Heart Failure Reviews

, Volume 23, Issue 2, pp 225–235 | Cite as

Influence of exercise on oxidative stress in patients with heart failure

  • Sabrina Weiss Sties
  • Leonardo Vidal Andreato
  • Tales de Carvalho
  • Ana Inês Gonzáles
  • Vitor Giatte Angarten
  • Anderson Zampier Ulbrich
  • Lourenço Sampaio de Mara
  • Almir Schmitt Netto
  • Edson Luiz da Silva
  • Alexandro Andrade
Article
  • 173 Downloads

Abstract

Reactive oxygen species play an important role in the pathophysiology of heart failure (HF). In contrast, regular physical exercise can promote adaptations to reactive oxygen species that are beneficial for patients with HF. We completed a systematic review of randomized controlled trials that evaluate the influence of exercise on oxidative stress in patients with HF. Articles were searched in the PubMed, Cochrane, SciELO, and LILACS databases. The search was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The quality of the included studies was assessed using the Physiotherapy Evidence Database scale. We selected 12 studies with a total of 353 participants. The included patients had a left ventricle ejection fraction of < 52% and New York Heart Association functional class II or III disease. A significant increase was observed in peak oxygen consumption (between 10 and 46%) in the group that underwent training (TG). There was an improvement in the oxidative capacity of skeletal muscles in the TG, related to the positive activity of mitochondrial cytochrome c oxidase (between 27 and 41%). An increase in the expression of the enzymes glutathione peroxidase (41%), catalase (between 14 and 42%), and superoxide dismutase (74.5%), and a decrease in lipid peroxidation (between 28.8 and 58.5%) were observed in the TG. Physical training positively influenced the cardiorespiratory capacity and enhanced the benefits of oxidant and antioxidant biomarkers in patients with HF. High-intensity training promoted a 15% increase in the plasma total antioxidant capacity, whereas moderate training had no effect.

Keywords

Cardiovascular disease Physical fitness Antioxidants Exercise 

Notes

Acknowledgments

To the Coordination of Improvement of Higher Level Personnel – CAPES.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Marquez J, Suarez G, Marquez J (2013) Beneficios del ejercicio en la insuficiencia cardíaca. Rev Chil Cardiol 32(1):58–65CrossRefGoogle Scholar
  2. 2.
    Witman MA, McDaniel J, Fjeldstad AS, Ives SJ, Zhao J, Nativi JN et al (2012) A differing role of oxidative stress in the regulation of central and peripheral hemodynamics during exercise in heart failure. Am J Physiol Heart Circ Physiol 303(10):H1237–H1244CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ayoub KF1, Pothineni NVK1, Rutland J1, Ding Z1, Mehta JL (2017) Immunity, inflammation, and oxidative stress in heart failure: emerging molecular targets. Cardiovasc Drugs Ther 31(5–6):593–608CrossRefPubMedGoogle Scholar
  4. 4.
    Adams V, Niebauer J (2015) Reversing heart failure-associated pathophysiology with exercise: what actually improves and by how much? Heart Fail Clin 11(1):17–28CrossRefPubMedGoogle Scholar
  5. 5.
    Linke A, Adams V, Schulze PC, Erbs S, Gielen S, Fiehn E et al (2005) Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation 111(14):1763–1770CrossRefPubMedGoogle Scholar
  6. 6.
    Meirelles LR, Matsuura C, de Resende A, C, Salgado AA, Pereira NR, Coscarelli PG et al (2014) Chronic exercise leads to antiaggregant, antioxidant and anti-inflammatory effects in heart failure patients. Eur J Prev Cardiol 21(10):1225–1232Google Scholar
  7. 7.
    Niebauer J, Clark AL, Webb-Peploe KM, Böger R, Coats AJ (2005) Home-based exercise training modulates pro-oxidant substrates in patients with chronic heart failure. Eur J Heart Fail 7(2):183–188CrossRefPubMedGoogle Scholar
  8. 8.
    Wiecek M, Maciejczyk M, Szymura J, Szygula Z, Kantorowicz M (2015) Changes in non-enzymatic antioxidants in the blood following anaerobic exercise in men and women. LoS One 10(11):1–16Google Scholar
  9. 9.
    Theccanat T, Philip JL, Razzaque AM, Ludmer N, Li J, Xu X et al (2016) Regulation of cellular oxidative stress and apoptosis by G protein-coupled receptor kinase-2: the role of NADPH oxidase 4. Cell Signal 28(3):190–203CrossRefPubMedGoogle Scholar
  10. 10.
    Sánchez-Marteles M, Rubio GJ, Giménez LI (2015) Pathophysiology of acute heart failure: a world to know. Rev Clin Esp 216(1):38–46CrossRefPubMedGoogle Scholar
  11. 11.
    Ribeiro-Samora GA, Rabelo LA, Ferreira ACC, Favero M, Guedes GS, Pereira LSM, Parreira VF, Britto RR (2017) Inflammation and oxidative stress in heart failure: effects of exercise intensity and duration. Braz J Med Biol Res 7 50(9):e6393Google Scholar
  12. 12.
    Jackson MJ, Vasilaki A, McArdle A (2016) Cellular mechanisms underlying oxidative stress in human exercise. 98:13–17Google Scholar
  13. 13.
    Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred reporting items of systematic review and meta-analyses: the PRISMA statement. Ann Intern Med 151(4):264–269CrossRefPubMedGoogle Scholar
  14. 14.
    Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83(8):713–721PubMedGoogle Scholar
  15. 15.
    Hambrecht R, Niebauer J, Fiehn E, Kälberer B, Offner B, Hauer K et al (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25(6):1239–1249CrossRefPubMedGoogle Scholar
  16. 16.
    Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L et al (1997) Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol 29(5):1067–1073CrossRefPubMedGoogle Scholar
  17. 17.
    Gielen S, Adams V, Möbius-Winkler S, Linke A, Erbs S, Yu J et al (2003) Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol 42(5):861–868CrossRefPubMedGoogle Scholar
  18. 18.
    Gielen S, Adams V, Linke A, Erbs S, Möbius-Winkler S, Schubert A et al (2005) Exercise training in chronic heart failure: correlation between reduced local inflammation and improved oxidative capacity in the skeletal muscle. Eur J Cardiovasc Prev Rehabil 12(4):393–400CrossRefPubMedGoogle Scholar
  19. 19.
    Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM et al (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115(24):3086–3094CrossRefPubMedGoogle Scholar
  20. 20.
    Laurent M, Daline T, Malika B, Fawzi O, Philippe V, Benoit D et al (2009) Training-induced increase in nitric oxide metabolites in chronic heart failure and coronary artery disease: an extra benefit of water-based exercises? Eur J Cardiovasc Prev Rehabil 16(2):215–221CrossRefPubMedGoogle Scholar
  21. 21.
    Erbs S, Höllriegel R, Linke A, Beck EB, Adams V, Gielen S et al (2010) Exercise training in patients with advanced chronic heart failure (NYHA IIIb) promotes restoration of peripheral vasomotor function, induction of endogenous regeneration, and improvement of left ventricular function. Circ Heart Fail 3(4):486–494CrossRefPubMedGoogle Scholar
  22. 22.
    Tsarouhas K, Karatzaferi C, Tsitsimpikou C, Haliassos A, Kouretas D, Pavlidis P et al (2011) Effects of walking on heart rate recovery, endothelium modulators and quality of life in patients with heart failure. Eur J Cardiovasc Prev Rehabil 18(4):594–600CrossRefPubMedGoogle Scholar
  23. 23.
    Aksoy S, Findikoglu G, Ardic F, Rota S, Dursunoglu D (2015)) Effect of 10-week supervised moderate-intensity intermittent vs. continuous aerobic exercise programs on vascular adhesion molecules in patients with heart failure. Am J Phys Med Rehabil 10(sup.1):898–911CrossRefGoogle Scholar
  24. 24.
    Xie B, Yan X, Cai X, Li J (2017) Effects of high-intensity interval training on aerobic capacity in cardiac patients: a systematic review with meta-analysis. Biomed Res Int 2017:1–16Google Scholar
  25. 25.
    Nunes-Silva A, Freitas-Lima LC (2015) The association between physical exercise and reactive oxygen species (ROS) production. J Sports Med Doping Stud 5(1):1–7CrossRefGoogle Scholar
  26. 26.
    Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95CrossRefPubMedGoogle Scholar
  27. 27.
    Barbosa KBF, Costa NMB, Alfenas RCG, De Paula SO, Minim VPR, Bressan J (2010) Estresse oxidativo: conceito, implicações e fatores modulatórios. Rev Nutr 23(4):629–643CrossRefGoogle Scholar
  28. 28.
    Schneider CD, Oliveira AR (2004) Radicais livres de oxigênio e exercício: mecanismos de formação e adaptação ao treinamento físico. Rev Bras Med Esporte 10(4):308–313CrossRefGoogle Scholar
  29. 29.
    Dusse LMS, Vieira LM, Carvalho MG (2003) Revisão sobre óxido nítrico. J Bras Patol Med Lab 39(4):343–350CrossRefGoogle Scholar
  30. 30.
    Boger RH (2007) The pharmacodynamics of L-arginine. J Nutr 137(6):1650S–1655SCrossRefPubMedGoogle Scholar
  31. 31.
    Morris SM Jr (2007) Arginine metabolism: boundaries of our knowledge. J Nutr 137(6):1602S1609SCrossRefGoogle Scholar
  32. 32.
    Siegerink B, Maas R, Vossen CY, Schwedhelm E, Koenig W, Böger R et al (2013) Asymmetric and symmetric dimethylarginine and risk of secondary cardiovascular disease events and mortality in patients with stable coronary heart disease: the KAROLA follow-up study. Clin Res Cardiol 102(3):193–202CrossRefPubMedGoogle Scholar
  33. 33.
    Cotton JM, Kearney MT, Shah AM (2002) Nitric oxide and myocardial function in heart failure: friend or foe? Heart 88(6):564–566CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Dusting GJ, Macdonald PS (1995) Endogenous nitric oxide in cardiovascular disease and transplantation. Ann Med 27(3):395–406CrossRefPubMedGoogle Scholar
  35. 35.
    Cruzat VF, Rogero MM, Borges MC, Tirapegui J (2007) Aspectos atuais sobre estresse oxidativo, exercícios físicos e suplementação. Rev Bras Med Esporte 13(5):336–342CrossRefGoogle Scholar
  36. 36.
    Wiezorek J, Brown D, Kupperman D (1994) Rapid conversion to high xanthine oxidase activity in viable Kupffer cells during hypoxia. J Clin Invest 94(6):2224–2230CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Moores HK, Beehler CJ, Hanley ME, Shanley PF, Stevens EE, Repine JE et al (1994) Xanthine oxidase promotes neutrophil sequestration but not injury in hyperoxic lungs. J Appl Phyisol 76(2):941–948Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sabrina Weiss Sties
    • 1
    • 2
    • 3
    • 4
    • 5
  • Leonardo Vidal Andreato
    • 2
    • 3
    • 6
  • Tales de Carvalho
    • 2
    • 3
  • Ana Inês Gonzáles
    • 2
    • 3
    • 7
  • Vitor Giatte Angarten
    • 8
  • Anderson Zampier Ulbrich
    • 9
  • Lourenço Sampaio de Mara
    • 2
    • 3
  • Almir Schmitt Netto
    • 1
    • 2
    • 3
  • Edson Luiz da Silva
    • 10
    • 11
  • Alexandro Andrade
    • 2
    • 12
  1. 1.Faculdade Avantis, Departamento de FisioterapiaBalneário CamboriúBrazil
  2. 2.Universidade do Estado de Santa Catarina (UDESC)FlorianópolisBrazil
  3. 3.Núcleo de Cardiologia e Medicina do ExercícioFlorianópolisBrazil
  4. 4.Centro de Ciências da Saúde e do Esporte – CEFID/UDESCFlorianópolisBrazil
  5. 5.Cardiology and Exercise Medicine Center – bloco CFlorianópolisBrazil
  6. 6.Departamento de Educação FísicaCentro Universitáriode Maringá (UNICESUMAR)MaringáBrazil
  7. 7.Departamento de FisioterapiaCentro Universitário Estáciode Santa Catarina (ESTÁCIO)FlorianópolisBrazil
  8. 8.Faculdade de Motricidade HumanaLisbonPortugal
  9. 9.Universidade Federal do Paraná, (UFPR)CuritibaBrazil
  10. 10.Universidade Federal de Santa Catarina (UFSC)FlorianópolisBrazil
  11. 11.Laboratório de Pesquisa em Lipídeos, Antioxidantes e AteroscleroseFlorianópolisBrazil
  12. 12.Laboratório de Psicologia do Esporte e do Exercício (LAPE)FlorianópolisBrazil

Personalised recommendations