, Killian JM, Roger VL (2008) Anemia and heart failure: a community study. Am J Med 121:726–732PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Paulus W, Tschope C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271PubMedCrossRefGoogle Scholar
  30. 30.
    Fu M, Zhou J, Thunstrom E et al (2016) Optimizing the Management of Heart Failure with Preserved Ejection Fraction in the Elderly by Targeting Comorbidities (OPTIMIZE-HFPEF). J Card Fail 22:539–544PubMedCrossRefGoogle Scholar
  31. 31.
    Kitzman DW. Diastolic dysfunction in the elderly; genesis and diagnostic and therapeutic implications. In: Kovacs SJ, ed. Cardiology Clinics of North America—Diastolic Function. Vol 18(3) ed. Philadelphia: W. B. Saunders; 2000;597-617.Google Scholar
  32. 32.
    Stewart S, Marley JE, Horowitz JD (1999) Effects of a multidisciplinary, home-based intervention on unplanned readmissions and survival among patients with chronic congestive heart failure: a randomised controlled study. Lancet 354:1077–1083PubMedCrossRefGoogle Scholar
  33. 33.
    Rich MW, Beckham V, Wittenberg C, Leven CL, Freedland KE, Carney R (1995) A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. N Engl J Med 333:1190–1195PubMedCrossRefGoogle Scholar
  34. 34.
    Stewart S, Vanderheyden M, Pearson S, Horowitz JD (1999) Prolonged beneficial effects of a home-based intervention on unplanned readmissions and mortality among patients with congestive heart failure. Arch Intern Med 159:257–261PubMedCrossRefGoogle Scholar
  35. 35.
    Tsuyuki RT, McKelvie RS, Arnold JM et al (2001) Acute precipitants of congestive heart failure exacerbations. Arch Intern Med 161:2337–2342PubMedCrossRefGoogle Scholar
  36. 36.
    Kitzman D, Brubaker P, Morgan T, Stewart K, Little W (2010) Exercise training in older patients with heart failure and preserved ejection fraction. Circ Heart Fail 3:659–667PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kitzman DW, Brubaker PH, Herrington DM et al (2013) Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: A randomized, controlled, single-blind trial. J Am Coll Cardiol 62:584–592PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW (2012) Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol 60:120–128PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kitzman DW, Brubaker P, Morgan T et al (2016) Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomised clinical trial. JAMA 315:36–46PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Edelmann F, Gelbrich G, Dungen H et al (2011) Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J Am Coll Cardiol 58:1780–1791PubMedCrossRefGoogle Scholar
  41. 41.
    Smart NA, Haluska B, Jeffriess L, Leung D (2012) Exercise training in heart failure with preserved systolic function: a randomized controlled trial of the effects on cardiac function and functional capacity. Congest Heart Fail 18:295–301PubMedCrossRefGoogle Scholar
  42. 42.
    Fu TC, Yang NI, Wang CH et al (2016) Aerobic interval training elicits different hemodynamic adaptations between heart failure patients with preserved and reduced ejection fraction. Am J Phys Med Rehabil 95:15–27PubMedCrossRefGoogle Scholar
  43. 43.
    Angadi SS, Mookadam F, Lee CD, Tucker WJ, Haykowsky MJ, Gaesser GA (2014) High-intensity interval training vs. moderate-intensity continuous exercise training in heart failure with preserved ejection fraction: a pilot study. J Appl Physiol 95:15–27Google Scholar
  44. 44.
    Gary RA, Sueta CA, Dougherty M et al (2004) Home-based exercise improves functional performance and quality of life in women with diastolic heart failure. Heart Lung 33:210–218PubMedCrossRefGoogle Scholar
  45. 45.
    Bensimhon DR, Leifer E, Ellis SJ et al (2008) Reproducibility of peak oxygen uptake and other cardiopulmonary exercise testing parameters in patients with heart failure. Am J Cardiol 102:712–717PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Marburger CT, Brubaker PH, Pollock WE, Morgan TM, Kitzman DW (1998) Reproducibility of cardiopulmonary exercise testing in elderly heart failure patients. Am J Cardiol 82:905–909PubMedCrossRefGoogle Scholar
  47. 47.
    Haykowsky MJ, Brubaker PH, John JM, Stewart KP, Morgan TM, Kitzman DW (2011) Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J Am Coll Cardiol 58:265–274PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Haykowsky MJ, Brubaker PH, Stewart KP, Morgan TM, Eggebeen J, Kitzman DW (2012) Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J Am Coll Cardiol 60:120–128PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tucker WJ, Lijauco CC, Hearon CM Jr et al (2018) Mechanisms of the improvement in peak VO2 with exercise training in heart failure with reduced or preserved ejection fraction. Heart Lung Circ 27:9–21PubMedCrossRefGoogle Scholar
  50. 50.
    Poole DC, Richardson RS, Haykowsky MJ, Hirai DM, Musch TI (2018) Exercise limitations in heart failure with reduced and preserved ejection fraction. J Appl Physiol (1985) 124:jap007472017CrossRefGoogle Scholar
  51. 51.
    Sullivan M, Higginbotham MB, Cobb FR (1988) Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation 78:506–515PubMedCrossRefGoogle Scholar
  52. 52.
    Haykowsky M, Liang Y, Pechter D, Jones L, Alister F, Cark A (2007) A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed. J Am Coll Cardiol 49:2329–2336PubMedCrossRefGoogle Scholar
  53. 53.
    Houstis NE, Eisman AS, Pappagianopoulos PP et al (2018) Exercise intolerance in heart failure with preserved ejection fraction: diagnosing and ranking its causes using personalized O2 pathway analysis. Circulation 137:148–161PubMedCrossRefGoogle Scholar
  54. 54.
    Hambrecht R, Gielen S, Linke A et al (2000) Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure. JAMA 283:3095–3101PubMedCrossRefGoogle Scholar
  55. 55.
    Edelmann F, Gelbrich G, Dungen H et al (2011) Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J Am Coll Cardiol 58:1780–1791PubMedCrossRefGoogle Scholar
  56. 56.
    Fujimoto N, Prasad A, Hastings JL et al (2012) Cardiovascular effects of 1 year of progressive endurance exercise training in patients with heart failure with preserved ejection fraction. Am Heart J 164:869–877PubMedCrossRefGoogle Scholar
  57. 57.
    Erbs S, Hollriegel R, Linke A et al (2010) Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail 3:486–494PubMedCrossRefGoogle Scholar
  58. 58.
    Esposito F, Reese V, Shabetai R, Wagner PD, Richardson RS (2011) Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport. J Am Coll Cardiol 58:1353–1362PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Haykowsky M, Kouba EJ, Brubaker PH, Nicklas BJ, Eggebeen J, Kitzman DW (2014) Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Cardiol 113:1211–1216PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kitzman DW, Nicklas B, Kraus WE et al (2014) Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am J Physiol Heart Circ Physiol 306:H1364–H1370PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Molina AJ, Bharadwaj MS, Van Horn C et al (2016) Skeletal muscle mitochondrial content, oxidative capacity, and Mfn2 expression are reduced in older patients with heart failure and preserved ejection fraction and are related to exercise intolerance. JACC Heart Fail 4:636–645PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Suchy C, Massen L, Rognmo O et al (2014) Optimising exercise training in prevention and treatment of diastolic heart failure (OptimEx-CLIN): rationale and design of a prospective, randomised, controlled trial. Eur J Prev Cardiol 21:18–25PubMedCrossRefGoogle Scholar
  63. 63.
    Koifman E, Grossman E, Elis A et al (2014) Multidisciplinary rehabilitation program in recently hospitalized patients with heart failure and preserved ejection fraction: rationale and design of a randomized controlled trial. Am Heart J 168:830–837PubMedCrossRefGoogle Scholar
  64. 64.
    Centers for Medicare and Medicaid Services (2014) Decision memo for cardiac rehabilitation (CR) programs—chronic heart failure (CAG-00437N). February 18:2014Google Scholar
  65. 65.
    O'Connor CM, Whellan DJ, Lee KL et al (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301:1439–1450PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kitzman DW, Shah SJ (2016) The HFpEF obesity phenotype: the elephant in the room. J Am Coll Cardiol 68:200–203PubMedCrossRefGoogle Scholar
  67. 67.
    Civitarese AE, Carling S, Heilbronn LK et al (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hummel S, Seymour E, Brook R et al (2012) Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension 60:1200–1206PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Hummel S, Seymour E, Brook R et al (2013) Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail 6:1165–1171Google Scholar
  70. 70.
    Mathew AV, Seymour EM, Byun J, Pennathur S, Hummel SL (2015) Altered metabolic profile with sodium-restricted dietary approaches to stop hypertension diet in hypertensive heart failure with preserved ejection fraction. J Card Fail 21:963–967PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chen J, Shearer GC, Chen Q et al (2011) Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation 123:584–593PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Abraham WT, Adamson PB, Bourge RC et al (2011) Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377:658–666PubMedCrossRefGoogle Scholar
  73. 73.
    Adamson PB, Abraham WT, Bourge RC et al (2014) Wireless pulmonary artery pressure monitoring guides management to reduce decompensation in heart failure with preserved ejection fraction. Circ Heart Fail 7:935–944PubMedCrossRefGoogle Scholar
  74. 74.
    Heywood JT, Jermyn R, Shavelle D et al (2017) Impact of practice-based management of pulmonary artery pressures in 2000 patients implanted with the CardioMEMS Sensor. Circulation 135:1509–1517PubMedCrossRefGoogle Scholar
  75. 75.
    Zile MR, Bennett TD, El Hajj S et al (2017) Intracardiac pressures measured using an implantable hemodynamic monitor: relationship to mortality in patients with chronic heart failure. Circ Heart Fail 10:e003594PubMedCrossRefGoogle Scholar
  76. 76.
    Kaye D, Shah SJ, Borlaug BA et al (2014) Effects of an interatrial shunt on rest and exercise hemodynamics: results of a computer simulation in heart failure. J Card Fail 20:212–221PubMedCrossRefGoogle Scholar
  77. 77.
    Hasenfuss G, Hayward C, Burkhoff D et al (2016) A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet 387:1298–1304PubMedCrossRefGoogle Scholar
  78. 78.
    Burkhoff D, Maurer MS, Joseph SM et al (2015) Left atrial decompression pump for severe heart failure with preserved ejection fraction: theoretical and clinical considerations. JACC Heart Fail 3:275–282PubMedCrossRefGoogle Scholar
  79. 79.
    Yu CM, Zhang Q, Yip GW et al (2007) Diastolic and systolic asynchrony in patients with diastolic heart failure: a common but ignored condition. J Am Coll Cardiol 49:97–105PubMedCrossRefGoogle Scholar
  80. 80.
    Santos AB, Kraigher-Krainer E, Bello N et al (2014) Left ventricular dyssynchrony in patients with heart failure and preserved ejection fraction. Eur Heart J 35:42–47PubMedCrossRefGoogle Scholar
  81. 81.
    Penicka M, Kocka V, Herman D, Trakalova H, Herold M (2010) Cardiac resynchronization therapy for the causal treatment of heart failure with preserved ejection fraction: insight from a pressure–volume loop analysis. Eur J Heart Fail 12:634–636PubMedCrossRefGoogle Scholar
  82. 82.
    Brubaker PH, Joo KC, Stewart KP, Fray B, Moore B, Kitzman DW (2006) Chronotropic incompetence and its contribution to exercise intolerance in older heart failure patients. J Cardiopulm Rehabil 26:86–89PubMedCrossRefGoogle Scholar
  83. 83.
    Borlaug BA, Melenovsky V, Russell SD et al (2006) Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation 114:2138–2147PubMedCrossRefGoogle Scholar
  84. 84.
    Kass DA, Kitzman DW, Alvarez GE (2010) The Restoration of Chronotropic CompEtence in Heart Failure PatientS with Normal Ejection FracTion (RESET) study: rationale and design. J Card Fail 16:17–24PubMedCrossRefGoogle Scholar
  85. 85.
    Borggrefe M, Burkhoff D (2012) Clinical effects of cardiac contractility modulation (CCM) as a treatment for chronic heart failure. Eur J Heart Fail 14:703–712PubMedCrossRefGoogle Scholar
  86. 86.
    Tschope C, Van Linthout S, Spillmann F et al (2016) Cardiac contractility modulation signals improve exercise intolerance and maladaptive regulation of cardiac key proteins for systolic and diastolic function in HFpEF. Int J Cardiol 203:1061–1066PubMedCrossRefGoogle Scholar
  87. 87.
    Abraham WT, Zile MR, Weaver FA et al (2015) Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail 3:487–496PubMedCrossRefGoogle Scholar
  88. 88.
    Georgakopoulos D, Little WC, Abraham WT, Weaver FA, Zile MR (2011) Chronic baroreflex activation: a potential therapeutic approach to heart failure with preserved ejection fraction. J Card Fail 17:167–178PubMedCrossRefGoogle Scholar
  89. 89.
    Brandt MC, Mahfoud F, Reda S et al (2012) Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol 59:901–909PubMedCrossRefGoogle Scholar
  90. 90.
    Patel HC, Rosen SD, Hayward C et al (2016) Renal denervation in heart failure with preserved ejection fraction (RDT-PEF): a randomized controlled trial. Eur J Heart Fail 18:703–712PubMedCrossRefGoogle Scholar
  91. 91.
    Bitter T, Faber L, Hering D, Langer C, Horstkotte D, Oldenburg O (2009) Sleep-disordered breathing in heart failure with normal left ventricular ejection fraction. Eur J Heart Fail 11:602–608PubMedCrossRefGoogle Scholar
  92. 92.
    Dursunoglu D, Dursunoglu N, Evrengul H et al (2005) Impact of obstructive sleep apnoea on left ventricular mass and global function. Eur Respir J 26:283–288PubMedCrossRefGoogle Scholar
  93. 93.
    Usui Y, Takata Y, Inoue Y et al (2013) Severe obstructive sleep apnea impairs left ventricular diastolic function in non-obese men. Sleep Med 14:155–159PubMedCrossRefGoogle Scholar
  94. 94.
    Lattimore JL, Wilcox I, Skilton M, Langenfeld M, Celermajer DS (2006) Treatment of obstructive sleep apnoea leads to improved microvascular endothelial function in the systemic circulation. Thorax 61:491–495PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Golbin JM, Somers VK, Caples SM (2008) Obstructive sleep apnea, cardiovascular disease, and pulmonary hypertension. Proc Am Thorac Soc 5:200–206PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Romero-Corral A, Somers VK, Pellikka PA et al (2007) Decreased right and left ventricular myocardial performance in obstructive sleep apnea. Chest 132:1863–1870PubMedCrossRefGoogle Scholar
  97. 97.
    Oldenburg O, Schmidt A, Lamp B et al (2008) Adaptive servoventilation improves cardiac function in patients with chronic heart failure and Cheyne–Stokes respiration. Eur J Heart Fail 10:581–586PubMedCrossRefGoogle Scholar
  98. 98.
    Eulenburg C, Wegscheider K, Woehrle H et al (2016) Mechanisms underlying increased mortality risk in patients with heart failure and reduced ejection fraction randomly assigned to adaptive servoventilation in the SERVE-HF study: results of a secondary multistate modelling analysis. Lancet Respir Med 4:873–881PubMedCrossRefGoogle Scholar
  99. 99.
    O'Connor CM, Whellan DJ, Fuizat M et al (2017) Cardiovascular outcomes with minute ventilation-targeted adaptive servo-ventilation therapy in heart failure. J Am Coll Cardiol 69:1577–1587PubMedCrossRefGoogle Scholar
  100. 100.
    Yoshihisa A, Suzuki S, Yamaki T et al (2013) Impact of adaptive servo-ventilation on cardiovascular function and prognosis in heart failure patients with preserved left ventricular ejection fraction and sleep-disordered breathing. Eur J Heart Fail 15:543–550PubMedCrossRefGoogle Scholar
  101. 101.
    Wright JW, Mizutani S, Harding JW (2008) Pathways involved in the transition from hypertension to hypertrophy to heart failure. Treatment strategies. Heart Fail Rev 13:367–375PubMedCrossRefGoogle Scholar
  102. 102.
    Nguyen Dinh Cat A, Montezano AC, Burger D, Touyz RM (2013) Angiotensin II, NADPH oxidase, and redox signaling in the vasculature. Antioxid Redox Signal 19:1110–1120PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Edelmann F, investigators A-DHF (2013) Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA 309:781–791PubMedCrossRefGoogle Scholar
  104. 104.
    Deswal A, Richardson P, Bozkurt B, Mann D (2011) Results of the Randomized Aldosterone Antagonism in Heart Failure With Preserved Ejection Fraction Trial (RAAM-PEF). J Card Fail 17:634–642PubMedCrossRefGoogle Scholar
  105. 105.
    Upadhya B, Hundley WG, Brubaker PH, Morgan TM, Stewart KP, Kitzman DW (2017) Effect of spironolactone on exercise tolerance and arterial function in older adults with heart failure with preserved ejection fraction. J Am Geriatr Soc 65:2374–2382PubMedCrossRefGoogle Scholar
  106. 106.
    Kosmala W, Rojek A, Przewlocka-Kosmala M, Wright L, Mysiak A, Marwick TH (2016) Effect of aldosterone antagonism on exercise tolerance in heart failure with preserved ejection fraction. J Am Coll Cardiol 68:1823–1834PubMedCrossRefGoogle Scholar
  107. 107.
    Patel K, Fonarow GC, Kitzman DW et al (2013) Aldosterone antagonists and outcomes in real-world older patients with heart failure and preserved ejection fraction. JACC Heart Fail 1:40–47PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Pfeffer MA, Claggett B, Assmann SF et al (2015) Regional variation in patients and outcomes in the treatment of preserved cardiac function heart failure with an Aldosterone Antagonist (TOPCAT) Trial. Circulation 131:34–42PubMedCrossRefGoogle Scholar
  109. 109.
    Zile MR, Gottdiener JS, Hetzel SJ et al (2011) Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124:2491–2501PubMedCrossRefGoogle Scholar
  110. 110.
    Katz DH, Beussink L, Sauer AJ, Freed BH, Burke MA, Shah SJ (2013) Prevalence, clinical characteristics, and outcomes associated with eccentric versus concentric left ventricular hypertrophy in heart failure with preserved ejection fraction. Am J Cardiol 112:1158–1164PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Solomon S, Zile M, Pieske B et al (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. The Lancet 380:1387–1395CrossRefGoogle Scholar
  112. 112.
    Lam CS, Roger VL, Rodeheffer RJ et al (2007) Cardiac structure and ventricular–vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation 115:1982–1990PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Maurer MS, Burkhoff D, Fried LP, Gottdiener J, King DL, Kitzman DW (2007) Ventricular structure and function in hypertensive participants with heart failure and a normal ejection fraction: The Cardiovascular Health Study. J Am Coll Cardiol 49:972–981PubMedCrossRefGoogle Scholar
  114. 114.
    Solomon SD, Verma A, Desai A et al (2010) Effect of intensive versus standard blood pressure lowering on diastolic function in patients with uncontrolled hypertension and diastolic dysfunction. Hypertension 55:241–248PubMedCrossRefGoogle Scholar
  115. 115.
    Kitzman D, Upadhya B (2014) Heart failure with preserved ejection fraction: a heterogenous disorder with multifactorial pathophysiology. J Am Coll Cardiol 63:457–459PubMedCrossRefGoogle Scholar
  116. 116.
    Su MY, Lin LY, Tseng YH et al (2014) CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc Imaging 7:991–997PubMedCrossRefGoogle Scholar
  117. 117.
    Yamamoto K, Origasa H, Hori M, J-DHF Investigators (2013) Effects of carvedilol on heart failure with preserved ejection fraction: the Japanese Diastolic Heart Failure Study (J-DHF). Eur J Heart Fail 15:110–118PubMedCrossRefGoogle Scholar
  118. 118.
    Conraads V, Metra M, Kamp O et al (2012) Effects of the long-term administration of nebivolol on the clinical symptoms, exercise capacity, and left ventricular function of patients with diastolic dysfunction: results of the ELANDD study. Eur J Heart Fail 14:219–225PubMedCrossRefGoogle Scholar
  119. 119.
    Hernandez AF, Hammill BG, O'Connor CM, Schulman KA, Curtis LH, Fonarow GC (2009) Clinical effectiveness of beta-blockers in heart failure: findings from the OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients With Heart Failure) Registry. J Am Coll Cardiol 53:184–192PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Setaro JF, Zaret BL, Schulman DS, Black HR (1990) Usefulness of verapamil for congestive heart failure associated with abnormal left ventricular diastolic filling and normal left ventricular systolic performance. Am J Cardiol 66:981–986PubMedCrossRefGoogle Scholar
  121. 121.
    Ponikowski P, Voors AA, Anker SD et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016;18:891-975.Google Scholar
  122. 122.
    Reil JC, Hohl M, Reil GH et al (2013) Heart rate reduction by If-inhibition improves vascular stiffness and left ventricular systolic and diastolic function in a mouse model of heart failure with preserved ejection fraction. Eur Heart J 34:2839–2849PubMedCrossRefGoogle Scholar
  123. 123.
    Kosmala W, Holland DJ, Rojek A, Wright L, Przewlocka-Kosmala M, Marwick TH (2013) Effect of If-channel inhibition on hemodynamic status and exercise tolerance in heart failure with preserved ejection fraction: a randomized trial. J Am Coll Cardiol 62:1330–1338PubMedCrossRefGoogle Scholar
  124. 124.
    Pal N, Sivaswamy N, Mahmod M et al (2015) Effect of selective heart rate slowing in heart failure with preserved ejection fraction. Circulation 132:1719–1725PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Higginbotham MB, Morris KG, Williams RS, McHale PA, Coleman RD, Cobb FR (1986) Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ Res 58:281–291PubMedCrossRefGoogle Scholar
  126. 126.
    Phan T, Shivu G, Weaver R, Ahmed I, Frenneaux M (2010) Impaired heart rate recovery and chronotropic incompetence in patients with heart failure with preserved ejection fraction. Circ Heart Fail 3:29–34PubMedCrossRefGoogle Scholar
  127. 127.
    Jacobshagen C, Belardinelli L, Hasenfuss G, Maier L (2011) Ranolazine for the treatment of heart failure with preserved ejection fraction: background, aims, and design of the RALI-DHF study. Clin Cardiol 34:426–432PubMedCrossRefGoogle Scholar
  128. 128.
    Maier LS, Layug B, Karwatowska-Prokopczuk E et al (2013) RAnoLazIne for the treatment of diastolic heart failure in patients with preserved ejection fraction: the RALI-DHF proof-of-concept study. JACC Heart Fail 1:115–122PubMedCrossRefGoogle Scholar
  129. 129.
    Ahmed A, Pitt B, Rahimtoola SH et al (2008) Effects of digoxin at low serum concentrations on mortality and hospitalization in heart failure: a propensity-matched study of the DIG trial. Int J Cardiol 123:138–146PubMedCrossRefGoogle Scholar
  130. 130.
    Hattori T, Shimokawa H, Higashi M et al (2004) Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation 109:2234–2239PubMedCrossRefGoogle Scholar
  131. 131.
    Martin J, Denver R, Bailey M, Krum H (2005) In vitro inhibitory effects of atorvastatin on cardiac fibroblasts: implications for ventricular remodelling. Clin Exp Pharmacol Physiol 32:697–701PubMedCrossRefGoogle Scholar
  132. 132.
    Ferrier KE, Muhlmann MH, Baguet JP et al (2002) Intensive cholesterol reduction lowers blood pressure and large artery stiffness in isolated systolic hypertension. J Am Coll Cardiol 39:1020–1025PubMedCrossRefGoogle Scholar
  133. 133.
    Landmesser U, Bahlmann F, Mueller M et al (2005) Simvastatin versus ezetimibe: pleiotropic and lipid-lowering effects on endothelial function in humans. Circulation 111:2356–2363PubMedCrossRefGoogle Scholar
  134. 134.
    Davignon J (2004) Beneficial cardiovascular pleiotropic effects of statins. Circulation 109:III39–III43PubMedGoogle Scholar
  135. 135.
    Fukuta H, Little W (2008) Observational studies of statins in heart failure with preserved systolic function. Heart Fail Clin 4:209–216PubMedCrossRefGoogle Scholar
  136. 136.
    Shah R, Wang Y, Foody JM (2008) Effect of statins, angiotensin-converting enzyme inhibitors, and beta blockers on survival in patients >=65 years of age with heart failure and preserved left ventricular systolic function. Am J Cardiol 101:217–222PubMedCrossRefGoogle Scholar
  137. 137.
    Alehagen U, Benson L, Edner M, Dahlstrom U, Lund LH (2015) Association between use of statins and mortality in patients with heart failure and ejection fraction greater than or equal to 50. Circ Heart Fail 8:862–870PubMedCrossRefGoogle Scholar
  138. 138.
    Tsujimoto T, Kajio H. Favorable effects of statins in the treatment of heart failure with preserved ejection fraction in patients without ischemic heart disease. Int J Cardiol 2018;Epub ahead of print.Google Scholar
  139. 139.
    Fukuta H, Goto T, Wakami K, Ohte N (2016) The effect of statins on mortality in heart failure with preserved ejection fraction: a meta-analysis of propensity score analyses. Int J Cardiol 214:301–306PubMedCrossRefGoogle Scholar
  140. 140.
    Kitzman DW, Little WC, Brubaker PH et al (2002) Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 288:2144–2150PubMedCrossRefGoogle Scholar
  141. 141.
    Maisel A (2002) B-type natriuretic peptide levels: diagnostic and prognostic in congestive heart failure: what’s next? Circulation 105:2328–2331PubMedCrossRefGoogle Scholar
  142. 142.
    Anjan VY, Loftus TM, Burke MA et al (2012) Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am J Cardiol 110:870–876PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Shah SJ, Kitzman DW, Borlaug BA et al (2016) Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134:73–90PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Kanwar M, Agarwal R, Barnes M et al (2013) Role of phosphodiesterase-5 inhibitors in heart failure: emerging data and concepts. Curr Heart Fail Rep 10:26–35PubMedCrossRefGoogle Scholar
  145. 145.
    Redfield M, Chen H, Borlaug B et al (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309:1268–1277PubMedCrossRefGoogle Scholar
  146. 146.
    Redfield M, Anstrom K, Levine J et al (2015) Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med 373:2314–2324PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7:156–167PubMedCrossRefGoogle Scholar
  148. 148.
    Cosby K, Partovi KS, Crawford JH et al (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nature Med 9:1498–1505PubMedCrossRefGoogle Scholar
  149. 149.
    Eggebeen J, Kim-Shapiro DB, Haykowsky MJ et al (2015) One week of daily dosing with beetroot juice improves submaximal endurance and blood pressure in older patients with heart failure and preserved ejection fraction. JACC Heart Fail 4:428–437CrossRefGoogle Scholar
  150. 150.
    Borlaug BA, Melenovsky V, Koepp KE (2016) Inhaled sodium nitrite improves rest and exercise hemodynamics in heart failure with preserved ejection fraction. Circ Res 119:880–886PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Borlaug BA, Koepp KE, Melenovsky V (2015) Sodium nitrite improves exercise hemodynamics and ventricular performance in heart failure with preserved ejection fraction. J Am Coll Cardiol 66:1672–1682PubMedCrossRefGoogle Scholar
  152. 152.
    Reddy YNV, Lewis GD, Shah SJ et al (2017) INDIE-HFpEF (Inorganic Nitrite Delivery to Improve Exercise Capacity in Heart Failure With Preserved Ejection Fraction). Circ Heart Fail 10:e003862PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Bonderman D, Pretsch I, Steringer-Mascherbauer R et al (2014) Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (dilate-1): a randomized, double-blind, placebo-controlled, single-dose study. CHEST Journal 146:1274–1285CrossRefGoogle Scholar
  154. 154.
    Pieske B, Maggioni AP, Lam CSP et al (2017) Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J 38:1119–1127PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Fitchett D, Zinman B, Wanner C et al (2016) Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J 37:1526–1534PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Tanaka A, Inoue T, Kitakaze M et al (2016) Rationale and design of a randomized trial to test the safety and non-inferiority of canagliflozin in patients with diabetes with chronic heart failure: the CANDLE trial. Cardiovasc Diabetol 15:57PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Scalzo RL, Moreau KL, Ozemek C et al (2017) Exenatide improves diastolic function and attenuates arterial stiffness but does not alter exercise capacity in individuals with type 2 diabetes. J Diabetes Complications 31:449–455PubMedCrossRefGoogle Scholar
  158. 158.
    Wang P, Zhuo X, Chu W, Tang X (2017) Exenatide-loaded microsphere/thermosensitive hydrogel long-acting delivery system with high drug bioactivity. Int J Pharm 528:62–75PubMedCrossRefGoogle Scholar
  159. 159.
    Sabbah HN, Gupta RC, Kohli S, Wang M, Hachem S, Zhang K (2016) Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ Heart Fail 9:e002206PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552PubMedGoogle Scholar
  161. 161.
    Yuan K, Cao C, Han JH, Kim SZ, Kim SH (2005) Adenosine-stimulated atrial natriuretic peptide release through A1 receptor subtype. Hypertension 46:1381–1387PubMedCrossRefGoogle Scholar
  162. 162.
    Schutte F, Burgdorf C, Richardt G, Kurz T (2006) Adenosine A1 receptor-mediated inhibition of myocardial norepinephrine release involves neither phospholipase C nor protein kinase C but does involve adenylyl cyclase. Can J Physiol Pharmacol 84:573–577PubMedCrossRefGoogle Scholar
  163. 163.
    Greene SJ, Sabbah HN, Butler J et al (2016) Partial adenosine A1 receptor agonism: a potential new therapeutic strategy for heart failure. Heart Fail Rev 21:95–102PubMedCrossRefGoogle Scholar
  164. 164.
    Age-associated changes in Ca(2+)-ATPase and oxidative damage in sarcoplasmic reticulum of rat heart.: 2012.Google Scholar
  165. 165.
    Lancel S, Qin F, Lennon S et al (2010) Oxidative posttranslational modifications mediate decreased SERCA activity and myocyte dysfunction in Galphaq-overexpressing mice. Circ Res 107:228–232PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Qin F, Siwik D, Lancel S et al (2013) Hydrogen peroxide-mediated SERCA cysteine 674 oxidation contributes to impaired cardiac myocyte relaxation in senescent mouse heart. J Am Heart Assoc 2:e000184PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Jessup M, Greenberg B, Mancini D et al (2011) Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124:304–313PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Zsebo K, Yaroshinsky A, Rudy JJ et al (2014) Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res 114:101–108PubMedCrossRefGoogle Scholar
  169. 169.
    Boon RA, Iekushi K, Lechner S et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495:107–110PubMedCrossRefGoogle Scholar
  170. 170.
    Nair N, Gupta S, Collier IX, Gongora E, Vijayaraghavan K (2014) Can microRNAs emerge as biomarkers in distinguishing HFpEF versus HFrEF? Int J Cardiol 175:395–399PubMedCrossRefGoogle Scholar
  171. 171.
    Chiao YA, Ramirez TA, Zamilpa R et al (2012) Matrix metalloproteinase-9 deletion attenuates myocardial fibrosis and diastolic dysfunction in ageing mice. Cardiovasc Res 96:444–455PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Zhao L, Buxbaum JN, Reixach N (2013) Age-related oxidative modifications of transthyretin modulate its amyloidogenicity. Biochemistry (Mosc) 52:1913–1926CrossRefGoogle Scholar
  173. 173.
    Packer M (2011) Can bain natriuretic peptide be used to guide the management of patients with heart failure and a preserved ejection fraction? Circ Heart Fail 4:538–540PubMedCrossRefGoogle Scholar
  174. 174.
    Shah AM, Solomon SD (2012) Phenotypic and pathophysiological heterogeneity in heart failure with preserved ejection fraction. Eur Heart J 33:1716–1717PubMedCrossRefGoogle Scholar
  175. 175.
    Shah SJ, Katz DH, Selvaraj S et al (2015) Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131:269–279PubMedCrossRefGoogle Scholar
  176. 176.
    Lewis GA, Schelbert EB, Williams SG et al (2017) Biological phenotypes of heart failure with preserved ejection fraction. J Am Coll Cardiol 70:2186–2200PubMedCrossRefGoogle Scholar
  177. 177.
    Davis BR, Kostis J, Simpson LM et al (2008) Heart failure with preserved and reduced left ventricular ejection fraction in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Circulation 118:2259–2267PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Pandey A, Parashar A, Kumbhani DJ et al (2015) Exercise training in patients with heart failure and preserved ejection fraction: meta-analysis of randomized control trials. Circ Heart Fail 8:33–40PubMedCrossRefGoogle Scholar
  179. 179.
    Miranda W, Batsis J, Sarr M et al (2013) Impact of bariatric surgery on quality of life, functional capacity, and symptoms in patients with heart failure. OBES SURG 23:1011–1015PubMedCrossRefGoogle Scholar
  180. 180.
    Justice J, Miller JD, Newman JC et al (2016) Frameworks for proof-of-concept clinical trials of interventions that target fundamental aging processes. J Gerontol A Biol Sci Med Sci 71:1415–1423Google Scholar
  181. 181.
    De Keulenaer GW, Segers VFM, Zannad F, Brutsaert DL (2017) The future of pleiotropic therapy in heart failure. Lessons from the benefits of exercise training on endothelial function. Eur J Heart Fail 19:603–614PubMedCrossRefGoogle Scholar
  182. 182.
    Conceicao G, Heinonen I, Lourenco AP, Duncker DJ, Falcao-Pires I (2016) Animal models of heart failure with preserved ejection fraction. Neth Heart J 24:275–286PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Alves AJ, Ribeiro F, Goldhammer E et al (2012) Exercise training improves diastolic function in heart failure patients. Med Sci Sports Exerc 44:776–785PubMedCrossRefGoogle Scholar
  184. 184.
    Zamani P, Rawat D, Shiva-Kumar P et al (2015) Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Circulation. 131:371–380Google Scholar
  185. 185.
    Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011) Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation 124:164–174PubMedCrossRefGoogle Scholar
  186. 186.
    Guazzi M, Bandera F, Forfia P (2013) Sildenafil and exercise capacity in heart failure. JAMA 310:432PubMedCrossRefGoogle Scholar
  187. 187.
    Kitzman DW, Hundley WG, Brubaker P, Stewart K, Little WC (2010) A randomized, controlled, double-blinded trial of enalapril in older patients with heart failure and preserved ejection fraction; effects on exercise tolerance, and arterial distensibility. Circ Heart Fail 3:477–485PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    van Veldhuisen DJ, Cohen-Solal A, Bohm M et al (2009) Beta-blockade with nebivolol in elderly heart failure patients with impaired and preserved left ventricular ejection fraction: data from SENIORS (Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors With Heart Failure). J Am Coll Cardiol 53:2150–2158PubMedCrossRefGoogle Scholar
  189. 189.
    Hoendermis ES, Liu LC, Hummel YM et al (2015) Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J 36:2565–2573PubMedCrossRefGoogle Scholar
  190. 190.
    Zamani P, Akers S, Soto-Calderon H et al (2017) Isosorbide dinitrate, with or without hydralazine, does not reduce wave reflections, left ventricular hypertrophy, or myocardial fibrosis in patients with heart failure with preserved ejection fraction. J Am Heart Assoc 6:e004262PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Little WC, Zile MR, Kitzman DW, Hundley WG, O'Brien TX, deGroof RC (2005) The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J Card Fail 11:191–195PubMedCrossRefGoogle Scholar
  192. 192.
    Zile MR, Bourge RC, Redfield MM, Zhou D, Baicu CF, Little WC (2014) Randomized, double-blind, placebo-controlled study of sitaxsentan to improve impaired exercise tolerance in patients with heart failure and a preserved ejection fraction. JACC Heart Fail 2:123–130PubMedCrossRefGoogle Scholar
  193. 193.
    Filippatos G, Teerlink JR, Farmakis D et al (2014) Serelaxin in acute heart failure patients with preserved left ventricular ejection fraction: results from the RELAX-AHF trial. Eur Heart J 35:1041–1050PubMedCrossRefGoogle Scholar
  194. 194.
    Wessler JD, Maurer MS, Hummel SL (2015) Evaluating the safety and efficacy of sodium-restricted/Dietary Approaches to Stop Hypertension diet after acute decompensated heart failure hospitalization: design and rationale for the Geriatric OUt of hospital Randomized MEal Trial in Heart Failure (GOURMET-HF). Am Heart J 169:342–348PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bharathi Upadhya
    • 1
  • Mark J. Haykowsky
    • 2
  • Dalane W. Kitzman
    • 1
    Email author
  1. 1.Cardiovascular Medicine Section, Department of Internal MedicineWake Forest School of MedicineWinston-SalemUSA
  2. 2.College of Nursing and Health InnovationUniversity of Texas ArlingtonArlingtonUSA

Personalised recommendations