Heart Failure Reviews

, Volume 21, Issue 5, pp 621–634 | Cite as

Current views on anthracycline cardiotoxicity

  • Donato MeleEmail author
  • Marianna Nardozza
  • Paolo Spallarossa
  • Antonio Frassoldati
  • Carlo G. Tocchetti
  • Christian Cadeddu
  • Rosalinda Madonna
  • Michele Malagù
  • Roberto Ferrari
  • Giuseppe Mercuro


Anthracyclines are well established and effective anticancer agents used to treat a variety of adult and pediatric cancers. Unfortunately, these drugs are also among the commonest chemotherapeutic agents that have been recognized to cause cardiotoxicity. In the last years, several experimental and clinical investigations provided new information and perspectives on anthracycline-related cardiotoxicity. In particular, molecular mechanisms of cardiotoxicity have been better elucidated, early diagnosis has improved through the use of advanced noninvasive cardiac imaging techniques, and emerging data indicate a genetic predisposition to develop anthracycline-related cardiotoxicity. In this article, we review established and new knowledge about anthracycline cardiotoxicity, with special focus on recent advances in cardiotoxicity diagnosis and genetic profiling.


Cancer Cardiotoxicity Anthracyclines 


Compliance with ethical standards

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman KL, Kasper EK (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077–1084CrossRefPubMedGoogle Scholar
  2. 2.
    Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 58:185–229CrossRefGoogle Scholar
  3. 3.
    Groarke JD, Nohria A (2015) Anthracycline cardiotoxicity. A new paradigm for an old classic. Circulation 131:1946–1949CrossRefPubMedGoogle Scholar
  4. 4.
    Menna P, Salvatorelli E, Minotti G (2010) Anthracycline degradation in cardiomyocytes: a journey to oxidative survival. Chem Res Toxicol 23:6–10CrossRefPubMedGoogle Scholar
  5. 5.
    Salvatorelli E, Guarnieri S, Menna P, Liberi G, Calafiore AM, Mariggiò MA, Mordente A, Gianni L, Minotti G (2006) Defective one or two electron reduction of the anticancer anthracycline epirubicin in human heart: relative importance of vesicular sequestration and impaired efficiency of electron addition. J Biol Chem 281:10990–11001CrossRefPubMedGoogle Scholar
  6. 6.
    Salvatorelli E, Menna P, Lusini M, Covino E, Minotti G (2009) Doxorubicinolone formation and efflux: a salvage pathway against epirubicin accumulation in human heart. J Pharmacol Exp Ther 329:175–184CrossRefPubMedGoogle Scholar
  7. 7.
    Zhang S, Liu X, Bawa-Khalfe T, Lu LS, Lyu YL, Liu LF, Yeh ET (2012) Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639–1642CrossRefPubMedGoogle Scholar
  8. 8.
    Madonna R, Cadeddu C, Deidda M, Mele D, Monte I, Novo G, Pagliaro P, Pepe A, Spallarossa P, Tocchetti CG, Zito C, Mercuro G (2015) Improving the preclinical models for the study of chemotherapy-induced cardiotoxicity: a position paper of the Italian Working Group on Drug Cardiotoxicity and Cardioprotection. Heart Fail Rev 20:621–631CrossRefPubMedGoogle Scholar
  9. 9.
    Scott JM, Khakoo A, Mackey JR, Haykowsky MJ, Douglas PS, Jones LW (2011) Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation 124:642–650CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xi L, Zhua SG, Dasa A, Chena Q, Durranta D, Hobbs DC, Lesnefskya EJ, Kukreja RC (2012) dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: mechanisms and implications. Nitric Oxide 26:274–284CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, Suter TM, Liao R, Sawyer DB (2004) Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 279:8290–8299CrossRefPubMedGoogle Scholar
  12. 12.
    Pereira GC, Silva AM, Diogo CV, Carvalho FS, Monteiro P, Oliveira PJ (2011) Drug-induced cardiac mitochondrial toxicity and protection: from doxorubicin to carvedilol. Curr Pharm Des 17:2113–2129CrossRefPubMedGoogle Scholar
  13. 13.
    Lebrecht D, Kokkori A, Ketelsen UP, Setzer B, Walker UA (2005) Tissue-specific mtDNA lesions and radical-associated mitochondrial dysfunction in human hearts exposed to doxorubicin. J Pathol 207:436–444CrossRefPubMedGoogle Scholar
  14. 14.
    Lebrecht D, Setzer B, Ketelsen UP, Haberstroh J, Walker UA (2003) Time-dependent and tissue-specific accumulation of mtDNA and respiratory chain defects in chronic doxorubicin cardiomyopathy. Circulation 108:2423–2429CrossRefPubMedGoogle Scholar
  15. 15.
    Huang C, Zhang X, Ramil JM, Rikka S, Kim L, Lee Y, Gude NA, Thistlethwaite PA, Sussman MA, Gottlieb RA, Gustafsson AB (2010) Juvenile exposure to anthracyclines impairs cardiac progenitor cell function and vascularization resulting in greater susceptibility to stress-induced myocardial injury in adult mice. Circulation 121:675–683CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    De Angelis A, Piegari E, Cappetta D, Marino L, Filippelli A, Berrino L, Ferreira-Martins J, Zheng H, Hosoda T, Rota M, Urbanek K, Kajstura J, Leri A, Rossi F, Anversa P (2010) Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation 121:276–292CrossRefPubMedGoogle Scholar
  17. 17.
    Gabrielson K, Bedja D, Pin S, Tsao A, Gama L, Yuan B, Muratore N (2007) Heat shock protein 90 and ErbB2 in the cardiac response to doxorubicin injury. Cancer Res 67:1436–1444CrossRefPubMedGoogle Scholar
  18. 18.
    Spallarossa P, Altieri P, Pronzato P, Aloi C, Ghigliotti G, Barsotti A, Brunelli C (2010) Sublethal doses of an anti-erbB2 antibody leads to death by apoptosis in cardiomyocytes sensitized by low prosenescent doses of epirubicin: the protective role of dexrazoxane. J Pharmacol Exp Ther 332:87–96CrossRefPubMedGoogle Scholar
  19. 19.
    Ferrari R, Ceconi C, Campo G, Cangiano E, Cavazza C, Secchiero P, Tavazzi L (2009) Mechanisms of remodeling. A question of life (stem cell production) and death (myocyte apoptosis). Circ J 73:1973–1982CrossRefPubMedGoogle Scholar
  20. 20.
    Minotti G, Salvatorelli E, Menna P (2010) Pharmacological foundations of cardio-oncology. J Pharmacol Exp Ther 334:2–8CrossRefPubMedGoogle Scholar
  21. 21.
    Cascales A, Pastor-Quirante F, Sánchez-Vega B, Luengo-Gil G, Corral J, Ortuño-Pacheco G, Vicente V, de la Peña FA (2013) Association of anthracycline-related cardiac histological lesions with NADPH oxidase functional polymorphisms. Oncologist 18:446–453CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Billingham ME, Mason JW, Bristow MR, Daniels JR (1978) Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep 62:865–872PubMedGoogle Scholar
  23. 23.
    Mortensen SA, Olsen HS, Baandrup U (1986) Chronic anthracycline cardiotoxicity: haemodynamic and histopathological manifestations suggesting a restrictive endomyocardial disease. Br Heart J 55:274–282CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Algranati D, Kassab GS, Lanir Y (2011) Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol 300:H1090–H1100CrossRefPubMedGoogle Scholar
  25. 25.
    Stanton T, Marwick TH (2010) Assessment of subendocardial structure and function. J Am Coll Cardiol Imaging 3:867–875CrossRefGoogle Scholar
  26. 26.
    Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. Br Heart J 45:248–263CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, Ganame J, Sebag IA, Agler DA, Badano LP, Banchs J, Cardinale D, Carver J, Cerqueira M, DeCara JM, Edvardsen T, Flamm SD, Force T, Griffin BP, Jerusalem G, Liu JE, Magalhães A, Marwick T, Sanchez LY, Sicari R, Villarraga HR, Lancellotti P (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 27:911–939CrossRefPubMedGoogle Scholar
  28. 28.
    Mele D (2012) Diagnosis of cardiotoxicity: role of conventional and advanced cardiovascular imaging. J Cardiovasc Echogr 11:60–72Google Scholar
  29. 29.
    Bountioukos M, Doorduijn JK, Roelandt JR, Vourvouri EC, Bax JJ, Schinkel AF, Kertai MD, Sonneveld P, Poldermans D (2003) Repetitive dobutamine stress echocardiography for the prediction of anthracycline cardiotoxicity. Eur J Echocardiogr 4:300–305CrossRefPubMedGoogle Scholar
  30. 30.
    Mele D, Rizzo P, Pollina AV, Fiorencis A, Ferrari R (2015) Cancer therapy-induced cardiotoxicity: role of ultrasound deformation imaging as an aid to early diagnosis. Ultrasound Med Biol 41:627–643CrossRefPubMedGoogle Scholar
  31. 31.
    Armstrong GT, Joshi VM, Ness KK, Marwick TH, Zhang N, Srivastava D, Griffin BP, Grimm RA, Thomas J, Phelan D, Collier P, Krull KR, Mulrooney DA, Green DM, Hudson MM, Robison LL, Plana JC (2015) Comprehensive echocardiographic detection of treatment-related cardiac dysfunction in adult survivors of childhood cancer: results from the St. Jude Lifetime Cohort Study. J Am Coll Cardiol 65:2511–2522CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kalam K, Otahal P, Marwick TH (2014) Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 100:1673–1680CrossRefPubMedGoogle Scholar
  33. 33.
    Bloom MW, Hamo CE, Cardinale D, Ky B, Nohria A, Baer L, Skopicki H, Lenihan DJ, Gheorghiade M, Lyon AR, Butler J (2016) Cancer therapy-related cardiac dysfunction and heart failure part 1: definitions, pathophysiology, risk factors, and imaging. Circ Heart Fail 9:e002661CrossRefPubMedGoogle Scholar
  34. 34.
    Schwartz RG, Jain D, Storozynsky E (2013) Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively. J Nucl Cardiol 20:443–464CrossRefPubMedGoogle Scholar
  35. 35.
    Jiji RS, Kramer CM, Salerno M (2012) Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J Nucl Cardiol 19:377–388CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Carrió I, Estorch M, Berná L, López-Pousa J, Tabernero J, Torres G (1995) Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 36:2044–2049PubMedGoogle Scholar
  37. 37.
    Stevens PL, Lenihan DJ (2015) Cardiotoxicity due to chemotherapy: the role of biomarkers. Curr Cardiol Rep 17:49CrossRefGoogle Scholar
  38. 38.
    Jaffe AS, Vasile VC, Milone M, Saenger AK, Olson KN, Apple FS (2011) Diseased skeletal muscle: a noncardiac source of increased circulating concentrations of cardiac troponin T. J Am Coll Cardiol 58:1819–1824CrossRefPubMedGoogle Scholar
  39. 39.
    Missov E, Calzolari C, Davy JM, Leclercq F, Rossi M, Pau B (1997) Cardiac troponin I in patients with hematologic malignancies. Coron Artery Dis 8:537–541PubMedGoogle Scholar
  40. 40.
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754CrossRefPubMedGoogle Scholar
  41. 41.
    Auner HW, Tinchon C, Linkesch W, Tiran A, Quehenberger F, Link H, Sill H (2003) Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol 82:218–222PubMedGoogle Scholar
  42. 42.
    Specchia G, Buquicchio C, Pansini N, Di Serio F, Liso V, Pastore D, Greco G, Ciuffreda L, Mestice A, Liso A (2005) Monitoring of cardiac function on the basis of serum troponin I levels in patients with acute leukemia treated with anthracyclines. J Lab Clin Med 145:212–220CrossRefPubMedGoogle Scholar
  43. 43.
    Kilickap S, Barista I, Akgul E, Aytemir K, Aksoyek S, Aksoy S, Celik I, Kes S, Tekuzman G (2005) cTnT can be a useful marker for early detection of anthracycline cardiotoxicity. Ann Oncol 16:798–804CrossRefPubMedGoogle Scholar
  44. 44.
    Singh D, Thakur A, Tang WH (2015) Utilizing cardiac biomarkers to detect and prevent chemotherapy-induced cardiomyopathy. Curr Heart Fail Rep 12:255–262CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ky B, Putt M, Sawaya H, French B, Januzzi JL Jr, Sebag IA, Plana JC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2014) Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 63:809–816CrossRefPubMedGoogle Scholar
  46. 46.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Cohen V, Gosavi S, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2011) Early detection and prediction of cardiotoxicity in chemotherapy treated patients. Am J Cardiol 107:1375–1380CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, Cohen V, Banchs J, Carver JR, Wiegers SE, Martin RP, Picard MH, Gerszten RE, Halpern EF, Passeri J, Kuter I, Scherrer-Crosbie M (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5:596–603CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Grenier MA, Lipshultz SE (1998) Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol 25:72–85PubMedGoogle Scholar
  49. 49.
    Lipshultz SE, Alvarez JA, Scully RE (2008) Anthracycline associated cardiotoxicity in survivors of childhood cancer. Heart 94:525–533CrossRefPubMedGoogle Scholar
  50. 50.
    Wouters KA, Kremer LC, Miller TL, Herman EH, Lipshultz SE (2005) Protecting against anthracycline-induced myocardial damage: a review of the most promising strategies. Br J Haematol 131:561–578CrossRefPubMedGoogle Scholar
  51. 51.
    Cardinale D, Colombo A, Bacchiani G, Tedeschi I, Meroni CA, Veglia F, Civelli M, Lamantia G, Colombo N, Curigliano G, Fiorentini C, Cipolla CM (2015) Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 131:1981–1988CrossRefPubMedGoogle Scholar
  52. 52.
    Cardinale D, Sandri MT, Martinoni A, Tricca A, Civelli M, Lamantia G, Cinieri S, Martinelli G, Cipolla CM, Fiorentini C (2000) Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J Am Coll Cardiol 36:517–522CrossRefPubMedGoogle Scholar
  53. 53.
    Cardinale D, Sandri MT, Martinoni A (2002) Myocardial injury revealed by plasma troponin I in breast cancer treated with high-dose chemotherapy. Ann Oncol 13:710–715CrossRefPubMedGoogle Scholar
  54. 54.
    Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849CrossRefPubMedGoogle Scholar
  55. 55.
    Ewer MS, Lippman SM (2005) Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol 23:2900–2902CrossRefPubMedGoogle Scholar
  56. 56.
    Suter TM, Ewer MS (2013) Cancer drugs and the heart: importance and management. Eur Heart J 34:1102–1111CrossRefPubMedGoogle Scholar
  57. 57.
    Gottdiener JS, Mathisen DJ, Borer JS, Bonow RO, Myers CE, Barr LH, Schwartz DE, Bacharach SL, Green MV, Rosenberg SA (1981) Doxorubicin cardiotoxicity: assessment of late left ventricular dysfunction by radionuclide cineangiography. Ann Intern Med 94:430–435CrossRefPubMedGoogle Scholar
  58. 58.
    Choi BW, Berger HJ, Schwartz PE, Alexander J, Wackers FJ, Gottschalk A, Zaret BL (1983) Serial radionuclide assessment of doxorubicin cardiotoxicity in cancer patients with abnormal baseline resting left ventricular performance. Am Heart J 106:638–643CrossRefPubMedGoogle Scholar
  59. 59.
    Lewis AB, Crouse VL, Evans W, Takahashi M, Siegel SE (1981) Recovery of left ventricular function following discontinuation of anthracycline chemotherapy in children. Pediatrics 68:67–72PubMedGoogle Scholar
  60. 60.
    Moreb JS, Oblon DJ (1992) Outcome of clinical congestive heart failure induced by anthracycline chemotherapy. Cancer 70:2637–2641CrossRefPubMedGoogle Scholar
  61. 61.
    Schwartz RG, McKenzie WB, Alexander J, Sager P, D’Souza A, Manatunga A, Schwartz PE, Berger HJ, Setaro J, Surkin L et al (1987) Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med 82:1109–1118CrossRefPubMedGoogle Scholar
  62. 62.
    Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, Rubino M, Veglia F, Fiorentini C, Cipolla CM (2010) Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol 55:213–220CrossRefPubMedGoogle Scholar
  63. 63.
    Stoodley PW, Richards DA, Boyd A, Hui R, Harnett PR, Meikle SR, Byth K, Stuart K, Clarke JL, Thomas L (2013) Left ventricular systolic function in HER2/neu negative breast cancer patients treated with anthracycline chemotherapy: a comparative analysis of left ventricular ejection fraction and myocardial strain imaging over 12 months. Eur J Cancer 49:3396–3403CrossRefPubMedGoogle Scholar
  64. 64.
    Mele D, Malagutti P, Indelli M, Ferrari L, Casadei F, Da Ros L, Pollina A, Fiorencis A, Frassoldati A, Ferrari R (2016) Reversibility of left ventricle longitudinal strain alterations induced by adjuvant therapy in early breast cancer patients. Ultrasound Med Biol 42:125–132CrossRefPubMedGoogle Scholar
  65. 65.
    Lotrionte M, Biondi-Zoccai G, Abbate A, Lanzetta G, D’Ascenzo F, Malavasi V, Peruzzi M, Frati G, Palazzoni G (2013) Review and meta-analysis of incidence and clinical predictors of anthracycline cardiotoxicity. Am J Cardiol 112:1980–1984CrossRefPubMedGoogle Scholar
  66. 66.
    Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, Jones SE, Wadler S, Desai A, Vogel C, Speyer J, Mittelman A, Reddy S, Pendergrass K, Velez-Garcia E, Ewer MS, Bianchine JR, Gams RA (1997) Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15:1318–1332PubMedGoogle Scholar
  67. 67.
    Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91:710–717CrossRefGoogle Scholar
  68. 68.
    Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879CrossRefPubMedGoogle Scholar
  69. 69.
    Yeh ETH, Bickford CL (2009) Cardiovascular complications of cancer therapy. Incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol 53:2231–2247CrossRefPubMedGoogle Scholar
  70. 70.
    Van Dalen EC, Michiels EM, Caron HN, Kremer LC (2010) Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev 5:CD005006PubMedGoogle Scholar
  71. 71.
    Curigliano G, Cardinale D, Suter T, Plataniotis G, de Azambuja E, Sandri MT, Criscitiello C, Goldhirsch A, Cipolla C, Roila F, on behalf of the ESMO Guidelines Working Group (2012) Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol 23(Suppl 7):vii155–vii166CrossRefPubMedGoogle Scholar
  72. 72.
    Ruggiero A, Ridola V, Puma N, Molinari F, Coccia P, De Rosa G, Riccardi R (2008) Anthracycline cardiotoxicity in childhood. Pediatr Hematol Oncol 25:261–281CrossRefPubMedGoogle Scholar
  73. 73.
    Armenian SH, Sun CL, Shannon T, Mills G, Francisco L, Venkataraman K, Wong FL, Forman SJ, Bhatia S (2011) Incidence and predictors of congestive heart failure following autologous hematopoietic cell transplantation. Blood 118:6023–6029CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Valachis A, Nilsson C (2015) Cardiac risk in the treatment of breast cancer: assessment and management. Breast Cancer (Dove Med Press) 7:21–35Google Scholar
  75. 75.
    Lipshultz SE, Lipsitz SR, Sallan SE, Dalton VM, Mone SM, Gelber RD, Colan SD (2005) Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 23:2629–2636CrossRefPubMedGoogle Scholar
  76. 76.
    Lipshultz SE, Lipsitz SR, Mone SM, Goorin AM, Sallan SE, Sanders SP, Orav EJ, Gelber RD, Colan SD (1995) Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med 332:1738–1743CrossRefPubMedGoogle Scholar
  77. 77.
    Altieri P, Barisione C, Lazzarini E, Garuti A, Bezante GP, Canepa M, Spallarossa P, Tocchetti CG, Bollini S, Brunelli C, Ameri P (2016) Testosterone antagonizes doxorubicin-induced senescence of cardiomyocytes. J Am Heart Assoc 8:5Google Scholar
  78. 78.
    De Keulenaer GW, Doggen K, Lemmens K (2010) The vulnerability of the heart as a pluricellular paracrine organ: lessons from unexpected triggers of heart failure in targeted ErbB2 anticancer therapy. Circ Res 106:35–46CrossRefPubMedGoogle Scholar
  79. 79.
    Salvatorelli E, Menna P, Gianni L, Minotti G (2007) Defective taxane stimulation of epirubicinol formation in the human heart: insight into the cardiac tolerability of epirubicin-taxane chemotherapies. J Pharmacol Exp Ther 320:790–800CrossRefPubMedGoogle Scholar
  80. 80.
    Pein F, Sakiroglu O, Dahan M, Lebidois J, Merlet P, Shamsaldin A, Villain E, de Vathaire F, Sidi D, Hartmann O (2004) Cardiac abnormalities 15 years and more after adriamycin therapy in 229 childhood survivors of a solid tumour at the Institut Gustave Roussy. Br J Cancer 91:37–44CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    van der Pal HJ, van Dalen EC, van Delden E, van Dijk IW, Kok WE, Geskus RB, Sieswerda E, Oldenburger F, Koning CC, van Leeuwen FE, Caron HN, Kremer LC (2012) High risk of symptomatic cardiac events in childhood cancer survivors. J Clin Oncol 30:1429–1437CrossRefGoogle Scholar
  82. 82.
    Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE, Altman RB (2011) Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genomics 21:440–446CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wojnowski L, Kulle B, Schirmer M, Schlüter G, Schmidt A, Rosenberger A, Vonhof S, Bickeböller H, Toliat MR, Suk EK, Tzvetkov M, Kruger A, Seifert S, Kloess M, Hahn H, Loeffler M, Nürnberg P, Pfreundschuh M, Trümper L, Brockmöller J, Hasenfuss G (2005) NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112:3754–3762CrossRefGoogle Scholar
  84. 84.
    Semsei AF, Erdelyi DJ, Ungvari I, Csagoly E, Hegyi MZ, Kiszel PS, Lautner-Csorba O, Szabolcs J, Masat P, Fekete G, Falus A, Szalai C, Kovacs GT (2012) ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukemia. Cell Biol Int 36:79–86CrossRefPubMedGoogle Scholar
  85. 85.
    Blanco JG, Sun CL, Landier W, Chen L, Esparza-Duran D, Leisenring W, Mays A, Friedman DL, Ginsberg JP, Hudson MM, Neglia JP, Oeffinger KC, Ritchey AK, Villaluna D, Relling MV, Bhatia S (2012) Anthracycline-related cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes—a report from the Children’s Oncology Group. J Clin Oncol 30:1415–1421CrossRefPubMedGoogle Scholar
  86. 86.
    Visscher H, Ross CJ, Rassekh SR, Barhdadi A, Dubé MP, Al-Saloos H, Sandor GS, Caron HN, van Dalen EC, Kremer LC, van der Pal HJ, Brown AM, Rogers PC, Phillips MS, Rieder MJ, Carleton BC, Hayden MR (2012) Pharmacogenetic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol 30:1422–1428CrossRefPubMedGoogle Scholar
  87. 87.
    Armenian SH, Ding Y, Mills G, Sun C, Venkataraman K, Wong FL, Neuhausen SL, Senitzer D, Wang S, Forman SJ, Bhatia S (2013) Genetic susceptibility to anthracycline-related congestive heart failure in survivors of haematopoietic cell transplantation. Br J Haematol 163:205–213PubMedPubMedCentralGoogle Scholar
  88. 88.
    Rajić V, Aplenc R, Debeljak M, Prestor VV, Karas-Kuzelicki N, Mlinaric-Rascan I, Jazbec J (2009) Influence of the polymorphism in candidate genes on late cardiac damage in patients treated due to acute leukemia in childhood. Leuk Lymphoma 50:1693–1698CrossRefPubMedGoogle Scholar
  89. 89.
    Wang X, Liu W, Sun CL, Armenian SH, Hakonarson H, Hageman L, Ding Y, Landier W, Blanco JG, Chen L, Quiñones A, Ferguson D, Winick N, Ginsberg JP, Keller F, Neglia JP, Desai S, Sklar CA, Castellino SM, Cherrick I, Dreyer ZE, Hudson MM, Robison LL, Yasui Y, Relling MV, Bhatia S (2014) Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the children’s oncology group. J Clin Oncol 32:647–653CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Vejpongsa P, Massey MR, Acholonu SA, Zhang S, Yeh ET (2013) Topoisomerase 2b expression in peripheral blood predicts susceptibility to anthracycline-induced cardiomyopathy (abstr). Circulation 128:A11619Google Scholar
  91. 91.
    Lubieniecka JM, Liu J, Heffner D, Graham J, Reid R, Hogge D, Grigliatti TA, Riggs WK (2012) Single-nucleotide polymorphisms in aldo-keto and carbonyl reductase genes are not associated with acute cardiotoxicity after daunorubicin chemotherapy. Cancer Epidemiol Biomark Prev 21:2118–2120CrossRefGoogle Scholar
  92. 92.
    Higgins AY, O’Halloran TD, Chang JD (2015) Chemotherapy-induced cardiomyopathy. Heart Fail Rev 20:721–730CrossRefPubMedGoogle Scholar
  93. 93.
    Hamo CE, Bloom MW, Cardinale D, Ky B, Nohria A, Baer L, Skopicki H, Lenihan DJ, Gheorghiade M, Lyon AR, Butler J (2016) Cancer therapy-related cardiac dysfunction and heart failure: part 2: prevention, treatment, guidelines, and future directions. Circ Heart Fail 9:e002843CrossRefPubMedGoogle Scholar
  94. 94.
    Vejpongsa P, Yeh ET (2014) Prevention of anthracycline-induced cardiotoxicity: challenges and opportunities. J Am Coll Cardiol 64:938–945CrossRefPubMedGoogle Scholar
  95. 95.
    Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, Gödtel-Armbrust U, Wojnowski L (2014) Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer 14:842CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Sysa-Shah P, Tocchetti CG, Gupta M, Rainer PP, Shen X, Kang BH, Belmonte F, Li J, Xu Y, Guo X, Bedja D, Gao WD, Paolocci N, Rath R, Sawyer DB, Naga Prasad SV, Gabrielson K (2016) Bidirectional cross-regulation between ErbB2 and β-adrenergic signalling pathways. Cardiovasc Res 109:358–373CrossRefPubMedGoogle Scholar
  97. 97.
    Jones LW, Eves ND, Haykowsky M, Freedland SJ, Mackey JR (2009) Exercise intolerance in cancer and the role of exercise therapy to reverse dysfunction. Lancet Oncol 10:598–605CrossRefPubMedGoogle Scholar
  98. 98.
    Rickard J, Kumbhani DJ, Baranowski B, Martin DO, Tang WH, Wilkoff BL (2010) Usefulness of cardiac resynchronization therapy in patients with Adriamycin-induced cardiomyopathy. Am J Cardiol 105:522–526CrossRefPubMedGoogle Scholar
  99. 99.
    Oliveira GH, Hardaway BW, Kucheryavaya AY, Stehlik J, Edwards LB, Taylor DO (2012) Characteristics and survival of patients with chemotherapy-induced cardiomyopathy undergoing heart transplantation. J Heart Lung Transplant 31:805–810CrossRefPubMedGoogle Scholar
  100. 100.
    Oliveira GH, Dupont M, Naftel D, Myers SL, Yuan Y, Tang WH, Gonzalez-Stawinski G, Young JB, Taylor DO, Starling RC (2014) Increased need for right ventricular support in patients with chemotherapy-induced cardiomyopathy undergoing mechanical circulatory support: outcomes from the INTERMACS Registry (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 63:240–248CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Donato Mele
    • 1
    • 2
  • Marianna Nardozza
    • 1
    • 2
  • Paolo Spallarossa
    • 3
  • Antonio Frassoldati
    • 4
  • Carlo G. Tocchetti
    • 5
  • Christian Cadeddu
    • 6
  • Rosalinda Madonna
    • 7
  • Michele Malagù
    • 1
    • 2
  • Roberto Ferrari
    • 1
    • 2
  • Giuseppe Mercuro
    • 6
  1. 1.Cardiology Unit, Department of Cardiology and LTTA CentreUniversity Hospital of FerraraFerraraItaly
  2. 2.Maria Cecilia Hospital, GVM Care and ResearchE.S: Health Science FoundationCotignolaItaly
  3. 3.Clinic of Cardiovascular DiseasesIRCCS San Martino ISTGenoaItaly
  4. 4.Oncology UnitUniversity Hospital of FerraraFerraraItaly
  5. 5.Division of Internal Medicine, Department of Translational Medical SciencesFederico II UniversityNaplesItaly
  6. 6.Department of Medical Sciences “Mario Aresu”University of CagliariCagliariItaly
  7. 7.Department of Cardiology, Center of Excellence on Aging“G. d’Annunzio” UniversityChietiItaly

Personalised recommendations