Heart Failure Reviews

, Volume 23, Issue 2, pp 291–302 | Cite as

The dark side of the kidney in cardio-renal syndrome: renal venous hypertension and congestive kidney failure

Article

Abstract

Renal involvement in some forms of acute or chronic diseases, such as heart failure or sepsis, presents with a complex pathophysiological basis that is not always clearly distinguishable. In these clinical settings, kidney failure is traditionally and almost exclusively attributed to renal hypoperfusion and it is commonly accepted that causal elements are pre-renal, such as a reduction in the ejection fraction or absolute or relative hypovolemia acting directly on oxygen transport mechanisms and renal autoregulation systems, causing a reduction of glomerular filtration rate. Nevertheless, the concept emerging from accumulating clinical and experimental evidence is that in complex clinical pictures, kidney failure is strongly linked to the hemodynamic alterations occurring in the renal venous micro and macrocirculation. Accordingly, the transmission of the increased venous pressure to the renal venous compartment and the consequent increasing renal afterload has a pivotal role in determining and sustaining the kidney damage. The aim of this review was to clarify the physiopathological aspects of the link between worsening renal function and renal venous hypertension, analyzing the prognostic and therapeutic implications of the so-called congestive kidney failure in cardio-renal syndrome and in other clinical contexts of its possible onset.

Keywords

Cardio-renal syndrome Renal venous hypertension Congestive kidney Heart failure Acute kidney injury 

Notes

Acknowledgments

The author wishes to thank Mrs. Manfredonia Monica for his valuable and competent contribution in projecting and producing the figures in the text.

Contributions

The author declares that he has received no financial contributions or economic sponsorship for writing this article.

Compliance with ethical standards

Conflict of interest

The author declares that no conflict of interest exists.

The author declares that the manuscript does not contain images and/or tables subject to authorization.

The author declares that the manuscript has not been published before and that it is not under consideration for publication anywhere else.

References

  1. 1.
    Winton FR (1931) The influence of venous pressure on the isolated mammalian kidney. J Physiol 72(1):49–61.  https://doi.org/10.1113/jphysiol.1931.sp002761 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Fiksen-Olsen MJ, Strick DM, Hawley H, Romero JC (1992) Renal effects of angiotensin II inhibition during increases in renal venous pressure. Hypertension 19(2 Suppl):II 137–II 141Google Scholar
  3. 3.
    Ross EA (2012) Congestive renal failure: the pathophysiology and treatment of renal venous hypertension. J Card Fail 18(12):930–938.  https://doi.org/10.1016/j.cardfail.2012.10.010 CrossRefPubMedGoogle Scholar
  4. 4.
    Sui F, Zheng Y, Li WX, Zhou JL (2016) Renal circulation and microcirculation during intra-abdominal hypertension in a porcine model. Eur Rev Med Pharmacol Sci 20(3):452–461PubMedGoogle Scholar
  5. 5.
    Mason J, Welsch J, Torhorst J (1987) The contribution of vascular obstruction to the functional defect that follows renal ischemia. Kidney Int 31(1):65–71CrossRefPubMedGoogle Scholar
  6. 6.
    Firth JD, Raine AE, Ledingham JG (1988) Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 1(8593):1033–1035CrossRefPubMedGoogle Scholar
  7. 7.
    Granger JP, Alexander BT, Llinas M (2002) Mechanisms of pressure natriuresis. Curr Hypertens Rep 4(2):152–159.  https://doi.org/10.1007/s11906-002-0040-3 CrossRefPubMedGoogle Scholar
  8. 8.
    Wathen RL, Selkurt EE (1969) Intrarenal regulatory factors of salt excretion during renal venous pressure elevation. Am J Phys 216:1517–1524Google Scholar
  9. 9.
    Burnett JC, Haas JA, Knox FG (1982) Segmental analysis of sodium reabsorption during renal vein constriction. Am J Phys 243(1):F19–F22Google Scholar
  10. 10.
    Doty JM, Saggi BH, Sugerman HJ, Blocher CR, Pin R, Fakhry I, Gehr TW, Sica DA (1999) Effect of increased renal venous pressure on renal function. J Trauma 47(6):1000–1003.  https://doi.org/10.1097/00005373-199912000-00002 CrossRefPubMedGoogle Scholar
  11. 11.
    Granger JP (1986) Regulation of sodium excretion by renal interstitial hydrostatic pressure. Fed Proc 45:2892–2289PubMedGoogle Scholar
  12. 12.
    Ichikawa I, Pfeffer JM, Pfeffer MA, Hostetter TH, Brenner BM (1984) Role of angiotensin II in the altered renal function of congestive heart failure. Circ Res 55(5):669–675.  https://doi.org/10.1161/01.RES.55.5.669 CrossRefPubMedGoogle Scholar
  13. 13.
    Charkoudian N, Martin EA, Dinenno FA, Eisenach JH, Dietz NM, Joyner MJ (2004) Influence of increased central venous pressure on baroreflex control of sympathetic activity in humans. Am J Physiol Heart Circ Physiol 287:1658–1662CrossRefGoogle Scholar
  14. 14.
    Edwards BS, Zimmerman RS, Schwab TR, Heublein DM, Burnett JC Jr (1988) Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 62(2):191–195.  https://doi.org/10.1161/01.RES.62.2.191 CrossRefPubMedGoogle Scholar
  15. 15.
    Sosa RE, Volpe M, Marion DN, Atlas SA, Laragh JH, Vaughan ED Jr, Maack T (1986) Relationship between renal hemodynamic and natriuretic effects of atrial natriuretic factor. Am J Phys 250(3 Pt 2):F520–F524Google Scholar
  16. 16.
    Rokitansky AM, Losert UM, Trubel W, Wieselthaler G, Krausler S, Shreiner W, Buxbaum P, Vierhapper H, Waldhäusl WK, Wolner E (1990) Action of endogenous atrial natriuretic peptide in calves with experimental acute central venous congestion and low cardiac output. Cardiovasc Res 24(5):345–351.  https://doi.org/10.1093/cvr/24.5.345 CrossRefPubMedGoogle Scholar
  17. 17.
    Gopi V, Parthasarathy A, Umadevi S, Vellaichamy E (2013) Angiotensin-II down-regulates cardiac natriuretic peptide receptor—a mediated anti-hypertrophic signaling in experimental rat hearts. Indian J Exp Biol 51(1):48–55PubMedGoogle Scholar
  18. 18.
    Volpe M, Carnovali M, Mastromarino V (2016) The natriuretic peptides system in the pathophysiology of heart failure: from molecular basis to treatment. Clin Sci (Lond) 130(2):57–77CrossRefGoogle Scholar
  19. 19.
    Yuyun MF, Narayan HK, Ng LL (2015) Prognostic significance of adrenomedullin in patients with heart failure and with myocardial infarction. Am J Cardiol 115(7):986–991.  https://doi.org/10.1016/j.amjcard.2015.01.027 CrossRefPubMedGoogle Scholar
  20. 20.
    Lainchbury JG, Cooper GJ, Coy DH, Jiang NY, Lewis LK, Yandle TG, Richards AM, Nicholls MG (1997) Adrenomedullin: a hypotensive hormone in man. Clin Sci (Lond). 92(5):467–472.  https://doi.org/10.1042/cs0920467 CrossRefPubMedGoogle Scholar
  21. 21.
    Ishimitsu T, Ono H, Minami J, Matsuoka H (2006) Pathophysiologic and therapeutic implications of adrenomedullin in cardiovascular disorders. Pharmacol Ther 111(3):909–927.  https://doi.org/10.1016/j.pharmthera.2006.02.004 CrossRefPubMedGoogle Scholar
  22. 22.
    Rademaker MT, Cameron VA, Charles CJ, Lainchbury JG, Nicholls MG, Richards AM (2003) Adrenomedullin and heart failure. Regul Pept 112(1–3):51–60.  https://doi.org/10.1016/S0167-0115(03)00022-3 CrossRefPubMedGoogle Scholar
  23. 23.
    Petrie MC, McDonald JE, Hillier C, Morton JJ, McMurray JJ (2001) Effects of adrenomedullin on angiotensin II stimulated atrial natriuretic peptide and arginine vasopressin secretion in healthy humans. Br J Clin Pharmacol 52(2):165–168.  https://doi.org/10.1046/j.0306-5251.2001.01428.x CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chun TH, Itoh H, Ogawa Y, Tamura N, Takaya K, Igaki T, Yamashita J, Doi K, Inoue M, Masatsugu K, Korenaga R, Ando J, Nakao K (1997) Shear stress augments expression of C-type natriuretic peptide and adrenomedullin. Hypertension 29(6):1296–1302.  https://doi.org/10.1161/01.HYP.29.6.1296 CrossRefPubMedGoogle Scholar
  25. 25.
    Ding X, Cheng Z, Qian Q (2017) Intravenous fluids and acute kidney injury. Blood Purif 43(1–3):163–172.  https://doi.org/10.1159/000452702 CrossRefPubMedGoogle Scholar
  26. 26.
    Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE (2004) Oncotic pressures opposing filtration across non-fenestrated rat mi-crovessels. J Physiol 557(pt 3):889–907.  https://doi.org/10.1113/jphysiol.2003.058255 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Van den Berg BM, Vink H, Spaan JA (2003) The endothelial glycocalyx protects against myocardial edema. Circ Res 92:592–594CrossRefPubMedGoogle Scholar
  28. 28.
    Berg S, Golster M, Lisander B (2002) Albumin extravasation and tissue washout of hyaluronan after plasma volume expansion with crystalloid or hypooncotic colloid solutions. Acta Anaesthesiol Scand 46:166–172CrossRefPubMedGoogle Scholar
  29. 29.
    Jünger M, Steins A, Hahn M, Häfner HM (2000) Microcirculatory dysfunction in chronic venous insufficiency (CVI). Microcirculation 7(6 Pt 2):S3–12CrossRefPubMedGoogle Scholar
  30. 30.
    Tromp J, Khan MA, Klip IT, Meyer S, de Boer RA, Jaarsma T, Hillege H, van Veldhuisen DJ, van der Meer P, Voors AA (2017) Biomarker profiles in heart failure patients with preserved and reduced ejection fraction. J Am Heart Assoc 6(4):e003989.  https://doi.org/10.1161/JAHA.116.003989 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Colombo PC, Onat D, Harxhi A, Demmer RT, Hayashi Y, Jelic S (2014) Peripheral venous congestion causes inflammation, neurohormonal, and endothelial cell activation. Eur Heart J 35(7):448–454.  https://doi.org/10.1093/eurheartj/eht456 CrossRefPubMedGoogle Scholar
  32. 32.
    Colombo PC, Rastogi S, Onat D et al (2009) Activation of endothelial cells in conduit veins of dogs with heart failure and veins of normal dogs after vascular stretch by acute volume loading. J Card Fail 15:457–463CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Sumpio BE, Riley JT, Dardik A (2002) Cells in focus: endothelial cell. Int J Biochem Cell Biol 34(12):1508–1512.  https://doi.org/10.1016/S1357-2725(02)00075-4 CrossRefPubMedGoogle Scholar
  34. 34.
    Ganda A, Onat D, Demmer RT, Wan E, Vittorio TJ, Sabbah HN, Colombo PC (2010) Venous congestion and endothelial cell activation in acute decompensated heart failure. Curr Heart Fail Rep 7(2):66–74.  https://doi.org/10.1007/s11897-010-0009-5 CrossRefPubMedGoogle Scholar
  35. 35.
    Damman K, Jaarsma T, Voors AA, Navis G, Hillege HL, van Veldhuisen DJ, COACH investigators (2009) Both in- and out-hospital worsening of renal function predict outcome in patients with heart failure: results from the coordinating study evaluating outcome of advising and counseling in heart failure (COACH). Eur J Heart Fail 11(9):847–854.  https://doi.org/10.1093/eurjhf/hfp108 CrossRefPubMedGoogle Scholar
  36. 36.
    Maeder MT, Holst DP, Kaye DM (2008) Tricuspid regurgitation contributes to renal dysfunction in patients with heart failure. J Card Fail 14(10):824–830.  https://doi.org/10.1016/j.cardfail.2008.07.236 CrossRefPubMedGoogle Scholar
  37. 37.
    Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, Young JB, Tang WH (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53(7):589–596CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kos T, Pacher R, Wimmer A et al (1998) Relationship between kidney function, hemodynamic variables and circulating big endothelin levels in patients with severe refractory heart failure. Wien Klin Wochenschr 110:89–95PubMedGoogle Scholar
  39. 39.
    Damman K, Navis G, Smilde TD, Voors AA, van der Bij W, van Veldhuisen DJ, Hillege HL (2007) Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail 9(9):872–878.  https://doi.org/10.1016/j.ejheart.2007.05.010 CrossRefPubMedGoogle Scholar
  40. 40.
    Uthoff H, Breidthardt T, Klima T, Aschwanden M, Arenja N, Socrates T, Heinisch C, Noveanu M, Frischknecht B, Baumann U, Jaeger KA, Mueller C (2011) Central venous pressure and impaired renal function in patients with acute heart failure. Eur J Heart Fail 13(4):432–439.  https://doi.org/10.1093/eurjhf/hfq195 CrossRefPubMedGoogle Scholar
  41. 41.
    Guazzi M, Gatto P, Giusti G, Pizzamiglio F, Previtali I, Vignati C, Arena R (2013) Pathophysiology of cardiorenal syndrome in decompensated heart failure: role of lung-right heart-kidney interaction. Int J Cardiol 169(6):379–384.  https://doi.org/10.1016/j.ijcard.2013.09.014 CrossRefPubMedGoogle Scholar
  42. 42.
    Forrester JS, Diamond G, Chatterjee K, Swan HJ (1976) Medical therapy of acute myocardial infarction by application of hemodynamic subsets (first of two parts). N Engl J Med 295(24):1356–1362CrossRefPubMedGoogle Scholar
  43. 43.
    Nohria A, Tsang SW, Fang JC, Lewis EF, Jarcho JA, Mudge GH, Stevenson LW (2003) Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol 41(10):1797–1804.  https://doi.org/10.1016/S0735-1097(03)00309-7 CrossRefPubMedGoogle Scholar
  44. 44.
    Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, Piovanelli B, Carubelli V, Bugatti S, Lombardi C, Cotter G, Dei Cas L (2012) Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail 5(1):54–62.  https://doi.org/10.1161/CIRCHEARTFAILURE.111.963413 CrossRefPubMedGoogle Scholar
  45. 45.
    Leithe ME, Margorien RD, Hermiller JB, Unverferth DV, Leier CV (1984) Relationship between central hemodynamics and regional blood flow in normal subjects and in patients with congestive heart failure. Circulation 69(1):57–64.  https://doi.org/10.1161/01.CIR.69.1.57 CrossRefPubMedGoogle Scholar
  46. 46.
    Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53(7):582–588.  https://doi.org/10.1016/j.jacc.2008.08.080 CrossRefPubMedGoogle Scholar
  47. 47.
    Guglin M, Rivero A, Matar F, Garcia M (2011) Renal dysfunction in heart failure is due to congestion but not low output. Clin Cardiol 34(2):113–116.  https://doi.org/10.1002/clc.20831 CrossRefPubMedGoogle Scholar
  48. 48.
    Binanay C, Califf RM, Hasselblad V, O’Connor CM, Shah MR, Sopko G, Stevenson LW, Francis GS, Leier CV, Miller LW, ESCAPE Investigators and ESCAPE Study Coordinators (2005) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA 294(13):1625–1633.  https://doi.org/10.1001/jama.294.13.1625 CrossRefPubMedGoogle Scholar
  49. 49.
    Nohria A, Hasselblad V, Stebbins A et al (2008) Cardiorenal interactions: insights from the ESCAPE trial. J Am Coll Cardiol 51:1268–1274CrossRefPubMedGoogle Scholar
  50. 50.
    Hanberg JS, Sury K, Wilson FP et al (2016) Reduced cardiac index is not the dominant driver of renal dysfunction in heart failure. J Am Coll Cardiol 67:2199–2208CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Al-Kindi SG, Oliveira GH (2016) Lack of association between cardiac index and kidney dysfunction: validation in patients awaiting heart transplantation. J Am Coll Cardiol 68(8):876–877.  https://doi.org/10.1016/j.jacc.2016.05.077 CrossRefPubMedGoogle Scholar
  52. 52.
    Kirkpatrick AW, Roberts DJ, De Waele J, Jaeschke R, Malbrain ML, De Keulenaer B, Duchesne J, Bjorck M, Leppaniemi A, Ejike JC, Sugrue M, Cheatham M, Ivatury R, Ball CG, Reintam Blaser A, Regli A, Balogh ZJ, D’Amours S, Debergh D, Kaplan M, Kimball E, Olvera C, Pediatric Guidelines Sub-Committee for the World Society of the Abdominal Compartment Syndrome (2013) Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med 39(7):1190–1206CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Cheatham ML, White MW, Sagraves SG, Johnson JL, Block EFJ (2000) Abdominal perfusion pressure: a superior parameter in the assessment of intra-abdominal hypertension. J Trauma 49(4):621–627.  https://doi.org/10.1097/00005373-200010000-00008 CrossRefPubMedGoogle Scholar
  54. 54.
    Mohmand H, Goldfarb SJ (2011) Renal dysfunction associated with intra-abdominal hypertension and the abdominal compartment syndrome. J Am Soc Nephrol 22(4):615–621CrossRefPubMedGoogle Scholar
  55. 55.
    Thorington JM, Schmidt CF (1923) A study of urinary output and blood-pressure changes resulting in experimental ascites. Am J Med Sci 165(6):880–886.  https://doi.org/10.1097/00000441-192306000-00012 CrossRefGoogle Scholar
  56. 56.
    Bradley SE, Bradley GP (1947) The effect of increased intra-abdominal pressure on renal function in man. J Clin Invest 26(5):1010–1022.  https://doi.org/10.1172/JCI101867 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lee JE (2015) Increased intra-abdominal pressure in acute kidney injury: a cause or an effect? Kidney Res Clin Pract 34(2):67–68.  https://doi.org/10.1016/j.krcp.2015.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Harman PK, Kron IL, McLachlan HD, Freedlender AE, Nolan SP (1982) Elevated intra-abdominal pressure and renal function. Ann Surg 196(5):594–597.  https://doi.org/10.1097/00000658-198211000-00015 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cade R, Wagemaker H, Vogel S, Mars D, Hood-Lewis D, Privette M, Peterson J, Schlein E, Hawkins R, Raulerson D (1987) Hepatorenal syndrome. Studies of the effect of vascular volume and intraperitoneal pressure on renal and hepatic function. Am J Med 82(3):427–438.  https://doi.org/10.1016/0002-9343(87)90442-6 CrossRefPubMedGoogle Scholar
  60. 60.
    Panos MZ, Moore K, Vlavianos P, Chambers JB, Anderson JV, Gimson AES, Slater JDH, Rees LH, Westaby D, Williams R (1990) Single, total paracentesis for tense ascites: sequential hemodynamic changes and right atrial size. Hepatology 11(4):662–667.  https://doi.org/10.1002/hep.1840110420 CrossRefPubMedGoogle Scholar
  61. 61.
    Luca A, Feu F, García-Pagán JC, Jiménez W, Arroyo V, Bosch J, Rodés JH (1994) Favorable effects of total paracentesis on splanchnic hemodynamics in cirrhotic patients with tense ascites. Hepatology 20(1 Pt 1):30–33PubMedGoogle Scholar
  62. 62.
    Maxwell MH, Breed ES, Schwartz IL (1950) Renal venous pressure in chronic congestive heart failure. J Clin Invest 29(3):342–348.  https://doi.org/10.1172/JCI102263 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jessup M, Costanzo MR (2009) The cardiorenal syndrome: do we need a change of strategy or a change of tactics? J Am Coll Cardiol 53(7):597–599.  https://doi.org/10.1016/j.jacc.2008.11.012 CrossRefPubMedGoogle Scholar
  64. 64.
    Felker GM, Mentz RJ (2012) Diuretics and ultrafiltration in acute decompensated heart failure. J Am Coll Cardiol 59:2145e53CrossRefGoogle Scholar
  65. 65.
    Loon NR, Wilcox CS, Unwin RJ (1989) Mechanism of impaired natriuretic response to furosemide during prolonged therapy. Kidney Int 36(4):682–689.  https://doi.org/10.1038/ki.1989.246 CrossRefPubMedGoogle Scholar
  66. 66.
    Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341(10):709–717.  https://doi.org/10.1056/NEJM199909023411001 CrossRefPubMedGoogle Scholar
  67. 67.
    Núñez J, Miñana G, Santas E, Bertomeu-González V (2015) Cardiorenal syndrome in acute heart failure: revisiting paradigms. Rev Esp Cardiol (Engl Ed) 68(5):426–435.  https://doi.org/10.1016/j.recesp.2014.10.016 CrossRefGoogle Scholar
  68. 68.
    Francis GS, Siegel RM, Goldsmith SR, Olivari MT, Levine TB, Cohn JN (1985) Acute vasoconstrictor response to intravenous furosemide in patients with chronic congestive heart failure. Activation of the neurohumoral axis. Ann Intern Med 103(1):1–6CrossRefPubMedGoogle Scholar
  69. 69.
    Domanski M, Norman J, Pitt B, Haigney M, Hanlon S, Peyster E (2003) Studies of left ventricular dysfunction. Diuretic use, progressive heart failure and death in patients in the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 42(4):705–708.  https://doi.org/10.1016/S0735-1097(03)00765-4 CrossRefPubMedGoogle Scholar
  70. 70.
    Hasselblad V, Stough WG, Shah MR, Lokhnygina Y, O’Connor CM, Califf RM, Adams KF Jr (2007) Relation between dose of loop diuretics and outcomes in a heart failure population: results of the ESCAPE trial. Eur J Heart Fail 9(10):1064–1069.  https://doi.org/10.1016/j.ejheart.2007.07.011 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Felker GM, Lee KL, Bull DA, Redield MM, Stevenson LW, Goldsmith SR, LeWinter MM, Deswal A, Rouleau JL, Oili EO, Anstrom KJ, Hernandez AF, McNulty SE, Velazquez EJ, Kfoury AG, Chen HH, Givertz MM, Semigran MJ, Bart BA, Mascette AM, Braunwald E, O’Connor CM (2011) Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364(9):797–805.  https://doi.org/10.1056/NEJMoa1005419 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Butler J, Forman DE, Abraham WT et al (2004) Relationship between heart failure treatment and development of worsening renal function among hospitalized patients. Am Heart J 147(2):331–338.  https://doi.org/10.1016/j.ahj.2003.08.012 CrossRefPubMedGoogle Scholar
  73. 73.
    Thalhammer C, Aschwanden M, Odermatt A, Baumann UA, Imfeld S, Bilecen D, Marsch SC, Jaeger KA (2007) Noninvasive central venous pressure measurement by controlled compression sonography at the forearm. J Am Coll Cardiol 50(16):1584–1589CrossRefPubMedGoogle Scholar
  74. 74.
    Abraham WT, Stevenson LW, Bourge RC et al (2016) CHAMPION Trial Study Group. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomized trial. Lancet 387(10017):453–461.  https://doi.org/10.1016/S0140-6736(15)00723-0 CrossRefPubMedGoogle Scholar
  75. 75.
    Jaski BE, Ha J, Denys BG, Lamba S, Trupp RJ, Abraham WT (2003) Peripherally inserted veno-venous ultrafiltration for rapid treatment of volume overloaded patients. J Card Fail 9(3):227–231.  https://doi.org/10.1054/jcaf.2003.28 CrossRefPubMedGoogle Scholar
  76. 76.
    Bart BA, Boyle A, Bank AJ et al (2005) Ultrafiltration versus usual care for hospitalized patients with heart failure: the relief for acutely fluid overloaded patients with decompensated congestive heart failure (RAPID-CHF) trial. J Am Coll Cardiol 46:2043–2046CrossRefPubMedGoogle Scholar
  77. 77.
    Costanzo MR, Guglin ME, Saltzberg MT, Jessup ML, Bart BA, Teerlink JR, Jaski BE, Fang JC, Feller ED, Haas GJ, Anderson AS, Schollmeyer MP, Sobotka PA, UNLOAD Trial Investigators (2007) Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 49(6):675–683.  https://doi.org/10.1016/j.jacc.2006.07.073 CrossRefPubMedGoogle Scholar
  78. 78.
    Costanzo MR, Ronco C (2011) Extracorporeal ultrafiltration for congestive heart failure patients. Contrib Nephrol 171:201–207.  https://doi.org/10.1159/000327152 CrossRefPubMedGoogle Scholar
  79. 79.
    Bart BA, Goldsmith SR, Lee KL, for the Heart Failure Clinical Research Network et al (2012) Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med 367(24):2296–2230.  https://doi.org/10.1056/NEJMoa1210357 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Costanzo MR, Ronco C, Abraham WT, Agostoni P, Barasch J, Fonarow GC, Gottlieb SS, Jaski BE, Kazory A, Levin AP, Levin HR, Marenzi G, Mullens W, Negoianu D, Redfield MM, Tang WHW, Testani JM, Voors AA (2017) Extracorporeal ultrafiltration for fluid overload in heart failure: current status and prospects for further research. J Am Coll Cardiol 69(19):2428–2445.  https://doi.org/10.1016/j.jacc.2017.03.528 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kazory A (2016) Ultrafiltration therapy for heart failure: balancing likely benefits against possible risks. Clin J Am Soc Nephrol 11(8):1463–1471CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Marenzi G, Muratori M, Cosentino ER, Rinaldi ER, Donghi V, Milazzo V, Ferramosca E, Borghi C, Santoro A, Agostoni P (2014) Continuous ultrafiltration for congestive heart failure: the CUORE trial. J Card Fail 20(1):9–17.  https://doi.org/10.1016/j.cardfail.2013.11.004 CrossRefPubMedGoogle Scholar
  83. 83.
    Costanzo MR, Negoianu D, Jaski BE, Bart BA, Heywood JT, Anand IS, Smelser JM, Kaneshige AM, Chomsky DB, Adler ED, Haas GJ, Watts JA, Nabut JL, Schollmeyer MP, Fonarow GC (2016) Aquapheresis versus intravenous diuretics and hospitalizations for heart failure. JACC Heart Fail 4(2):95–105.  https://doi.org/10.1016/j.jchf.2015.08.005 CrossRefPubMedGoogle Scholar
  84. 84.
    Lu R, Muciño-Bermejo MJ, Ribeiro LC, Tonini E, Estremadoyro C, Samoni S, Sharma A, Zaragoza Galván Jde J, Crepaldi C, Brendolan A, Ni Z, Rosner MH, Ronco C (2015) Peritoneal dialysis in patient with refractory congestive heart failure: a systematic review. Cardiorenal Med 5(2):145–156.  https://doi.org/10.1159/000380915 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Teerlink JR, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, Ponikowski P, Unemori E, Voors AA, Adams KF Jr, Dorobantu MI, Grinfeld LR, Jondeau G, Marmor A, Masip J, Pang PS, Werdan K, Teichman SL, Trapani A, Bush CA, Saini R, Schumacher C, Severin TM, Metra M (2013) Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX AHF): a randomised, placebo-controlled trial. Lancet 381(9860):29–39.  https://doi.org/10.1016/S0140-6736(12)61855-8 CrossRefPubMedGoogle Scholar
  86. 86.
    Metra M, Cotter G, Davison BA, Felker GM, Filippatos G, Greenberg BH, Ponikowski P, Unemori E, Voors AA, Adams KF Jr, Dorobantu MI, Grinfeld L, Jondeau G, Marmor A, Masip J, Pang PS, Werdan K, Prescott MF, Edwards C, Teichman SL, Trapani A, Bush CA, Saini R, Schumacher C, Severin T, Teerlink JR, Investigators RELAX-AHF (2013) Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the relaxin in acute heart failure (RELAX-AHF) development program: correlation with outcomes. J Am Coll Cardiol 61(2):196–206.  https://doi.org/10.1016/j.jacc.2012.11.005 CrossRefPubMedGoogle Scholar
  87. 87.
    Teerlink JR (2017) RELAXin in acute heart Failure-2- RELAX-AHF-2. American College of Cardiology. http://www.acc.org/latest-in-cardiology/clinical-trials/2017/05/07/16/09/relax-ahf-2. Accessed 23 Dec 2017
  88. 88.
    Witteles RM, Kao D, Christopherson D, Matsuda K, Vagelos RH, Schreiber D, Fowler MB (2007) Impact of nesiritide on renal function in patients with acute decompensated heart failure and pre-existing renal dysfunction: a randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol 50(19):1835–1840.  https://doi.org/10.1016/j.jacc.2007.03.071 CrossRefPubMedGoogle Scholar
  89. 89.
    Dandamudi S, Chen HH (2012) The ASCEND-HF trial: an acute study of clinical effectiveness of nesiritide and decompensated heart failure. Expert Rev Cardiovasc Ther 10(5):557–563.  https://doi.org/10.1586/erc.12.31 CrossRefPubMedGoogle Scholar
  90. 90.
    Chen HH, Anstrom KJ, Givertz MM, Stevenson LW, Semigran MJ, Goldsmith SR, Bart BA, Bull DA, Stehlik J, LeWinter MM, Konstam MA, Huggins GS, Rouleau JL, O’Meara E, Tang WH, Starling RC, Butler J, Deswal A, Felker GM, O’Connor CM, Bonita RE, Margulies KB, Cappola TP, Ofili EO, Mann DL, Dávila-Román VG, McNulty SE, Borlaug BA, Velazquez EJ, Lee KL, Shah MR, Hernandez AF, Braunwald E, Redfield MM (2013) Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA 310(23):2533–2543.  https://doi.org/10.1001/jama.2013.282190 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Jain AK, Chen HH (2014) ROSE-AHF and lessons learned. Curr Heart Fail Rep 11(3):260–265.  https://doi.org/10.1007/s11897-014-0208-6 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Trippodo NC, Fox M, Monticello TM, Panchal BC, Asaad MM (1999) Vasopeptidase inhibition with omapatrilat improves cardiac geometry and survival in cardiomyopathic hamsters more than does ACE inhibition with captopril. J Cardiovasc Pharmacol 34(6):782–790.  https://doi.org/10.1097/00005344-199912000-00003 CrossRefPubMedGoogle Scholar
  93. 93.
    JJ MM, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, PARADIGM-HF Investigators and Committees (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004.  https://doi.org/10.1056/NEJMoa1409077 CrossRefGoogle Scholar
  94. 94.
    Packer M, JJ MM, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K et al (2015) Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation 131(1):54–61.  https://doi.org/10.1161/CIRCULATIONAHA.114.013748 CrossRefPubMedGoogle Scholar
  95. 95.
    Follath F, Cleland JG, Just H et al (2002) Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double- blind trial. Lancet 360(9328):196–202.  https://doi.org/10.1016/S0140-6736(02)09455-2 CrossRefPubMedGoogle Scholar
  96. 96.
    Damman K, Voors AA (2007) Levosimenda improves renal function in acute decompensated heart failure: cause and clinicalapplication. Editorial to: “Levosimendan improves renal function in patients with acute decompensated heart failure: comparison with dobutamine by Yilmaz et al.”. Cardiovasc Drugs Ther 21(6):403–404CrossRefPubMedGoogle Scholar
  97. 97.
    Yilmaz MB, Yalta K, Yontar C, Karadas F, Erdem A, Turgut OO, Yilmaz A, Tandogan I (2007) Levosimendan improves renal function in patients with acute decompensated heart failure: comparison with dobutamine. Cardiovasc Drugs Ther 21(6):431–435.  https://doi.org/10.1007/s10557-007-6066-7 CrossRefPubMedGoogle Scholar
  98. 98.
    Fedele F, Bruno N, Brasolin B, Caira C, D’Ambrosi A, Mancone M (2014) Levosimendan improves renal function in acute decompensated heart failure: possible underlying mechanisms. Eur J Heart Fail 16(3):281–288.  https://doi.org/10.1002/ejhf.9 CrossRefPubMedGoogle Scholar
  99. 99.
    Cholley B, Caruba T, Grosjean S, Amour J, Ouattara A, Villacorta J, Miguet B, Guinet P, Lévy F, Squara P, Aït Hamou N, Carillon A, Boyer J, Boughenou MF, Rosier S et al (2017) Effect of Levosimendan on low cardiac output syndrome in patients with low ejection fraction undergoing coronary artery bypass grafting with cardiopulmonary bypass: the LICORN randomized clinical trial. JAMA 318(6):548–556.  https://doi.org/10.1001/jama.2017.9973 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Mehta RH, Leimberger JD, van Diepen S, Meza J, Wang A, Jankowich R, Harrison RW, Hay D, Fremes S, Duncan A et al (2017) Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med 376(21):2032–2042.  https://doi.org/10.1056/NEJMoa1616218 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nephrology and Dialysis Unit“S. Maria della Scaletta” HospitalImolaItaly

Personalised recommendations