Skip to main content

Advertisement

Log in

SPECT and PET in ischemic heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient’s investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Giamouzis G, Kalogeropoulos A, Georgiopoulou V, Laskar S, Smith AL, Dunbar S et al (2011) Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions. J Card Fail 17(1):54–75

    Article  PubMed  Google Scholar 

  2. Agnetti G, Piepoli MF, Siniscalchi G, Nicolini F (2015) New insights in the diagnosis and treatment of heart failure. Biomed Res Int 2015:265260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cappuccio FP, Miller MA (2016) Cardiovascular disease and hypertension in sub-Saharan Africa: burden, risk and interventions. Intern Emerg Med 11(3):299–305

    Article  PubMed  PubMed Central  Google Scholar 

  4. Callender T, Woodward M, Roth G, Farzadfar F, Lemarie JC, Gicquel S et al (2014) Heart failure care in low- and middle-income countries: a systematic review and meta-analysis. PLoS Med 11(8):e1001699

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sakata Y, Shimokawa H (2013) Epidemiology of heart failure in Asia. Circ J 77(9):2209–2217

    Article  PubMed  Google Scholar 

  6. Al-Shamiri MQ (2013) Heart failure in the Middle East. Curr Cardiol Rev 9(2):174–178

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gersh BJ, Sliwa K, Mayosi BM, Yusuf S (2010) Novel therapeutic concepts: the epidemic of cardiovascular disease in the developing world: global implications. Eur Heart J 31(6):642–648

    Article  PubMed  Google Scholar 

  8. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33(14):1787–1847

    Article  PubMed  Google Scholar 

  9. Giubbini R, Milan E, Bertagna F, Mut F, Metra M, Rodella C et al (2009) Nuclear cardiology and heart failure. Eur J Nucl Med Mol Imaging 36(12):2068–2080

    Article  PubMed  Google Scholar 

  10. Mc Ardle B, Ziadi MC, Ruddy TD, Beanlands RS (2012) Nuclear perfusion imaging for functional evaluation of patients with known or suspected coronary artery disease: the future is now. Futur Cardiol 8(4):603–622

    Article  CAS  Google Scholar 

  11. Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P et al (2015) EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 42(12):1929–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hesse B, Tagil K, Cuocolo A, Anagnostopoulos C, Bardies M, Bax J et al (2005) EANM/ESC procedural guidelines for myocardial perfusion imaging in nuclear cardiology. Eur J Nucl Med Mol Imaging 32(7):855–897

    Article  CAS  PubMed  Google Scholar 

  13. uz Zaman M, Fatima N, Samad A, Ishaq M, Wali A, Rehman K et al (2011) Predictive and prognostic values of transient ischemic dilatation of left ventricular cavity for coronary artery disease and impact of various managements on clinical outcome using technetium-99 m sestamibi gated myocardial perfusion imaging. Ann Nucl Med 25(8):566–570

    Article  Google Scholar 

  14. Xu Y, Arsanjani R, Clond M, Hyun M, Lemley M Jr, Fish M et al (2012) Transient ischemic dilation for coronary artery disease in quantitative analysis of same-day sestamibi myocardial perfusion SPECT. J Nucl Cardiol 19(3):465–473

    Article  PubMed  PubMed Central  Google Scholar 

  15. Georgoulias P, Tsougos I, Valotassiou V, Tzavara C, Xaplanteris P, Demakopoulos N (2010) Long-term prognostic value of early poststress (99 m)Tc-tetrofosmin lung uptake during exercise (SPECT) myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 37(4):789–798

    Article  PubMed  Google Scholar 

  16. Georgoulias P VV, Tsougos I, Angelidis G, Demakopoulos N. Clinical significance of tetrofosmin extracardiac uptake during myocardial perfusion imaging. In: Branislav B, editor. Coronary angiography—advances in noninvasive imaging approach for evaluation of coronary artery disease: InTech; 2011.

  17. Liu CJ, Wu YW, Ko KY, Chen YC, Cheng MF, Yen RF et al (2015) Incremental diagnostic performance of combined parameters in the detection of severe coronary artery disease using exercise gated myocardial perfusion imaging. PLoS One 10(7):e0134485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Georgoulias P, Tsougos I, Tzavara C, Valotassiou V, Demakopoulos N (2012) Incremental prognostic value of 99mTc-tetrofosmin early poststress pulmonary uptake. Determination of the optimal cut-off value. Nucl Med Commun 33(5):470–475

    Article  PubMed  Google Scholar 

  19. Henzlova MJ, Duvall WL, Einstein AJ, Travin MI, Verberne HJ (2016) ASNC imaging guidelines for SPECT nuclear cardiology procedures: stress, protocols, and tracers. J Nucl Cardiol 23(3):606–639

    Article  PubMed  Google Scholar 

  20. Camici PG, Prasad SK, Rimoldi OE (2008) Stunning, hibernation, and assessment of myocardial viability. Circulation 117(1):103–114

    Article  PubMed  Google Scholar 

  21. Fiechter M, Fuchs TA, Stehli J, Jacobs S, Falk V, Kaufmann PA (2013) Reversible true myocardial hibernation. Eur Heart J 34(9):648

    Article  PubMed  Google Scholar 

  22. Schinkel AF, Valkema R, Geleijnse ML, Sijbrands EJ, Poldermans D. Single-photon emission computed tomography for assessment of myocardial viability. EuroIntervention. 2010;6 Suppl G:G115–22.

  23. He YM, Yang XJ, Wu YW, Zhang B (2009) Twenty-four-hour thallium-201 imaging enhances the detection of myocardial ischemia and viability after myocardial infarction: a comparison study with echocardiography follow-up. Clin Nucl Med 34(2):65–69

    Article  PubMed  Google Scholar 

  24. Pagnanelli RA, Basso DA (2010) Myocardial perfusion imaging with 201Tl. J Nucl Med Technol. 38(1):1–3

    Article  PubMed  Google Scholar 

  25. Fallahi B, Beiki D, Gholamrezanezhad A, Mahmoudian B, Ansari Gilani K, Eftekhari M et al (2008) Single Tc99m sestamibi injection, double acquisition gated SPECT after stress and during low-dose dobutamine infusion: a new suggested protocol for evaluation of myocardial perfusion. Int J Cardiovasc Imaging. 24(8):825–835

    Article  PubMed  Google Scholar 

  26. Candell-Riera J, Romero-Farina G, Aguade-Bruix S, Castell-Conesa J, de Leon G, Garcia-Dorado D (2009) Prognostic value of myocardial perfusion-gated SPECT in patients with ischemic cardiomyopathy. J Nucl Cardiol 16(2):212–221

    Article  PubMed  Google Scholar 

  27. Tajouri TH, Chareonthaitawee P (2010) Myocardial viability imaging and revascularization in chronic ischemic left ventricular systolic dysfunction. Expert Rev Cardiovasc Ther 8(1):55–63

    Article  PubMed  Google Scholar 

  28. Uebleis C, Hellweger S, Laubender RP, Becker A, Sohn HY, Lehner S et al (2013) The amount of dysfunctional but viable myocardium predicts long-term survival in patients with ischemic cardiomyopathy and left ventricular dysfunction. Int J Cardiovasc Imaging. 29(7):1645–1653

    Article  PubMed  Google Scholar 

  29. Page BJ, Banas MD, Suzuki G, Weil BR, Young RF, Fallavollita JA et al (2015) Revascularization of chronic hibernating myocardium stimulates myocyte proliferation and partially reverses chronic adaptations to ischemia. J Am Coll Cardiol 65(7):684–697

    Article  PubMed  PubMed Central  Google Scholar 

  30. Acampa W, Cuocolo A, Petretta M, Bruno A, Castellani M, Finzi A et al (2002) Tetrofosmin imaging in the detection of myocardial viability in patients with previous myocardial infarction: comparison with sestamibi and Tl-201 scintigraphy. J Nucl Cardiol 9(1):33–40

    Article  PubMed  Google Scholar 

  31. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39(7):1151–1158

    Article  PubMed  Google Scholar 

  32. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P et al (2011) Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 364(17):1617–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Goel PK, Bhatia T, Kapoor A, Gambhir S, Pradhan PK, Barai S et al (2014) Left ventricular remodeling after late revascularization correlates with baseline viability. Tex Heart Inst J 41(4):381–388

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gurunathan S, Ahmed A, Senior R (2015) The benefits of revascularization in chronic heart failure. Curr Heart Fail Rep. 12(2):112–119

    Article  PubMed  Google Scholar 

  35. Mylonas I, Beanlands RS (2011) Radionuclide imaging of viable myocardium: is it underutilized? Curr Cardiovasc Imaging Rep 4(3):251–261

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mc Ardle BA, Beanlands RS (2013) Myocardial viability: whom, what, why, which, and how? Can J Cardiol. 29(3):399–402

    Article  PubMed  Google Scholar 

  37. Abidov A, Germano G, Hachamovitch R, Slomka P, Berman DS (2013) Gated SPECT in assessment of regional and global left ventricular function: an update. J Nucl Cardiol 20(6):1118–1143 quiz 44-6

    Article  PubMed  Google Scholar 

  38. Nakajima K, Nishimura T (2006) Inter-institution preference-based variability of ejection fraction and volumes using quantitative gated SPECT with 99mTc-tetrofosmin: a multicentre study involving 106 hospitals. Eur J Nucl Med Mol Imaging 33(2):127–133

    Article  PubMed  Google Scholar 

  39. Ioannidis JP, Trikalinos TA, Danias PG (2002) Electrocardiogram-gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: a meta-analysis. J Am Coll Cardiol 39(12):2059–2068

    Article  PubMed  Google Scholar 

  40. Tadamura E, Kudoh T, Motooka M, Inubushi M, Shirakawa S, Hattori N et al (1999) Assessment of regional and global left ventricular function by reinjection T1-201 and rest Tc-99 m sestamibi ECG-gated SPECT: comparison with three-dimensional magnetic resonance imaging. J Am Coll Cardiol 33(4):991–997

    Article  CAS  PubMed  Google Scholar 

  41. Karayannis G, Giamouzis G, Alexandridis E, Kamvrogiannis P, Butler J, Skoularigis J et al (2011) Prevalence of impaired coronary flow reserve and its association with left ventricular diastolic function in asymptomatic individuals with major cardiovascular risk factors. Eur J Cardiovasc Prev Rehabil 18(2):326–333

    Article  PubMed  Google Scholar 

  42. Mizunobu M, Sakai J, Sasao H, Murai H, Fujiwara H (2013) Assessment of left ventricular systolic and diastolic function using ECG-gated technetium-99 m tetrofosmin myocardial perfusion SPECT. Int Heart J 54(4):212–215

    Article  PubMed  Google Scholar 

  43. Heusch G (2013) The regional myocardial flow-function relationship: a framework for an understanding of acute ischemia, hibernation, stunning and coronary microembolization. 1980. Circ Res 112(12):1535–1537

    Article  CAS  PubMed  Google Scholar 

  44. Usui Y, Chikamori T, Nakajima K, Hida S, Yamashina A, Nishimura T et al (2010) Prognostic value of post-ischemic stunning as assessed by gated myocardial perfusion single-photon emission computed tomography: a subanalysis of the J-ACCESS study. Circ J 74(8):1591–1599

    Article  PubMed  Google Scholar 

  45. Matsumoto N, Sato Y, Suzuki Y, Kunimasa T, Yoda S, Iida J et al (2007) Prognostic value of myocardial perfusion single-photon emission computed tomography for the prediction of future cardiac events in a Japanese population: a middle-term follow-up study. Circ J 71(10):1580–1585

    Article  PubMed  Google Scholar 

  46. Peix A, Karell J, Rodriguez L, Cabrera LO, Padron K, Carrillo R et al (2014) Gated SPECT myocardial perfusion imaging, intraventricular synchronism, and cardiac events in heart failure. Clin Nucl Med 39(6):498–504

    Article  PubMed  Google Scholar 

  47. Atchley AE, Iskandrian AE, Bensimhon D, Ellis SJ, Kitzman DW, Shaw LK et al (2011) Relationship of technetium-99 m tetrofosmin-gated rest single-photon emission computed tomography myocardial perfusion imaging to death and hospitalization in heart failure patients: results from the nuclear ancillary study of the HF-ACTION trial. Am Heart J 161(6):1038–1045

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hage FG, Aggarwal H, Patel K, Chen J, Jacobson AF, Heo J et al (2014) The relationship of left ventricular mechanical dyssynchrony and cardiac sympathetic denervation to potential sudden cardiac death events in systolic heart failure. J Nucl Cardiol 21(1):78–85

    Article  PubMed  Google Scholar 

  49. Zafrir N, Nevzorov R, Bental T, Strasberg B, Gutstein A, Mats I et al (2014) Prognostic value of left ventricular dyssynchrony by myocardial perfusion-gated SPECT in patients with normal and abnormal left ventricular functions. J Nucl Cardiol 21(3):532–540

    Article  PubMed  Google Scholar 

  50. Pazhenkottil AP, Buechel RR, Husmann L, Nkoulou RN, Wolfrum M, Ghadri JR et al (2011) Long-term prognostic value of left ventricular dyssynchrony assessment by phase analysis from myocardial perfusion imaging. Heart 97(1):33–37

    Article  PubMed  Google Scholar 

  51. Miyachi H, Yamamoto A, Otsuka T, Yoshikawa M, Kodani E, Endoh Y et al (2013) Relationship between left ventricular dyssynchrony and systolic dysfunction is independent of impaired left ventricular myocardial perfusion in heart failure: assessment with 99mTc-sestamibi gated myocardial scintigraphy. Int J Cardiol 167(3):930–935

    Article  PubMed  Google Scholar 

  52. Igarashi Y, Chikamori T, Hida S, Tanaka H, Shiba C, Usui Y et al (2014) Usefulness of phase analysis to differentiate ischemic and non-ischemic etiologies of left ventricular systolic dysfunction in patients with heart failure. Circ J 78(1):141–150

    Article  PubMed  Google Scholar 

  53. Boogers MJ, Chen J, Veltman CE, van Bommel RJ, Mooyaart EA, Al Younis I et al (2011) Left ventricular diastolic dyssynchrony assessed with phase analysis of gated myocardial perfusion SPECT: a comparison with tissue Doppler imaging. Eur J Nucl Med Mol Imaging 38(11):2031–2039

    Article  PubMed  PubMed Central  Google Scholar 

  54. Leva L, Brambilla M, Cavallino C, Matheoud R, Occhetta E, Marino P et al (2012) Reproducibility and variability of global and regional dyssynchrony parameters derived from phase analysis of gated myocardial perfusion SPECT. Q J Nucl Med Mol Imaging. 56(2):209–217

    CAS  PubMed  Google Scholar 

  55. Al Jaroudi WJW, Grimm RA, Marwick T, Cerqueira MD (2012) Alternative methods for the assessment of mechanical dyssynchrony using phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. Int J Cardiovasc Imaging. 28:1385–1394

    Article  Google Scholar 

  56. Bose A, Kandala J, Upadhyay GA, Riedl L, Ahmado I, Padmanabhan R et al (2014) Impact of myocardial viability and left ventricular lead location on clinical outcome in cardiac resynchronization therapy recipients with ischemic cardiomyopathy. J Cardiovasc Electrophysiol 25(5):507–513

    Article  PubMed  Google Scholar 

  57. Danias PG, Papaioannou GI, Ahlberg AW, O'Sullivan DM, Mann A, Boden WE et al (2004) Usefulness of electrocardiographic-gated stress technetium-99 m sestamibi single-photon emission computed tomography to differentiate ischemic from nonischemic cardiomyopathy. Am J Cardiol 94(1):14–19

    Article  PubMed  Google Scholar 

  58. Gaudino M, Giordano A, Santarelli P, Alessandrini F, Nori SL, Trani C et al (2002) Immunohistochemical-scintigraphic correlation of sympathetic cardiac innervation in postischemic left ventricular aneurysms. J Nucl Cardiol 9(6):601–607

    Article  PubMed  Google Scholar 

  59. Camacho V, Carrio I (2007) Targeting neuronal dysfunction and receptor imaging. Curr Opin Biotechnol 18(1):60–64

    Article  CAS  PubMed  Google Scholar 

  60. Fallavollita JA, Canty JM Jr (2010) Dysinnervated but viable myocardium in ischemic heart disease. J Nucl Cardiol 17(6):1107–1115

    Article  PubMed  PubMed Central  Google Scholar 

  61. Miranda SM, Moscavitch SD, Carestiato LR, Felix RM, Rodrigues RC, Messias LR et al (2013) Cardiac I123-MIBG correlates better than ejection fraction with symptoms severity in systolic heart failure. Arq Bras Cardiol 101(1):4–8

    PubMed  PubMed Central  Google Scholar 

  62. Gimelli A, Masci PG, Liga R, Grigoratos C, Pasanisi EM, Lombardi M et al (2014) Regional heterogeneity in cardiac sympathetic innervation in acute myocardial infarction: relationship with myocardial oedema on magnetic resonance. Eur J Nucl Med Mol Imaging 41(9):1692–1694

    Article  PubMed  Google Scholar 

  63. Matsunari I, Schricke U, Bengel FM, Haase HU, Barthel P, Schmidt G et al (2000) Extent of cardiac sympathetic neuronal damage is determined by the area of ischemia in patients with acute coronary syndromes. Circulation 101(22):2579–2585

    Article  CAS  PubMed  Google Scholar 

  64. Nakata T, Nakajima K, Yamashina S, Yamada T, Momose M, Kasama S et al (2013) A pooled analysis of multicenter cohort studies of (123)I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging. 6(7):772–784

    Article  PubMed  Google Scholar 

  65. Verberne HJ, Brewster LM, Somsen GA, van Eck-Smit BL (2008) Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 29(9):1147–1159

    Article  PubMed  Google Scholar 

  66. Agostini D, Verberne HJ, Burchert W, Knuuti J, Povinec P, Sambuceti G et al (2008) I-123-mIBG myocardial imaging for assessment of risk for a major cardiac event in heart failure patients: insights from a retrospective European multicenter study. Eur J Nucl Med Mol Imaging 35(3):535–546

    Article  PubMed  Google Scholar 

  67. Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA et al (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView myocardial imaging for risk evaluation in heart failure) study. J Am Coll Cardiol 55(20):2212–2221

    Article  PubMed  Google Scholar 

  68. Travin MI (2016) Clinical applications of myocardial innervation imaging. Cardiol Clin 34(1):133–147

    Article  PubMed  Google Scholar 

  69. Chen W, Cao Q, Dilsizian V (2011) Variation of heart-to-mediastinal ratio in (123)I-mIBG cardiac sympathetic imaging: its affecting factors and potential corrections. Curr Cardiol Rep 13(2):132–137

    Article  PubMed  Google Scholar 

  70. Gerson MC, Dwivedi AK, Abdallah M, Shukla R, Jacobson AF (2013) Significance of I-123 metaiodobenzylguanidine ((1)(2)(3)I-MIBG) lung activity in subjects with heart failure in comparison to healthy control subjects. J Nucl Cardiol 20(4):592–599

    Article  PubMed  Google Scholar 

  71. Nakata T, Miyamoto K, Doi A, Sasao H, Wakabayashi T, Kobayashi H et al (1998) Cardiac death prediction and impaired cardiac sympathetic innervation assessed by MIBG in patients with failing and nonfailing hearts. J Nucl Cardiol 5(6):579–590

    Article  CAS  PubMed  Google Scholar 

  72. Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI et al (2001) Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med 42(12):1757–1767

    CAS  PubMed  Google Scholar 

  73. Kioka H, Yamada T, Mine T, Morita T, Tsukamoto Y, Tamaki S et al (2007) Prediction of sudden death in patients with mild-to-moderate chronic heart failure by using cardiac iodine-123 metaiodobenzylguanidine imaging. Heart 93(10):1213–1218

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhou W, Chen J (2013) I-123 metaiodobenzylguanidine imaging for predicting ventricular arrhythmia in heart failure patients. J Biomed Res 27(6):460–466

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen J, Normand SL, Wang Y, Krumholz HM (2011) National and regional trends in heart failure hospitalization and mortality rates for Medicare beneficiaries, 1998–2008. JAMA 306(15):1669–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Verbrugge FH, Tang WH, Mullens W (2015) Renin-Angiotensin-aldosterone system activation during decongestion in acute heart failure: friend or foe? JACC Heart Fail. 3(2):108–111

    Article  PubMed  Google Scholar 

  77. Ghali JK, Tam SW (2010) The critical link of hypervolemia and hyponatremia in heart failure and the potential role of arginine vasopressin antagonists. J Card Fail 16(5):419–431

    Article  CAS  PubMed  Google Scholar 

  78. Fujimoto S, Inoue A, Hisatake S, Yamashina S, Yamashina H, Nakano H et al (2004) Usefulness of 123I-metaiodobenzylguanidine myocardial scintigraphy for predicting the effectiveness of beta-blockers in patients with dilated cardiomyopathy from the standpoint of long-term prognosis. Eur J Nucl Med Mol Imaging 31(10):1356–1361

    Article  CAS  PubMed  Google Scholar 

  79. Ben-Haim S, Kacperski K, Hain S, Van Gramberg D, Hutton BF, Erlandsson K et al (2010) Simultaneous dual-radionuclide myocardial perfusion imaging with a solid-state dedicated cardiac camera. Eur J Nucl Med Mol Imaging 37(9):1710–1721

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chatal JF, Rouzet F, Haddad F, Bourdeau C, Mathieu C, Le Guludec D. Story of rubidium-82 and advantages for myocardial perfusion PET imaging. Front Med (Lausanne). 2015;2:65.

  81. Anagnostopoulos C, Georgakopoulos A, Pianou N, Nekolla SG (2013) Assessment of myocardial perfusion and viability by positron emission tomography. Int J Cardiol 167(5):1737–1749

    Article  PubMed  Google Scholar 

  82. Slomka PJ, Alexanderson E, Jacome R, Jimenez M, Romero E, Meave A et al (2012) Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med 53(2):171–181

    Article  CAS  PubMed  Google Scholar 

  83. Kajander SA, Joutsiniemi E, Saraste M, Pietila M, Ukkonen H, Saraste A et al (2011) Clinical value of absolute quantification of myocardial perfusion with (15)O-water in coronary artery disease. Circ Cardiovasc Imaging. 4(6):678–684

    Article  PubMed  Google Scholar 

  84. Lubberink M, Harms HJ, Halbmeijer R, de Haan S, Knaapen P, Lammertsma AA (2010) Low-dose quantitative myocardial blood flow imaging using 15O-water and PET without attenuation correction. J Nucl Med 51(4):575–580

    Article  PubMed  Google Scholar 

  85. Maddahi J, Packard RR (2014) Cardiac PET perfusion tracers: current status and future directions. Semin Nucl Med 44(5):333–343

    Article  PubMed  PubMed Central  Google Scholar 

  86. Botvinick EH (2009) Current methods of pharmacologic stress testing and the potential advantages of new agents. J Nucl Med Technol 37(1):14–25

    Article  CAS  PubMed  Google Scholar 

  87. Anagnostopoulos C, Harbinson M, Kelion A, Kundley K, Loong CY, Notghi A et al (2004) Procedure guidelines for radionuclide myocardial perfusion imaging. Heart 90(Suppl 1):i1–10

    Article  PubMed  PubMed Central  Google Scholar 

  88. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA et al (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106(6):653–658

    Article  PubMed  Google Scholar 

  89. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V (2010) Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging 3(6):623–640

    Article  PubMed  Google Scholar 

  90. Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL, Dilsizian V (2014) Quantitative assessment of myocardial blood flow—clinical and research applications. Semin Nucl Med 44(4):274–293

    Article  PubMed  Google Scholar 

  91. Knuuti J, Tuunanen H (2010) Metabolic imaging in myocardial ischemia and heart failure. Q J Nucl Med Mol Imaging 54(2):168–176

    CAS  PubMed  Google Scholar 

  92. Morita K, Katoh C, Yoshinaga K, Noriyasu K, Mabuchi M, Tsukamoto T et al (2005) Quantitative analysis of myocardial glucose utilization in patients with left ventricular dysfunction by means of 18F-FDG dynamic positron tomography and three-compartment analysis. Eur J Nucl Med Mol Imaging 32(7):806–812

    Article  CAS  PubMed  Google Scholar 

  93. Kitaizumi K, Yukiiri K, Masugata H, Takinami H, Iwado Y, Noma T et al (2010) Acute improvement of cardiac efficiency measured by 11C-acetate PET after cardiac resynchronization therapy and clinical outcome. Int J Cardiovasc Imaging. 26(3):285–292

    Article  PubMed  Google Scholar 

  94. Dilsizian VBS, Beanlands RS, Bergmann SR, Delbeke D, Gropler RJ et al (2009) PET myocardial perfusion and metabolism clinical imaging. J Nucl Cardiol 16:651

    Article  Google Scholar 

  95. Knuuti J DCM. Assessment of myocardial viability with positron emission tomography. In: Zaret BL BG, editor. Clinical Nuclear Cardiology—State of the Art and Future Directions: Mosby Elsevier; 2010. p. 608–21.

  96. Herrero P, Kisrieva-Ware Z, Dence CS, Patterson B, Coggan AR, Han DH et al (2007) PET measurements of myocardial glucose metabolism with 1-11C-glucose and kinetic modeling. J Nucl Med 48(6):955–964

    Article  CAS  PubMed  Google Scholar 

  97. Kisrieva-Ware Z, Coggan AR, Sharp TL, Dence CS, Gropler RJ, Herrero P (2009) Assessment of myocardial triglyceride oxidation with PET and 11C-palmitate. J Nucl Cardiol 16(3):411–421

    Article  PubMed  PubMed Central  Google Scholar 

  98. Tuunanen H, Kuusisto J, Toikka J, Jaaskelainen P, Marjamaki P, Peuhkurinen K et al (2007) Myocardial perfusion, oxidative metabolism, and free fatty acid uptake in patients with hypertrophic cardiomyopathy attributable to the Asp175Asn mutation in the alpha-tropomyosin gene: a positron emission tomography study. J Nucl Cardiol 14(3):354–365

    Article  PubMed  Google Scholar 

  99. DeGrado TR, Kitapci MT, Wang S, Ying J, Lopaschuk GD (2006) Validation of 18F-fluoro-4-thia-palmitate as a PET probe for myocardial fatty acid oxidation: effects of hypoxia and composition of exogenous fatty acids. J Nucl Med 47(1):173–181

    CAS  PubMed  Google Scholar 

  100. Shoup TM, Elmaleh DR, Bonab AA, Fischman AJ (2005) Evaluation of trans-9-18F-fluoro-3,4-Methyleneheptadecanoic acid as a PET tracer for myocardial fatty acid imaging. J Nucl Med 46(2):297–304

    CAS  PubMed  Google Scholar 

  101. Magota K, Hattori N, Manabe O, Naya M, Oyama-Manabe N, Shiga T et al (2014) Electrocardiographically gated (1)(1)C-hydroxyephedrine PET for the simultaneous assessment of cardiac sympathetic and contractile functions. Ann Nucl Med 28(3):187–195

    Article  CAS  PubMed  Google Scholar 

  102. Health Quality O (2010) Positron emission tomography for the assessment of myocardial viability: an evidence-based analysis. Ont Health Technol Assess Ser 10(16):1–80

    Google Scholar 

  103. Ypenburg C, Schalij MJ, Bleeker GB, Steendijk P, Boersma E, Dibbets-Schneider P et al (2006) Extent of viability to predict response to cardiac resynchronization therapy in ischemic heart failure patients. J Nucl Med 47(10):1565–1570

    PubMed  Google Scholar 

  104. Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J et al (2014) Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Fail 2(5):440–446

    Article  PubMed  Google Scholar 

  105. Shaw LJ, Marwick TH, Berman DS, Sawada S, Heller GV, Vasey C et al (2006) Incremental cost-effectiveness of exercise echocardiography vs. SPECT imaging for the evaluation of stable chest pain. Eur Heart J 27(20):2448–2458

    Article  PubMed  Google Scholar 

  106. Sharples L, Hughes V, Crean A, Dyer M, Buxton M, Goldsmith K et al (2007) Cost-effectiveness of functional cardiac testing in the diagnosis and management of coronary artery disease: a randomised controlled trial. The CECaT trial Health Technol Assess 11(49):iii–iiv ix-115

    CAS  PubMed  Google Scholar 

  107. Garber AM, Solomon NA (1999) Cost-effectiveness of alternative test strategies for the diagnosis of coronary artery disease. Ann Intern Med 130(9):719–728

    Article  CAS  PubMed  Google Scholar 

  108. George RT, Arbab-Zadeh A, Miller JM, Kitagawa K, Chang HJ, Bluemke DA et al (2009) Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia. Circ Cardiovasc Imaging 2(3):174–182

    Article  PubMed  PubMed Central  Google Scholar 

  109. Blankstein R, Shturman LD, Rogers IS, Rocha-Filho JA, Okada DR, Sarwar A et al (2009) Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 54(12):1072–1084

    Article  PubMed  Google Scholar 

  110. Mahnken AH, Koos R, Katoh M, Wildberger JE, Spuentrup E, Buecker A et al (2005) Assessment of myocardial viability in reperfused acute myocardial infarction using 16-slice computed tomography in comparison to magnetic resonance imaging. J Am Coll Cardiol 45(12):2042–2047

    Article  PubMed  Google Scholar 

  111. Nikolaou K, Sanz J, Poon M, Wintersperger BJ, Ohnesorge B, Rius T et al (2005) Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol 15(5):864–871

    Article  PubMed  Google Scholar 

  112. Assomull RG, Pennell DJ, Prasad SK (2007) Cardiovascular magnetic resonance in the evaluation of heart failure. Heart 93(8):985–992

    Article  PubMed  PubMed Central  Google Scholar 

  113. Leyva F (2015) The role of cardiovascular magnetic resonance in cardiac resynchronization therapy. Card Electrophysiol Clin 7(4):619–633

    Article  PubMed  Google Scholar 

  114. Kwong RY, Korlakunta H (2008) Diagnostic and prognostic value of cardiac magnetic resonance imaging in assessing myocardial viability. Top Magn Reson Imaging 19(1):15–24

    Article  PubMed  Google Scholar 

  115. Li Y, Wang L, Zhao SH, He ZX, Wang DY, Guo F et al (2014) Gated F-18 FDG PET for assessment of left ventricular volumes and ejection fraction using QGS and 4D-MSPECT in patients with heart failure: a comparison with cardiac MRI. PLoS One 9(1):e80227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Ishida N, Sakuma H, Motoyasu M, Okinaka T, Isaka N, Nakano T et al (2003) Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology 229(1):209–216

    Article  PubMed  Google Scholar 

  117. Thiele H, Plein S, Breeuwer M, Ridgway JP, Higgins D, Thorley PJ et al (2004) Color-encoded semiautomatic analysis of multi-slice first-pass magnetic resonance perfusion: comparison to tetrofosmin single photon emission computed tomography perfusion and X-ray angiography. Int J Cardiovasc Imaging 20(5):371–384 discussion 85-7

    Article  PubMed  Google Scholar 

  118. Okuda S, Tanimoto A, Satoh T, Hashimoto J, Shinmoto H, Higuchi N et al (2005) Evaluation of ischemic heart disease on a 1.5 Tesla scanner: combined first-pass perfusion and viability study. Radiat Med 23(4):230–235

    PubMed  Google Scholar 

  119. Schwitter J, Wacker CM, van Rossum AC, Lombardi M, Al-Saadi N, Ahlstrom H et al (2008) MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J 29(4):480–489

    Article  PubMed  Google Scholar 

  120. Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F et al (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105(2):162–167

    Article  PubMed  Google Scholar 

  121. Knuesel PR, Nanz D, Wyss C, Buechi M, Kaufmann PA, von Schulthess GK et al (2003) Characterization of dysfunctional myocardium by positron emission tomography and magnetic resonance: relation to functional outcome after revascularization. Circulation 108(9):1095–1100

    Article  PubMed  Google Scholar 

  122. Bax JJ, Maddahi J, Poldermans D, Elhendy A, Schinkel A, Boersma E et al (2003) Preoperative comparison of different noninvasive strategies for predicting improvement in left ventricular function after coronary artery bypass grafting. Am J Cardiol 92(1):1–4

    Article  PubMed  Google Scholar 

  123. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361(9355):374–379

    Article  PubMed  Google Scholar 

  124. Paterson I, Mielniczuk LM, O'Meara E, So A, White JA (2013) Imaging heart failure: current and future applications. Can J Cardiol 29(3):317–328

    Article  PubMed  Google Scholar 

  125. Sheikine Y, Di Carli MF (2008) Integrated PET/CT in the assessment of etiology and viability in ischemic heart failure. Curr Heart Fail Rep 5(3):136–142

    Article  PubMed  Google Scholar 

  126. Danad I, Raijmakers PG, Knaapen P (2013) Diagnosing coronary artery disease with hybrid PET/CT: it takes two to tango. J Nucl Cardiol 20(5):874–890

    Article  PubMed  Google Scholar 

  127. Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR et al (2006) Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99 m sestamibi SPECT. J Nucl Cardiol 13(1):24–33

    Article  PubMed  Google Scholar 

  128. Camici PG, Rimoldi OE (2009) The clinical value of myocardial blood flow measurement. J Nucl Med 50(7):1076–1087

    Article  PubMed  Google Scholar 

  129. Tsai JP, Yun CH, Wu TH, Yen CH, Hou CJ, Kuo JY et al (2014) A meta-analysis comparing SPECT with PET for the assessment of myocardial viability in patients with coronary artery disease. Nucl Med Commun 35(9):947–954

    Article  PubMed  Google Scholar 

  130. Shaw LJ, Hendel R, Borges-Neto S, Lauer MS, Alazraki N, Burnette J et al (2003) Prognostic value of normal exercise and adenosine (99 m)Tc-tetrofosmin SPECT imaging: results from the multicenter registry of 4,728 patients. J Nucl Med 44(2):134–139

    PubMed  Google Scholar 

  131. Patel MR, White RD, Abbara S, Bluemke DA, Herfkens RJ, Picard M et al (2013) 2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR appropriate utilization of cardiovascular imaging in heart failure: a joint report of the American College of Radiology Appropriateness Criteria Committee and the American College of Cardiology Foundation Appropriate Use Criteria Task Force. J Am Coll Cardiol 61(21):2207–2231

    Article  PubMed  Google Scholar 

  132. Inaba Y, Chen JA, Bergmann SR (2010) Quantity of viable myocardium required to improve survival with revascularization in patients with ischemic cardiomyopathy: a meta-analysis. J Nucl Cardiol 17(4):646–654

    Article  PubMed  Google Scholar 

  133. Cleland JG, Freemantle N, Ball SG, Bonser RS, Camici P, Chattopadhyay S et al (2003) The heart failure revascularisation trial (HEART): rationale, design and methodology. Eur J Heart Fail 5(3):295–303

    Article  CAS  PubMed  Google Scholar 

  134. Cleland JG, Calvert M, Freemantle N, Arrow Y, Ball SG, Bonser RS et al (2011) The heart failure revascularisation trial (HEART). Eur J Heart Fail 13(2):227–233

    Article  PubMed  Google Scholar 

  135. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M et al (2007) F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol 50(20):2002–2012

    Article  PubMed  Google Scholar 

  136. Garcia EV, Faber TL, Esteves FP (2011) Cardiac dedicated ultrafast SPECT cameras: new designs and clinical implications. J Nucl Med 52(2):210–217

    Article  PubMed  Google Scholar 

  137. Sharir T, Slomka PJ, Berman DS (2010) Solid-state SPECT technology: fast and furious. J Nucl Cardiol 17(5):890–896

    Article  PubMed  Google Scholar 

  138. Maddahi J, Mendez R, Mahmarian JJ, Thomas G, Babla H, Bai C et al (2009) Prospective multicenter evaluation of rapid, gated SPECT myocardial perfusion upright imaging. J Nucl Cardiol 16(3):351–357

    Article  PubMed  Google Scholar 

  139. Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH et al (2010) Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol 55(18):1965–1974

    Article  PubMed  Google Scholar 

  140. Esteves FP, Raggi P, Folks RD, Keidar Z, Askew JW, Rispler S et al (2009) Novel solid-state-detector dedicated cardiac camera for fast myocardial perfusion imaging: multicenter comparison with standard dual detector cameras. J Nucl Cardiol 16(6):927–934

    Article  PubMed  PubMed Central  Google Scholar 

  141. Duvall WL, Croft LB, Ginsberg ES, Einstein AJ, Guma KA, George T et al (2011) Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol 18(5):847–857

    Article  PubMed  Google Scholar 

  142. Pakkal M, Raj V, McCann GP. Non-invasive imaging in coronary artery disease including anatomical and functional evaluation of ischaemia and viability assessment. Br J Radiol. 2011;84 Spec No 3:S280–95.

  143. Ritt P, Vija H, Hornegger J, Kuwert T (2011) Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging 38(Suppl 1):S69–S77

    Article  PubMed  Google Scholar 

  144. Townsend DW (2008) Multimodality imaging of structure and function. Phys Med Biol 53(4):R1–R39

    Article  CAS  PubMed  Google Scholar 

  145. Delso G, Ziegler S (2009) PET/MRI system design. Eur J Nucl Med Mol Imaging 36(Suppl 1):S86–S92

    Article  PubMed  Google Scholar 

  146. Boellaard R, Quick HH (2015) Current image acquisition options in PET/MR. Semin Nucl Med 45(3):192–200

    Article  PubMed  Google Scholar 

  147. Cherry SR (2009) Multimodality imaging: beyond PET/CT and SPECT/CT. Semin Nucl Med 39(5):348–353

    Article  PubMed  PubMed Central  Google Scholar 

  148. Jadvar H, Colletti PM (2014) Competitive advantage of PET/MRI. Eur J Radiol 83(1):84–94

    Article  PubMed  Google Scholar 

  149. Shah SN, Huang SS (2015) Hybrid PET/MR imaging: physics and technical considerations. Abdom Imaging 40(6):1358–1365

    Article  PubMed  Google Scholar 

  150. Boss A, Weiger M, Wiesinger F (2015) Future image acquisition trends for PET/MRI. Semin Nucl Med 45(3):201–211

    Article  PubMed  Google Scholar 

  151. Bengel FM, Schwaiger M (2004) Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol 11(5):603–616

    Article  PubMed  Google Scholar 

  152. Kopka K, Law MP, Breyholz HJ, Faust A, Holtke C, Riemann B et al (2005) Non-invasive molecular imaging of beta-adrenoceptors in vivo: perspectives for PET-radioligands. Curr Med Chem 12(18):2057–2074

    Article  CAS  PubMed  Google Scholar 

  153. Thackeray JT, Bengel FM (2013) Assessment of cardiac autonomic neuronal function using PET imaging. J Nucl Cardiol 20(1):150–165

    Article  PubMed  Google Scholar 

  154. Madonna R, Van Laake LW, Davidson SM, Engel FB, Hausenloy DJ, Lecour S, et al. Position paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J. 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Giamouzis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelidis, G., Giamouzis, G., Karagiannis, G. et al. SPECT and PET in ischemic heart failure. Heart Fail Rev 22, 243–261 (2017). https://doi.org/10.1007/s10741-017-9594-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-017-9594-7

Keywords

Navigation