Advertisement

Heart Failure Reviews

, Volume 23, Issue 3, pp 409–418 | Cite as

SGLT2 inhibition and heart failure—current concepts

  • Joaquim Silva CustodioJr
  • Andre Rodrigues Duraes
  • Marconi Abreu
  • Natalia Albuquerque Rocha
  • Leonardo Roever
Article

Abstract

Type 2 diabetes mellitus (T2DM) is a major risk factor for several cardiovascular (CV) conditions, including heart failure (HF). However, until recently, no therapy to treat patients with diabetes could also reduce CV risks related to HF. The EMPA-REG OUTCOME trial with empagliflozin was the first to demonstrate significant cardioprotective benefits in this population. Its impressive 35% reduction in hospitalizations for HF drew the attention of the scientific community to the possibility that pharmacologic sodium-glucose cotransporter 2 (SGLT2) inhibition could be part of the armamentarium for treating patients with HF, with and without diabetes. The recently published CANVAS Program (with canagliflozin) and real-life data from the CVD-Real Study (using dapagliflozin, empagliflozin, and canagliflozin) further strengthened this hypothesis, suggesting that the observed benefit is not restricted to a particular drug, but is rather a class effect. This review explores the effects of pharmacologic SGLT2 inhibitors’ use in cardiac function and discusses the potential role of this class of medication as a treatment for HF.

Keywords

SGLT2 inhibitors Diabetes mellitus Heart failure Cardiovascular outcomes 

Notes

Compliance with ethical standards

Conflict of interest

J.S. Custodio Jr. has received lecture fees from AstraZeneca, Boehringer Ingelheim, Janssen, and Eli Lilly. A.R. Duraes, M. Abreu, N. Albuquerque Rocha, and L. Roever have no conflicts of interest to disclose.

References

  1. 1.
    Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50.  https://doi.org/10.1016/j.diabres.2017.03.024 CrossRefPubMedGoogle Scholar
  2. 2.
    Defronzo RA (2009) Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:773–795.  https://doi.org/10.2337/db09-9028 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ziaeian B, Fonarow GC (2016) Epidemiology and aetiology of heart failure. Nat Rev Cardiol 13:368–378.  https://doi.org/10.1038/nrcardio.2016.25 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2017) Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135:e146–e603.  https://doi.org/10.1161/CIR.0000000000000485 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Page RL, O’Bryant CL, Cheng D et al (2016) Drugs that may cause or exacerbate heart failure: a scientific statement from the American Heart Association. Circulation 134:e32–e69.  https://doi.org/10.1161/CIR.0000000000000426 CrossRefPubMedGoogle Scholar
  6. 6.
    Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease. The Framingham study. JAMA 241:2035–2038CrossRefPubMedGoogle Scholar
  7. 7.
    Witteles RM, Fowler MB (2008) Insulin-resistant cardiomyopathy: clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol 51:93–102.  https://doi.org/10.1016/j.jacc.2007.10.021 CrossRefPubMedGoogle Scholar
  8. 8.
    Gerstein HC (2008) The hemoglobin A1c level as a progressive risk factor for cardiovascular death, hospitalization for heart failure, or death in patients with chronic heart failure: an analysis of the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) program. Arch Intern Med 168:1699–1704.  https://doi.org/10.1001/archinte.168.15.1699 CrossRefPubMedGoogle Scholar
  9. 9.
    Kasznicki J, Drzewoski J (2014) State of the art paper heart failure in the diabetic population—pathophysiology, diagnosis and management. Arch Med Sci 3:546–556.  https://doi.org/10.5114/aoms.2014.43748 CrossRefGoogle Scholar
  10. 10.
    Dandamudi S, Slusser J, Mahoney DW, Redfield MM, Rodeheffer RJ, Chen HH (2014) The prevalence of diabetic cardiomyopathy: a population-based study in Olmsted County, Minnesota. J Card Fail 20:304–309.  https://doi.org/10.1016/j.cardfail.2014.02.007 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Isfort M, Stevens SCW, Schaffer S, Jong CJ, Wold LE (2014) Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev 19:35–48.  https://doi.org/10.1007/s10741-013-9377-8 CrossRefPubMedGoogle Scholar
  12. 12.
    Lehrke M, Marx N (2017) Diabetes mellitus and heart failure. Am J Med 130:S40–S50.  https://doi.org/10.1016/j.amjmed.2017.04.010 CrossRefPubMedGoogle Scholar
  13. 13.
    Doehner W, Rauchhaus M, Ponikowski P, Godsland IF, von Haehling S, Okonko DO, Leyva F, Proudler AJ, Coats AJS, Anker SD (2005) Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol 46:1019–1026.  https://doi.org/10.1016/j.jacc.2005.02.093 CrossRefPubMedGoogle Scholar
  14. 14.
    Bedi KCJ, Snyder NW, Brandimarto J et al (2016) Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133:706–716.  https://doi.org/10.1161/CIRCULATIONAHA.115.017545 PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force Members, Document Reviewers (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the spec. Eur J Heart Fail 18:891–975.  https://doi.org/10.1002/ejhf.592 CrossRefPubMedGoogle Scholar
  16. 16.
    Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME Investigators (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128.  https://doi.org/10.1056/NEJMoa1504720 CrossRefPubMedGoogle Scholar
  17. 17.
    Dormandy JA, Charbonnel B, Eckland DJ et al (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (prospective pioglitazone clinical trial in macrovascular events): a randomised controlled trial. Lancet 366:1279–1289.  https://doi.org/10.1016/S0140-6736(05)67528-9 CrossRefPubMedGoogle Scholar
  18. 18.
    Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, Jones NP, Komajda M, McMurray JJV (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125–2135.  https://doi.org/10.1016/S0140-6736(09)60953-3 CrossRefPubMedGoogle Scholar
  19. 19.
    Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, Ohman P, Frederich R, Wiviott SD, Hoffman EB, Cavender MA, Udell JA, Desai NR, Mosenzon O, McGuire D, Ray KK, Leiter LA, Raz I, SAVOR-TIMI 53 Steering Committee and Investigators (2013) Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 369:1317–1326.  https://doi.org/10.1056/NEJMoa1307684 CrossRefPubMedGoogle Scholar
  20. 20.
    Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, Josse R, Kaufman KD, Koglin J, Korn S, Lachin JM, McGuire D, Pencina MJ, Standl E, Stein PP, Suryawanshi S, van de Werf F, Peterson ED, Holman RR, TECOS Study Group (2015) Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 373:232–242.  https://doi.org/10.1056/NEJMoa1501352 CrossRefPubMedGoogle Scholar
  21. 21.
    White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, Perez AT, Fleck PR, Mehta CR, Kupfer S, Wilson C, Cushman WC, Zannad F, EXAMINE Investigators (2013) Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 369:1327–1335.  https://doi.org/10.1056/NEJMoa1305889 CrossRefPubMedGoogle Scholar
  22. 22.
    Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, Lawson FC, Ping L, Wei X, Lewis EF, Maggioni AP, McMurray J, Probstfield JL, Riddle MC, Solomon SD, Tardif JC, ELIXA Investigators (2015) Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 373:2247–2257.  https://doi.org/10.1056/NEJMoa1509225 CrossRefPubMedGoogle Scholar
  23. 23.
    Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, Lingvay I, Rosenstock J, Seufert J, Warren ML, Woo V, Hansen O, Holst AG, Pettersson J, Vilsbøll T, SUSTAIN-6 Investigators (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375:1834–1844.  https://doi.org/10.1056/NEJMoa1607141 CrossRefPubMedGoogle Scholar
  24. 24.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, Nissen SE, Pocock S, Poulter NR, Ravn LS, Steinberg WM, Stockner M, Zinman B, Bergenstal RM, Buse JB, LEADER Steering Committee, LEADER Trial Investigators (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375:311–322.  https://doi.org/10.1056/NEJMoa1603827 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    DeFronzo RA, Norton L, Abdul-Ghani M (2016) Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat Rev Nephrol 13:11–26.  https://doi.org/10.1038/nrneph.2016.170 CrossRefPubMedGoogle Scholar
  26. 26.
    Vallon V, Platt KA, Cunard R, Schroth J, Whaley J, Thomson SC, Koepsell H, Rieg T (2011) SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 22:104–112.  https://doi.org/10.1681/ASN.2010030246 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Vallon V (2015) The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 66:255–270.  https://doi.org/10.1146/annurev-med-051013-110046 CrossRefPubMedGoogle Scholar
  28. 28.
    Rahmoune H, Thompson PW, Ward JM et al (2005) Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54:3427–3434.  https://doi.org/10.2337/diabetes.54.12.3427 CrossRefPubMedGoogle Scholar
  29. 29.
    Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA (1987) Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest 79:1510–1515.  https://doi.org/10.1172/JCI112981 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Abdul-Ghani MA, DeFronzo RA, Norton L (2013) Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Diabetes 62:3324–3328.  https://doi.org/10.2337/db13-0604 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hadjadj S, Rosenstock J, Meinicke T, Woerle HJ, Broedl UC (2016) Initial combination of empagliflozin and metformin in patients with type 2 diabetes. Diabetes Care 39:1718–1728.  https://doi.org/10.2337/dc16-0522 CrossRefPubMedGoogle Scholar
  32. 32.
    Lavalle-Gonzalez FJ, Januszewicz A, Davidson J et al (2013) Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia 56:2582–2592.  https://doi.org/10.1007/s00125-013-3039-1 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schernthaner G, Gross JL, Rosenstock J, Guarisco M, Fu M, Yee J, Kawaguchi M, Canovatchel W, Meininger G (2013) Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care 36:2508–2515.  https://doi.org/10.2337/dc12-2491 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Cefalu WT, Leiter LA, Yoon K-H, Arias P, Niskanen L, Xie J, Balis DA, Canovatchel W, Meininger G (2013) Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382:941–950.  https://doi.org/10.1016/S0140-6736(13)60683-2 CrossRefPubMedGoogle Scholar
  35. 35.
    Pham SV, Chilton R (2017) EMPA-REG OUTCOME: the cardiologist’s point of view. Am J Med 130:S57–S62.  https://doi.org/10.1016/j.amjmed.2017.04.006 CrossRefPubMedGoogle Scholar
  36. 36.
    Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862.  https://doi.org/10.1111/dom.12127 CrossRefPubMedGoogle Scholar
  37. 37.
    Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, Shaw W, Law G, Desai M, Matthews DR, CANVAS Program Collaborative Group (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657.  https://doi.org/10.1056/NEJMoa1611925 CrossRefPubMedGoogle Scholar
  38. 38.
    Merovci A, Solis-Herrera C, Daniele G, Eldor R, Fiorentino TV, Tripathy D, Xiong J, Perez Z, Norton L, Abdul-Ghani MA, DeFronzo RA (2014) Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J Clin Invest 124:509–514.  https://doi.org/10.1172/JCI70704 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ferrannini E, Mark M, Mayoux E (2016) CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39:1108–1114.  https://doi.org/10.2337/dc16-0330 CrossRefPubMedGoogle Scholar
  40. 40.
    Bonner C, Kerr-Conte J, Gmyr V, Queniat G, Moerman E, Thévenet J, Beaucamps C, Delalleau N, Popescu I, Malaisse WJ, Sener A, Deprez B, Abderrahmani A, Staels B, Pattou F (2015) Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med 21:512–517.  https://doi.org/10.1038/nm.3828 CrossRefPubMedGoogle Scholar
  41. 41.
    Fralick M, Schneeweiss S, Patorno E (2017) Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor. N Engl J Med 376:2300–2302.  https://doi.org/10.1056/NEJMc1701990 CrossRefPubMedGoogle Scholar
  42. 42.
    Rosenstock J, Ferrannini E (2015) Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care 38:1638–1642.  https://doi.org/10.2337/dc15-1380 CrossRefPubMedGoogle Scholar
  43. 43.
    Staels B (2017) Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms. Am J Med 130:S30–S39.  https://doi.org/10.1016/j.amjmed.2017.04.009 CrossRefPubMedGoogle Scholar
  44. 44.
    Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, Schmoor C, Ohneberg K, Johansen OE, George JT, Hantel S, Bluhmki E, Lachin JM (2018) How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care 41:356–363.  https://doi.org/10.2337/dc17-1096 CrossRefPubMedGoogle Scholar
  45. 45.
    Wolf P, Winhofer Y, Krssak M, Smajis S, Harreiter J, Kosi-Trebotic L, Fürnsinn C, Anderwald CH, Baumgartner-Parzer S, Trattnig S, Luger A, Krebs M (2016) Suppression of plasma free fatty acids reduces myocardial lipid content and systolic function in type 2 diabetes. Nutr Metab Cardiovasc Dis 26:387–392.  https://doi.org/10.1016/j.numecd.2016.03.012 CrossRefPubMedGoogle Scholar
  46. 46.
    Despa S (2002) Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 105:2543–2548.  https://doi.org/10.1161/01.CIR.0000016701.85760.97 CrossRefPubMedGoogle Scholar
  47. 47.
    Baartscheer A, Schumacher CA, Wust RCI et al (2017) Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60:568–573.  https://doi.org/10.1007/s00125-016-4134-x CrossRefPubMedGoogle Scholar
  48. 48.
    Packer M, Anker SD, Butler J, Filippatos G, Zannad F (2017) Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol 2:1025–1029.  https://doi.org/10.1001/jamacardio.2017.2275 CrossRefPubMedGoogle Scholar
  49. 49.
    Neeland IJ, McGuire DK, Chilton R et al (2016) Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diab Vasc Dis Res 13:119–126.  https://doi.org/10.1177/1479164115616901 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI (2016) Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 134:752–772.  https://doi.org/10.1161/CIRCULATIONAHA.116.021887 CrossRefPubMedGoogle Scholar
  51. 51.
    Hirshberg B, Raz I (2011) Impact of the U.S. Food and Drug Administration cardiovascular assessment requirements on the development of novel antidiabetes drugs. Diabetes Care 34:S101–S106.  https://doi.org/10.2337/dc11-s202 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, EMPA-REG OUTCOME® trial investigators (2016) Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME(R) trial. Eur Heart J 37:1526–1534.  https://doi.org/10.1093/eurheartj/ehv728 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, Norhammar A, Birkeland KI, Jørgensen ME, Thuresson M, Arya N, Bodegård J, Hammar N, Fenici P, CVD-REAL Investigators and Study Group* (2017) Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs clinical perspective: the CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation 136:249–259.  https://doi.org/10.1161/CIRCULATIONAHA.117.029190 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wanner C, Inzucchi SE, Zinman B (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:1801–1802.  https://doi.org/10.1056/NEJMc1611290 CrossRefPubMedGoogle Scholar
  55. 55.
    Januzzi JL, Butler J, Jarolim P et al (2017) Effects of canagliflozin on cardiovascular biomarkers in older adults with type 2 diabetes. J Am Coll Cardiol 70:704–712.  https://doi.org/10.1016/j.jacc.2017.06.016 CrossRefPubMedGoogle Scholar
  56. 56.
    Verma S, Garg A, Yan AT, Gupta AK, al-Omran M, Sabongui A, Teoh H, Mazer CD, Connelly KA (2016) Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: an important clue to the EMPA-REG OUTCOME trial? Diabetes Care 39:e212–e213.  https://doi.org/10.2337/dc16-1312 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Joaquim Silva CustodioJr
    • 1
    • 2
  • Andre Rodrigues Duraes
    • 1
    • 3
  • Marconi Abreu
    • 4
  • Natalia Albuquerque Rocha
    • 4
  • Leonardo Roever
    • 5
  1. 1.Department of Health Family, Medical School of BahiaFederal University of BahiaSalvadorBrazil
  2. 2.Post-graduate Program in Interactive Processes of Organs and Systems, Health & Science InstituteFederal University of BahiaSalvadorBrazil
  3. 3.Roberto Santos General Hospital – SESABSalvadorBrazil
  4. 4.Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasUSA
  5. 5.Department of Clinical ResearchFederal University of UberlandiaUberlândiaBrazil

Personalised recommendations