Heart Failure Reviews

, Volume 21, Issue 1, pp 25–47 | Cite as

Temporal cardiac remodeling post-myocardial infarction: dynamics and prognostic implications in personalized medicine

  • Raffaele Altara
  • Marco Manca
  • Ramzi Sabra
  • Assaad A. Eid
  • George W. Booz
  • Fouad A. Zouein


Despite dramatic improvements in short-term mortality rates following myocardial infarction (MI), long-term survival for MI patients who progress to heart failure remains poor. MI occurs when the left ventricle (LV) is deprived of oxygen for a sufficient period of time to induce irreversible necrosis of the myocardium. The LV response to MI involves significant tissue, cellular, and molecular level modifications, as well as substantial hemodynamic changes that feedback negatively to amplify the response. Inflammation to remove necrotic myocytes and fibroblast activation to form a scar are key wound healing responses that are highly variable across individuals. Few biomarkers of early remodeling stages are currently clinically adopted. The discovery of underlying pathophysiological mechanisms and associated novel biomarkers has the potential of improving prognostic capability and therapeutic monitoring. Combining these biomarkers with other prominent ones could constitute a powerful diagnostic and prognostic tool that directly reflects the pathophysiological remodeling of the LV. Understanding temporal remodeling at the tissue, cellular, and molecular level and its link to a well-defined set of biomarkers at early stages post-MI is a prerequisite for improving personalized care and devising more successful therapeutic interventions. Here we summarize the integral mechanisms that occur during early cardiac remodeling in the post-MI setting and highlight the most prominent biomarkers for assessing disease progression.


Cardiac remodeling Myocardial infarction Personalized medicine Biomarkers Inflammation Extracellular matrix 

List of abbreviations


Extracellular matrix




Left ventricle


Myocardial infarction


Matrix metalloproteinases


Secreted protein acidic and rich in cysteine


Tumor growth factor beta


Vascular smooth muscle cell


Alpha-1 protease inhibitor


Alpha 2-macroglobulin



The authors would like to acknowledge Dr. Abdullah Kaplan for his careful review revisions, and valuable input. The authors appreciate the support of the Department of Pharmacology and Toxicology (UMMC).

Compliance with ethical standards

Conflict of interest

Drs. Raffaele Altara, Marco Manca, Ramzi Sabra, Assaad A. Eid, George W. Booz and Fouad A. Zouein have no conflicts of interest or financial ties to disclose.


  1. 1.
    Johansen H, Brien SE, Fines P, Bernier J, Humphries K, Stukel TA, Ghali WA (2010) Thirty-day in-hospital revascularization and mortality rates after acute myocardial infarction in seven Canadian provinces. Can J Cardiol 26(7):e243–e248PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Gheorghiade M, Bonow RO (1998) Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation 97(3):282–289PubMedCrossRefGoogle Scholar
  3. 3.
    Gorman RC, Jackson BM, Burdick JA, Gorman JH (2011) Infarct restraint to limit adverse ventricular remodeling. J Cardiovasc Transl Res 4(1):73–81. doi: 10.1007/s12265-010-9244-0 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100(9):999–1008PubMedCrossRefGoogle Scholar
  5. 5.
    Ammar KA, Jacobsen SJ, Mahoney DW, Kors JA, Redfield MM, Burnett JC Jr, Rodeheffer RJ (2007) Prevalence and prognostic significance of heart failure stages: application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation 115(12):1563–1570. doi: 10.1161/CIRCULATIONAHA.106.666818 PubMedCrossRefGoogle Scholar
  6. 6.
    Bernheim SM, Grady JN, Lin Z, Wang Y, Savage SV, Bhat KR, Ross JS, Desai MM, Merrill AR, Han LF, Rapp MT, Drye EE, Normand SL, Krumholz HM (2010) National patterns of risk-standardized mortality and readmission for acute myocardial infarction and heart failure. Update on publicly reported outcomes measures based on the, 2010 release. Circ Cardiovasc Qual Outcomes 3(5):459–467. doi: 10.1161/CIRCOUTCOMES.110.957613 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Velagaleti RS, Pencina MJ, Murabito JM, Wang TJ, Parikh NI, D’Agostino RB, Levy D, Kannel WB, Vasan RS (2008) Long-term trends in the incidence of heart failure after myocardial infarction. Circulation 118(20):2057–2062. doi: 10.1161/CIRCULATIONAHA.108.784215 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53(1):31–47PubMedCrossRefGoogle Scholar
  9. 9.
    Ren G, Dewald O, Frangogiannis NG (2003) Inflammatory mechanisms in myocardial infarction. Curr Drug Targets Inflamm Allergy 2(3):242–256PubMedCrossRefGoogle Scholar
  10. 10.
    Rossen RD, Michael LH, Kagiyama A, Savage HE, Hanson G, Reisberg MA, Moake JN, Kim SH, Self D, Weakley S (1988) Mechanism of complement activation after coronary artery occlusion: evidence that myocardial ischemia in dogs causes release of constituents of myocardial subcellular origin that complex with human C1q in vivo. Circ Res 62(3):572–584PubMedCrossRefGoogle Scholar
  11. 11.
    Frantz S, Bauersachs J, Ertl G (2009) Post-infarct remodelling: contribution of wound healing and inflammation. Cardiovasc Res 81(3):474–481. doi: 10.1093/cvr/cvn292 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG (2004) Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164(2):665–677. doi: 10.1016/S0002-9440(10)63154-9 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110(1):159–173. doi: 10.1161/CIRCRESAHA.111.243162 PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94(12):1543–1553. doi: 10.1161/01.RES.0000130526.20854.fa PubMedCrossRefGoogle Scholar
  15. 15.
    Brown RD, Ambler SK, Mitchell MD, Long CS (2005) The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 45:657–687. doi: 10.1146/annurev.pharmtox.45.120403.095802 PubMedCrossRefGoogle Scholar
  16. 16.
    Zouein FA, Zgheib C, Liechty KW, Booz GW (2012) Post-infarct biomaterials, left ventricular remodeling, and heart failure: is good good enough? Congest Heart Fail 18(5):284–290. doi: 10.1111/j.1751-7133.2012.00298.x PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Potente M, Gerhardt H, Carmeliet P (2011) Basic and therapeutic aspects of angiogenesis. Cell 146(6):873–887. doi: 10.1016/j.cell.2011.08.039 PubMedCrossRefGoogle Scholar
  18. 18.
    Schirmer SH, van Nooijen FC, Piek JJ, van Royen N (2009) Stimulation of collateral artery growth: travelling further down the road to clinical application. Heart 95(3):191–197. doi: 10.1136/hrt.2007.136119 PubMedCrossRefGoogle Scholar
  19. 19.
    Silvestre JS, Mallat Z, Tedgui A, Levy BI (2008) Post-ischaemic neovascularization and inflammation. Cardiovasc Res 78(2):242–249. doi: 10.1093/cvr/cvn027 PubMedCrossRefGoogle Scholar
  20. 20.
    Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Investig 115(8):2108–2118. doi: 10.1172/JCI24682 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, Thistlethwaite PA (2005) Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 46(11):2116–2124. doi: 10.1016/j.jacc.2005.08.045 PubMedCrossRefGoogle Scholar
  22. 22.
    Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110(14):1933–1939. doi: 10.1161/01.CIR.0000143232.67642.7A PubMedCrossRefGoogle Scholar
  23. 23.
    Pugh CW, Ratcliffe PJ (2003) Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med 9(6):677–684. doi: 10.1038/nm0603-677 PubMedCrossRefGoogle Scholar
  24. 24.
    Skuli N, Majmundar AJ, Krock BL, Mesquita RC, Mathew LK, Quinn ZL, Runge A, Liu L, Kim MN, Liang J, Schenkel S, Yodh AG, Keith B, Simon MC (2012) Endothelial HIF-2alpha regulates murine pathological angiogenesis and revascularization processes. J Clin Investig 122(4):1427–1443. doi: 10.1172/JCI57322 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Banai S, Jaklitsch MT, Casscells W, Shou M, Shrivastav S, Correa R, Epstein SE, Unger EF (1991) Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ Res 69(1):76–85PubMedCrossRefGoogle Scholar
  26. 26.
    Battler A, Scheinowitz M, Bor A, Hasdai D, Vered Z, Di Segni E, Varda-Bloom N, Nass D, Engelberg S, Eldar M et al (1993) Intracoronary injection of basic fibroblast growth factor enhances angiogenesis in infarcted swine myocardium. J Am Coll Cardiol 22(7):2001–2006PubMedCrossRefGoogle Scholar
  27. 27.
    Dobrucki LW, Tsutsumi Y, Kalinowski L, Dean J, Gavin M, Sen S, Mendizabal M, Sinusas AJ, Aikawa R (2010) Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging. J Mol Cell Cardiol 48(6):1071–1079. doi: 10.1016/j.yjmcc.2009.10.008 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Meloni M, Caporali A, Graiani G, Lagrasta C, Katare R, Van Linthout S, Spillmann F, Campesi I, Madeddu P, Quaini F, Emanueli C (2010) Nerve growth factor promotes cardiac repair following myocardial infarction. Circ Res 106(7):1275–1284. doi: 10.1161/CIRCRESAHA.109.210088 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Miyagawa S, Sawa Y, Taketani S, Kawaguchi N, Nakamura T, Matsuura N, Matsuda H (2002) Myocardial regeneration therapy for heart failure: hepatocyte growth factor enhances the effect of cellular cardiomyoplasty. Circulation 105(21):2556–2561PubMedCrossRefGoogle Scholar
  30. 30.
    Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S (1997) Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat model. Circulation 95(11):2552–2558PubMedCrossRefGoogle Scholar
  31. 31.
    Kukielka GL, Smith CW, LaRosa GJ, Manning AM, Mendoza LH, Daly TJ, Hughes BJ, Youker KA, Hawkins HK, Michael LH et al (1995) Interleukin-8 gene induction in the myocardium after ischemia and reperfusion in vivo. J Clin Investig 95(1):89–103. doi: 10.1172/JCI117680 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zhao X, Zhang W, Xing D, Li P, Fu J, Gong K, Hage FG, Oparil S, Chen YF (2013) Endothelial cells overexpressing IL-8 receptor reduce cardiac remodeling and dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 305(4):H590–H598. doi: 10.1152/ajpheart.00571.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    van Hinsbergh VW, Engelse MA, Quax PH (2006) Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 26(4):716–728. doi: 10.1161/01.ATV.0000209518.58252.17 PubMedCrossRefGoogle Scholar
  34. 34.
    Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713. doi: 10.1126/science.1174381 PubMedCrossRefGoogle Scholar
  35. 35.
    Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, Emanueli C (2011) Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123(3):282–291. doi: 10.1161/CIRCULATIONAHA.110.952325 PubMedCrossRefGoogle Scholar
  36. 36.
    Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JT, Sohn-Lee C, Loyer X, Soutschek J, Brand T, Tuschl T, Heineke J, Martin U, Schulte-Merker S, Ertl G, Engelhardt S, Bauersachs J, Thum T (2011) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124(6):720–730. doi: 10.1161/CIRCULATIONAHA.111.039008 PubMedCrossRefGoogle Scholar
  37. 37.
    Ghosh G, Subramanian IV, Adhikari N, Zhang X, Joshi HP, Basi D, Chandrashekhar YS, Hall JL, Roy S, Zeng Y, Ramakrishnan S (2010) Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-alpha isoforms and promotes angiogenesis. J Clin Investig 120(11):4141–4154. doi: 10.1172/JCI42980 PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    van Solingen C, de Boer HC, Bijkerk R, Monge M, van Oeveren-Rietdijk AM, Seghers L, de Vries MR, van der Veer EP, Quax PH, Rabelink TJ, van Zonneveld AJ (2011) MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1(+)/Lin(-) progenitor cells in ischaemia. Cardiovasc Res 92(3):449–455. doi: 10.1093/cvr/cvr227 PubMedCrossRefGoogle Scholar
  39. 39.
    Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA (2007) Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293(3):H1883–H1891. doi: 10.1152/ajpheart.00514.2007 PubMedCrossRefGoogle Scholar
  40. 40.
    Nag AC (1980) Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28(109):41–61PubMedGoogle Scholar
  41. 41.
    Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123(2):255–278. doi: 10.1016/j.pharmthera.2009.05.002 PubMedCrossRefGoogle Scholar
  42. 42.
    Jugdutt BI (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108(11):1395–1403. doi: 10.1161/01.CIR.0000085658.98621.49 PubMedCrossRefGoogle Scholar
  43. 43.
    Banerjee I, Yekkala K, Borg TK, Baudino TA (2006) Dynamic interactions between myocytes, fibroblasts, and extracellular matrix. Ann N Y Acad Sci 1080:76–84. doi: 10.1196/annals.1380.007 PubMedCrossRefGoogle Scholar
  44. 44.
    Lockhart M, Wirrig E, Phelps A, Wessels A (2011) Extracellular matrix and heart development. Birth Defects Res A 91(6):535–550. doi: 10.1002/bdra.20810 CrossRefGoogle Scholar
  45. 45.
    Kajstura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Krajewski S, Reed JC, Olivetti G, Anversa P (1996) Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Investig 74(1):86–107PubMedGoogle Scholar
  46. 46.
    Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ, Sabbadini RA (1996) Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Investig 98(12):2854–2865. doi: 10.1172/JCI119114 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, Tikkanen I (2001) Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol 280(6):H2726–H2731PubMedGoogle Scholar
  48. 48.
    Whelan RS, Kaplinskiy V, Kitsis RN (2010) Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol 72:19–44. doi: 10.1146/annurev.physiol.010908.163111 PubMedCrossRefGoogle Scholar
  49. 49.
    Fedak PW, Verma S, Weisel RD, Li RK (2005) Cardiac remodeling and failure: from molecules to man (part I). Cardiovasc Patholol 14(1):1–11. doi: 10.1016/j.carpath.2004.12.002 CrossRefGoogle Scholar
  50. 50.
    Goldhaber JI (1996) Free radicals enhance Na+/Ca2+ exchange in ventricular myocytes. Am J Physiol 271(3 Pt 2):H823–H833PubMedGoogle Scholar
  51. 51.
    Mill JG, Stefanon I, Leite CM, Vassallo DV (1990) Changes in performance of the surviving myocardium after left ventricular infarction in rats. Cardiovasc Res 24(9):748–753PubMedCrossRefGoogle Scholar
  52. 52.
    Stefanon I, Auxiliadora-Martins M, Vassallo DV, Mill JG (1994) Analysis of right and left ventricular performance of the rat heart with chronic myocardial infarction. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al] 27(11):2667–2679Google Scholar
  53. 53.
    Yokoyama T, Vaca L, Rossen RD, Durante W, Hazarika P, Mann DL (1993) Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. J Clin Investig 92(5):2303–2312. doi: 10.1172/JCI116834 PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86(12):1259–1265PubMedCrossRefGoogle Scholar
  55. 55.
    Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zellner JL, Crumbley AJ (2000) A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102(16):1944–1949PubMedCrossRefGoogle Scholar
  56. 56.
    Whittaker P, Boughner DR, Kloner RA (1991) Role of collagen in acute myocardial infarct expansion. Circulation 84(5):2123–2134PubMedCrossRefGoogle Scholar
  57. 57.
    Pinto AR, Paolicelli R, Salimova E, Gospocic J, Slonimsky E, Bilbao-Cortes D, Godwin JW, Rosenthal NA (2012) An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS One 7(5):e36814. doi: 10.1371/journal.pone.0036814 PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Borregaard N (2010) Neutrophils, from marrow to microbes. Immunity 33(5):657–670. doi: 10.1016/j.immuni.2010.11.011 PubMedCrossRefGoogle Scholar
  59. 59.
    Frantz S, Nahrendorf M (2014) Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res 102(2):240–248. doi: 10.1093/cvr/cvu025 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Borregaard N, Kjeldsen L, Lollike K, Sengelov H (1995) Granules and secretory vesicles of the human neutrophil. Clin Exp Immunol 101(Suppl 1):6–9PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mollinedo F, Nakajima M, Llorens A, Barbosa E, Callejo S, Gajate C, Fabra A (1997) Major co-localization of the extracellular-matrix degradative enzymes heparanase and gelatinase in tertiary granules of human neutrophils. Biochem J 327(Pt 3):917–923PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sengelov H, Kjeldsen L, Borregaard N (1993) Control of exocytosis in early neutrophil activation. J Immunol 150(4):1535–1543PubMedGoogle Scholar
  63. 63.
    Tapper H, Karlsson A, Morgelin M, Flodgaard H, Herwald H (2002) Secretion of heparin-binding protein from human neutrophils is determined by its localization in azurophilic granules and secretory vesicles. Blood 99(5):1785–1793PubMedCrossRefGoogle Scholar
  64. 64.
    Bratton DL, Henson PM (2011) Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 32(8):350–357. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746. doi: 10.1056/NEJM199909023411006 PubMedCrossRefGoogle Scholar
  66. 66.
    Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL (2014) Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40(1):91–104. doi: 10.1016/j.immuni.2013.11.019 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10(6):427–439. doi: 10.1038/nri2779 PubMedCrossRefGoogle Scholar
  68. 68.
    Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142(3):481–489. doi: 10.1111/j.1365-2249.2005.02934.x PubMedPubMedCentralGoogle Scholar
  69. 69.
    Troidl C, Mollmann H, Nef H, Masseli F, Voss S, Szardien S, Willmer M, Rolf A, Rixe J, Troidl K, Kostin S, Hamm C, Elsasser A (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13(9B):3485–3496. doi: 10.1111/j.1582-4934.2009.00707.x PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204(12):3037–3047. doi: 10.1084/jem.20070885 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhang X, Mosser DM (2008) Macrophage activation by endogenous danger signals. J Pathol 214(2):161–178. doi: 10.1002/path.2284 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yano T, Miura T, Whittaker P, Miki T, Sakamoto J, Nakamura Y, Ichikawa Y, Ikeda Y, Kobayashi H, Ohori K, Shimamoto K (2006) Macrophage colony-stimulating factor treatment after myocardial infarction attenuates left ventricular dysfunction by accelerating infarct repair. J Am Coll Cardiol 47(3):626–634. doi: 10.1016/j.jacc.2005.09.037 PubMedCrossRefGoogle Scholar
  73. 73.
    Turner NA, Das A, O’Regan DJ, Ball SG, Porter KE (2011) Human cardiac fibroblasts express ICAM-1, E-selectin and CXC chemokines in response to proinflammatory cytokine stimulation. Int J Biochem Cell Biol 43(10):1450–1458. doi: 10.1016/j.biocel.2011.06.008 PubMedCrossRefGoogle Scholar
  74. 74.
    van Nieuwenhoven FA, Turner NA (2013) The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vascul Pharmacol 58(3):182–188. doi: 10.1016/j.vph.2012.07.003 PubMedCrossRefGoogle Scholar
  75. 75.
    van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, Narula J (2010) Myocardial remodeling after infarction: the role of myofibroblasts. Nat Rev Cardiol 7(1):30–37. doi: 10.1038/nrcardio.2009.199 PubMedCrossRefGoogle Scholar
  76. 76.
    Becker BF, Chappell D, Jacob M (2010) Endothelial glycocalyx and coronary vascular permeability: the fringe benefit. Basic Res Cardiol 105(6):687–701. doi: 10.1007/s00395-010-0118-z PubMedCrossRefGoogle Scholar
  77. 77.
    Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, Conzen P, Becker BF (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104(1):78–89. doi: 10.1007/s00395-008-0749-5 PubMedCrossRefGoogle Scholar
  78. 78.
    Czarnowska E, Karwatowska-Prokopczuk E (1995) Ultrastructural demonstration of endothelial glycocalyx disruption in the reperfused rat heart. Involvement of oxygen free radicals. Basic Res Cardiol 90(5):357–364PubMedCrossRefGoogle Scholar
  79. 79.
    Adams DH, Shaw S (1994) Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet 343(8901):831–836PubMedCrossRefGoogle Scholar
  80. 80.
    Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84(7):2068–2101PubMedGoogle Scholar
  81. 81.
    Ebnet K, Vestweber D (1999) Molecular mechanisms that control leukocyte extravasation: the selectins and the chemokines. Histochem Cell Biol 112(1):1–23PubMedCrossRefGoogle Scholar
  82. 82.
    McEver RP, Moore KL, Cummings RD (1995) Leukocyte trafficking mediated by selectin-carbohydrate interactions. J Biol Chem 270(19):11025–11028PubMedCrossRefGoogle Scholar
  83. 83.
    Smith CW (1993) Leukocyte-endothelial cell interactions. Semin Hematol 30(4 Suppl 4):45–53 (discussion 54–45) PubMedGoogle Scholar
  84. 84.
    Schwartz BG, Kloner RA (2012) Coronary no reflow. J Mol Cell Cardiol 52(4):873–882. doi: 10.1016/j.yjmcc.2011.06.009 PubMedCrossRefGoogle Scholar
  85. 85.
    Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307. doi: 10.1038/nature10144 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Chen W, Frangogiannis NG (2013) Fibroblasts in post-infarction inflammation and cardiac repair. Biochim Biophys Acta 1833(4):945–953. doi: 10.1016/j.bbamcr.2012.08.023 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961. doi: 10.1038/nm1613 PubMedCrossRefGoogle Scholar
  88. 88.
    Altara R, Manca M, Hermans KC, Daskalopoulos EP, Brunner-La Rocca HP, Hermans RJ, Struijker-Boudier HA, Blankesteijn MW (2015) Diurnal rhythms of serum and plasma cytokine profiles in healthy elderly individuals assessed using membrane based multiplexed immunoassay. J Transl Med 13:129. doi: 10.1186/s12967-015-0477-1 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Aoyagi T, Matsui T (2011) The Cardiomyocyte as a source of cytokines in cardiac injury. J Cell Sci Ther S5:003. doi: 10.4172/2157-7013.S5-003
  90. 90.
    Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13(7):851–856. doi: 10.1038/nm1603 PubMedCrossRefGoogle Scholar
  91. 91.
    Deten A, Volz HC, Briest W, Zimmer HG (2002) Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc Res 55(2):329–340PubMedCrossRefGoogle Scholar
  92. 92.
    Ono K, Matsumori A, Shioi T, Furukawa Y, Sasayama S (1998) Cytokine gene expression after myocardial infarction in rat hearts: possible implication in left ventricular remodeling. Circulation 98(2):149–156PubMedCrossRefGoogle Scholar
  93. 93.
    Kim D, Haynes CL (2012) Neutrophil chemotaxis within a competing gradient of chemoattractants. Anal Chem 84(14):6070–6078. doi: 10.1021/ac3009548 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89(10):3503–3521PubMedGoogle Scholar
  95. 95.
    Faurschou M, Borregaard N (2003) Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5(14):1317–1327PubMedCrossRefGoogle Scholar
  96. 96.
    Sengelov H, Follin P, Kjeldsen L, Lollike K, Dahlgren C, Borregaard N (1995) Mobilization of granules and secretory vesicles during in vivo exudation of human neutrophils. J Immunol 154(8):4157–4165PubMedGoogle Scholar
  97. 97.
    Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489. doi: 10.1146/annurev-immunol-020711-074942 PubMedCrossRefGoogle Scholar
  98. 98.
    Dahlgren C, Karlsson A, Sendo F (2001) Neutrophil secretory vesicles are the intracellular reservoir for GPI-80, a protein with adhesion-regulating potential. J Leukoc Biol 69(1):57–62PubMedGoogle Scholar
  99. 99.
    Witko-Sarsat V, Cramer EM, Hieblot C, Guichard J, Nusbaum P, Lopez S, Lesavre P, Halbwachs-Mecarelli L (1999) Presence of proteinase 3 in secretory vesicles: evidence of a novel, highly mobilizable intracellular pool distinct from azurophil granules. Blood 94(7):2487–2496PubMedGoogle Scholar
  100. 100.
    Ng LL, Khan SQ, Narayan H, Quinn P, Squire IB, Davies JE (2011) Proteinase 3 and prognosis of patients with acute myocardial infarction. Clin Sci (Lond) 120(6):231–238. doi: 10.1042/CS20100366 CrossRefGoogle Scholar
  101. 101.
    Pezzato E, Dona M, Sartor L, Dell’Aica I, Benelli R, Albini A, Garbisa S (2003) Proteinase-3 directly activates MMP-2 and degrades gelatin and Matrigel; differential inhibition by (-)epigallocatechin-3-gallate. J Leukoc Biol 74(1):88–94PubMedCrossRefGoogle Scholar
  102. 102.
    Kao RC, Wehner NG, Skubitz KM, Gray BH, Hoidal JR (1988) Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J Clin Investig 82(6):1963–1973. doi: 10.1172/JCI113816 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Robache-Gallea S, Morand V, Bruneau JM, Schoot B, Tagat E, Realo E, Chouaib S, Roman-Roman S (1995) In vitro processing of human tumor necrosis factor-alpha. J Biol Chem 270(40):23688–23692PubMedCrossRefGoogle Scholar
  104. 104.
    Naude PJ, Mommersteeg PM, Zijlstra WP, Gouweleeuw L, Kupper N, Eisel UL, Kop WJ, Schoemaker RG (2014) Neutrophil gelatinase-associated lipocalin and depression in patients with chronic heart failure. Brain Behav Immun 38:59–65. doi: 10.1016/j.bbi.2013.12.023 PubMedCrossRefGoogle Scholar
  105. 105.
    Baldus S, Heeschen C, Meinertz T, Zeiher AM, Eiserich JP, Munzel T, Simoons ML, Hamm CW, Investigators C (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108(12):1440–1445. doi: 10.1161/01.CIR.0000090690.67322.51 PubMedCrossRefGoogle Scholar
  106. 106.
    Brennan ML, Penn MS, Van Lente F, Nambi V, Shishehbor MH, Aviles RJ, Goormastic M, Pepoy ML, McErlean ES, Topol EJ, Nissen SE, Hazen SL (2003) Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 349(17):1595–1604. doi: 10.1056/NEJMoa035003 PubMedCrossRefGoogle Scholar
  107. 107.
    Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A (2002) Widespread coronary inflammation in unstable angina. N Engl J Med 347(1):5–12. doi: 10.1056/NEJMoa012295 PubMedCrossRefGoogle Scholar
  108. 108.
    Roman RM, Camargo PV, Borges FK, Rossini AP, Polanczyk CA (2010) Prognostic value of myeloperoxidase in coronary artery disease: comparison of unstable and stable angina patients. Coron Artery Dis 21(3):129–136. doi: 10.1097/MCA.0b013e328333f50d PubMedCrossRefGoogle Scholar
  109. 109.
    Baveye S, Elass E, Fernig DG, Blanquart C, Mazurier J, Legrand D (2000) Human lactoferrin interacts with soluble CD14 and inhibits expression of endothelial adhesion molecules, E-selectin and ICAM-1, induced by the CD14-lipopolysaccharide complex. Infect Immun 68(12):6519–6525PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Crouch SP, Slater KJ, Fletcher J (1992) Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood 80(1):235–240PubMedGoogle Scholar
  111. 111.
    Legrand D, Elass E, Carpentier M, Mazurier J (2005) Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci 62(22):2549–2559. doi: 10.1007/s00018-005-5370-2 PubMedCrossRefGoogle Scholar
  112. 112.
    Sahinarslan A, Kocaman SA, Bas D, Akyel A, Ercin U, Zengin O, Timurkaynak T (2011) Plasma neutrophil gelatinase-associated lipocalin levels in acute myocardial infarction and stable coronary artery disease. Coron Artery Dis 22(5):333–338. doi: 10.1097/MCA.0b013e3283472a71 PubMedCrossRefGoogle Scholar
  113. 113.
    Yan L, Borregaard N, Kjeldsen L, Moses MA (2001) The high molecular weight urinary matrix metalloproteinase (MMP) activity is a complex of gelatinase B/MMP-9 and neutrophil gelatinase-associated lipocalin (NGAL). Modulation of MMP-9 activity by NGAL. J Biol Chem 276(40):37258–37265. doi: 10.1074/jbc.M106089200 PubMedCrossRefGoogle Scholar
  114. 114.
    Joiner KA, Ganz T, Albert J, Rotrosen D (1989) The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. J Cell Biol 109(6 Pt 1):2771–2782PubMedCrossRefGoogle Scholar
  115. 115.
    Pham CT (2006) Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6(7):541–550. doi: 10.1038/nri1841 PubMedCrossRefGoogle Scholar
  116. 116.
    Arnljots K, Sorensen O, Lollike K, Borregaard N (1998) Timing, targeting and sorting of azurophil granule proteins in human myeloid cells. Leukemia 12(11):1789–1795PubMedCrossRefGoogle Scholar
  117. 117.
    Owen CA, Campbell EJ (1999) The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol 65(2):137–150PubMedGoogle Scholar
  118. 118.
    Bidouard JP, Duval N, Kapui Z, Herbert JM, O’Connor SE, Janiak P (2003) SSR69071, an elastase inhibitor, reduces myocardial infarct size following ischemia-reperfusion injury. Eur J Pharmacol 461(1):49–52PubMedCrossRefGoogle Scholar
  119. 119.
    Itoh Y, Nagase H (1995) Preferential inactivation of tissue inhibitor of metalloproteinases-1 that is bound to the precursor of matrix metalloproteinase 9 (progelatinase B) by human neutrophil elastase. J Biol Chem 270(28):16518–16521PubMedCrossRefGoogle Scholar
  120. 120.
    Yu X, Kennedy RH, Liu SJ (2003) JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitric-oxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem 278(18):16304–16309. doi: 10.1074/jbc.M212321200 PubMedCrossRefGoogle Scholar
  121. 121.
    Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331(19):1286–1292. doi: 10.1056/NEJM199411103311907 PubMedCrossRefGoogle Scholar
  122. 122.
    Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51(4):600–606. doi: 10.1016/j.yjmcc.2010.10.033 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48(3):504–511. doi: 10.1016/j.yjmcc.2009.07.015 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Rosenkranz S (2004) TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovasc Res 63(3):423–432. doi: 10.1016/j.cardiores.2004.04.030 PubMedCrossRefGoogle Scholar
  125. 125.
    Bornstein P (2009) Matricellular proteins: an overview. J Cell Commun Signal 3(3–4):163–165. doi: 10.1007/s12079-009-0069-z PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Bosman FT, Stamenkovic I (2003) Functional structure and composition of the extracellular matrix. J Pathol 200(4):423–428. doi: 10.1002/path.1437 PubMedCrossRefGoogle Scholar
  127. 127.
    Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92(2):635–688. doi: 10.1152/physrev.00008.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Schellings MW, Pinto YM, Heymans S (2004) Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res 64(1):24–31. doi: 10.1016/j.cardiores.2004.06.006 PubMedCrossRefGoogle Scholar
  129. 129.
    Bendrik C, Robertson J, Gauldie J, Dabrosin C (2008) Gene transfer of matrix metalloproteinase-9 induces tumor regression of breast cancer in vivo. Cancer Res 68(9):3405–3412. doi: 10.1158/0008-5472.CAN-08-0295 PubMedCrossRefGoogle Scholar
  130. 130.
    Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, Pierce RA, Shapiro SD (1998) Matrix metalloproteinases generate angiostatin: effects on neovascularization. J Immunol 161(12):6845–6852PubMedGoogle Scholar
  131. 131.
    Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, Hynes RO, Werb Z, Sudhakar A, Kalluri R (2003) Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaV beta3 integrin. Cancer Cell 3(6):589–601PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Isobe K, Kuba K, Maejima Y, Suzuki J, Kubota S, Isobe M (2010) Inhibition of endostatin/collagen XVIII deteriorates left ventricular remodeling and heart failure in rat myocardial infarction model. Circ J 74(1):109–119PubMedCrossRefGoogle Scholar
  133. 133.
    Panchal VR, Rehman J, Nguyen AT, Brown JW, Turrentine MW, Mahomed Y, March KL (2004) Reduced pericardial levels of endostatin correlate with collateral development in patients with ischemic heart disease. J Am Coll Cardiol 43(8):1383–1387. doi: 10.1016/j.jacc.2003.10.063 PubMedCrossRefGoogle Scholar
  134. 134.
    Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87(17):6624–6628PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Iruela-Arispe ML (2008) Regulation of thrombospondin1 by extracellular proteases. Curr Drug Targets 9(10):863–868PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Volpert OV, Tolsma SS, Pellerin S, Feige JJ, Chen H, Mosher DF, Bouck N (1995) Inhibition of angiogenesis by thrombospondin-2. Biochem Biophys Res Commun 217(1):326–332. doi: 10.1006/bbrc.1995.2780 PubMedCrossRefGoogle Scholar
  137. 137.
    Arslan F, Smeets MB, Riem Vis PW, Karper JC, Quax PH, Bongartz LG, Peters JH, Hoefer IE, Doevendans PA, Pasterkamp G, de Kleijn DP (2011) Lack of fibronectin-EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ Res 108(5):582–592. doi: 10.1161/CIRCRESAHA.110.224428 PubMedCrossRefGoogle Scholar
  138. 138.
    Gondokaryono SP, Ushio H, Niyonsaba F, Hara M, Takenaka H, Jayawardana ST, Ikeda S, Okumura K, Ogawa H (2007) The extra domain A of fibronectin stimulates murine mast cells via toll-like receptor 4. J Leukoc Biol 82(3):657–665. doi: 10.1189/jlb.1206730 PubMedCrossRefGoogle Scholar
  139. 139.
    Matsui Y, Ikesue M, Danzaki K, Morimoto J, Sato M, Tanaka S, Kojima T, Tsutsui H, Uede T (2011) Syndecan-4 prevents cardiac rupture and dysfunction after myocardial infarction. Circ Res 108(11):1328–1339. doi: 10.1161/CIRCRESAHA.110.235689 PubMedCrossRefGoogle Scholar
  140. 140.
    Murry CE, Giachelli CM, Schwartz SM, Vracko R (1994) Macrophages express osteopontin during repair of myocardial necrosis. Am J Pathol 145(6):1450–1462PubMedPubMedCentralGoogle Scholar
  141. 141.
    Schoneveld AH, Hoefer I, Sluijter JP, Laman JD, de Kleijn DP, Pasterkamp G (2008) Atherosclerotic lesion development and Toll like receptor 2 and 4 responsiveness. Atherosclerosis 197(1):95–104. doi: 10.1016/j.atherosclerosis.2007.08.004 PubMedCrossRefGoogle Scholar
  142. 142.
    Vetrone SA, Montecino-Rodriguez E, Kudryashova E, Kramerova I, Hoffman EP, Liu SD, Miceli MC, Spencer MJ (2009) Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Investig 119(6):1583–1594. doi: 10.1172/JCI37662 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Frangogiannis NG, Ren G, Dewald O, Zymek P, Haudek S, Koerting A, Winkelmann K, Michael LH, Lawler J, Entman ML (2005) Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation 111(22):2935–2942PubMedCrossRefGoogle Scholar
  144. 144.
    Imai K, Hiramatsu A, Fukushima D, Pierschbacher MD, Okada Y (1997) Degradation of decorin by matrix metalloproteinases: identification of the cleavage sites, kinetic analyses and transforming growth factor-beta1 release. Biochem J 322(Pt 3):809–814PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Murphy-Ullrich JE, Poczatek M (2000) Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology. Cytokine Growth Factor Rev 11(1–2):59–69PubMedCrossRefGoogle Scholar
  146. 146.
    Vanhoutte D, Schellings MW, Gotte M, Swinnen M, Herias V, Wild MK, Vestweber D, Chorianopoulos E, Cortes V, Rigotti A, Stepp MA, Van de Werf F, Carmeliet P, Pinto YM, Heymans S (2007) Increased expression of syndecan-1 protects against cardiac dilatation and dysfunction after myocardial infarction. Circulation 115(4):475–482. doi: 10.1161/CIRCULATIONAHA.106.644609 PubMedCrossRefGoogle Scholar
  147. 147.
    Imanaka-Yoshida K, Hiroe M, Nishikawa T, Ishiyama S, Shimojo T, Ohta Y, Sakakura T, Yoshida T (2001) Tenascin-C modulates adhesion of cardiomyocytes to extracellular matrix during tissue remodeling after myocardial infarction. Lab Investig 81(7):1015–1024PubMedCrossRefGoogle Scholar
  148. 148.
    Nishioka T, Onishi K, Shimojo N, Nagano Y, Matsusaka H, Ikeuchi M, Ide T, Tsutsui H, Hiroe M, Yoshida T, Imanaka-Yoshida K (2010) Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 298(3):H1072–H1078. doi: 10.1152/ajpheart.00255.2009 PubMedCrossRefGoogle Scholar
  149. 149.
    Oka T, Xu J, Kaiser RA, Melendez J, Hambleton M, Sargent MA, Lorts A, Brunskill EW, Dorn GW 2nd, Conway SJ, Aronow BJ, Robbins J, Molkentin JD (2007) Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ Res 101(3):313–321. doi: 10.1161/CIRCRESAHA.107.149047 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Schellings MW, Vanhoutte D, Swinnen M, Cleutjens JP, Debets J, van Leeuwen RE, d’Hooge J, Van de Werf F, Carmeliet P, Pinto YM, Sage EH, Heymans S (2009) Absence of SPARC results in increased cardiac rupture and dysfunction after acute myocardial infarction. J Exp Med 206(1):113–123. doi: 10.1084/jem.20081244 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Trueblood NA, Xie Z, Communal C, Sam F, Ngoy S, Liaw L, Jenkins AW, Wang J, Sawyer DB, Bing OH, Apstein CS, Colucci WS, Singh K (2001) Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 88(10):1080–1087PubMedCrossRefGoogle Scholar
  152. 152.
    Westermann D, Mersmann J, Melchior A, Freudenberger T, Petrik C, Schaefer L, Lullmann-Rauch R, Lettau O, Jacoby C, Schrader J, Brand-Herrmann SM, Young MF, Schultheiss HP, Levkau B, Baba HA, Unger T, Zacharowski K, Tschope C, Fischer JW (2008) Biglycan is required for adaptive remodeling after myocardial infarction. Circulation 117(10):1269–1276. doi: 10.1161/CIRCULATIONAHA.107.714147 PubMedCrossRefGoogle Scholar
  153. 153.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363. doi: 10.1038/nrm809 PubMedCrossRefGoogle Scholar
  154. 154.
    Daskalopoulos EP, Janssen BJ, Blankesteijn WM (2012) Myofibroblasts in the infarct area: concepts and challenges. Microsc Microanal 18(1):35–49. doi: 10.1017/S143192761101227X PubMedCrossRefGoogle Scholar
  155. 155.
    Turner NA, Warburton P, O’Regan DJ, Ball SG, Porter KE (2010) Modulatory effect of interleukin-1alpha on expression of structural matrix proteins, MMPs and TIMPs in human cardiac myofibroblasts: role of p38 MAP kinase. Matrix Biol 29(7):613–620. doi: 10.1016/j.matbio.2010.06.007 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Morishita N, Kusachi S, Yamasaki S, Kondo J, Tsuji T (1996) Sequential changes in laminin and type IV collagen in the infarct zone—immunohistochemical study in rat myocardial infarction. Jpn Circ J 60(2):108–114PubMedCrossRefGoogle Scholar
  157. 157.
    Shamhart PE, Meszaros JG (2010) Non-fibrillar collagens: key mediators of post-infarction cardiac remodeling? J Mol Cell Cardiol 48(3):530–537. doi: 10.1016/j.yjmcc.2009.06.017 PubMedCrossRefGoogle Scholar
  158. 158.
    Zhelev Z, Hyde C, Youngman E, Rogers M, Fleming S, Slade T, Coelho H, Jones-Hughes T, Nikolaou V (2015) Diagnostic accuracy of single baseline measurement of Elecsys Troponin T high-sensitive assay for diagnosis of acute myocardial infarction in emergency department: systematic review and meta-analysis. BMJ 350:h15. doi: 10.1136/bmj.h15 PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Jarolim P (2015) High sensitivity cardiac troponin assays in the clinical laboratories. Clin Chem Lab Med 53(5):635–652. doi: 10.1515/cclm-2014-0565 PubMedCrossRefGoogle Scholar
  160. 160.
    Wu AH (2015) Analytical validation of novel cardiac biomarkers used in clinical trials. Am Heart J 169(5):674–683. doi: 10.1016/j.ahj.2015.01.016 PubMedCrossRefGoogle Scholar
  161. 161.
    Deyell MW, Krahn AD, Goldberger JJ (2015) Sudden cardiac death risk stratification. Circ Res 116(12):1907–1918. doi: 10.1161/CIRCRESAHA.116.304493 PubMedCrossRefGoogle Scholar
  162. 162.
    Razzouk L, Fusaro M, Esquitin R (2012) Novel biomarkers for risk stratification and identification of life-threatening cardiovascular disease: troponin and beyond. Curr Cardiol Rev 8(2):109–115PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Alagona P Jr, Ahmad TA (2015) Cardiovascular disease risk assessment and prevention: current guidelines and limitations. Med Clin North Am 99(4):711–731. doi: 10.1016/j.mcna.2015.02.003 PubMedCrossRefGoogle Scholar
  164. 164.
    Rains MG, Laney CA, Bailey AL, Campbell CL (2014) Biomarkers of acute myocardial infarction in the elderly: troponin and beyond. Clin Interv Aging 9:1081–1090. doi: 10.2147/CIA.S31522 PubMedPubMedCentralGoogle Scholar
  165. 165.
    Hamm CW, Bassand JP, Agewall S, Bax J, Boersma E, Bueno H, Caso P, Dudek D, Gielen S, Huber K, Ohman M, Petrie MC, Sonntag F, Uva MS, Storey RF, Wijns W, Zahger D (2011) ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J 32(23):2999–3054. doi: 10.1093/eurheartj/ehr236 PubMedCrossRefGoogle Scholar
  166. 166.
    Body R, Carley S, McDowell G, Jaffe AS, France M, Cruickshank K, Wibberley C, Nuttall M, Mackway-Jones K (2011) Rapid exclusion of acute myocardial infarction in patients with undetectable troponin using a high-sensitivity assay. J Am Coll Cardiol 58(13):1332–1339. doi: 10.1016/j.jacc.2011.06.026 PubMedCrossRefGoogle Scholar
  167. 167.
    Daubert MA, Jeremias A (2010) The utility of troponin measurement to detect myocardial infarction: review of the current findings. Vasc Health Risk Manag 6:691–699PubMedPubMedCentralGoogle Scholar
  168. 168.
    Omland T, de Lemos JA, Sabatine MS, Christophi CA, Rice MM, Jablonski KA, Tjora S, Domanski MJ, Gersh BJ, Rouleau JL, Pfeffer MA, Braunwald E (2009) A sensitive cardiac troponin T assay in stable coronary artery disease. N Engl J Med 361(26):2538–2547. doi: 10.1056/NEJMoa0805299 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Reichlin T, Hochholzer W, Bassetti S, Steuer S, Stelzig C, Hartwiger S, Biedert S, Schaub N, Buerge C, Potocki M, Noveanu M, Breidthardt T, Twerenbold R, Winkler K, Bingisser R, Mueller C (2009) Early diagnosis of myocardial infarction with sensitive cardiac troponin assays. N Engl J Med 361(9):858–867. doi: 10.1056/NEJMoa0900428 PubMedCrossRefGoogle Scholar
  170. 170.
    Morgenthaler NG, Struck J, Alonso C, Bergmann A (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52(1):112–119. doi: 10.1373/clinchem.2005.060038 PubMedCrossRefGoogle Scholar
  171. 171.
    Reichlin T, Hochholzer W, Stelzig C, Laule K, Freidank H, Morgenthaler NG, Bergmann A, Potocki M, Noveanu M, Breidthardt T, Christ A, Boldanova T, Merki R, Schaub N, Bingisser R, Christ M, Mueller C (2009) Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol 54(1):60–68. doi: 10.1016/j.jacc.2009.01.076 PubMedCrossRefGoogle Scholar
  172. 172.
    Khan SQ, Dhillon OS, O’Brien RJ, Struck J, Quinn PA, Morgenthaler NG, Squire IB, Davies JE, Bergmann A, Ng LL (2007) C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation 115(16):2103–2110. doi: 10.1161/CIRCULATIONAHA.106.685503 PubMedCrossRefGoogle Scholar
  173. 173.
    Viswanathan K, Hall AS, Barth JH (2012) An evidence-based approach to the assessment of heart-type fatty acid binding protein in acute coronary syndrome. Clin Biochem Rev 33(1):3–11PubMedPubMedCentralGoogle Scholar
  174. 174.
    Ishii J, Ozaki Y, Lu J, Kitagawa F, Kuno T, Nakano T, Nakamura Y, Naruse H, Mori Y, Matsui S, Oshima H, Nomura M, Ezaki K, Hishida H (2005) Prognostic value of serum concentration of heart-type fatty acid-binding protein relative to cardiac troponin T on admission in the early hours of acute coronary syndrome. Clin Chem 51(8):1397–1404. doi: 10.1373/clinchem.2004.047662 PubMedCrossRefGoogle Scholar
  175. 175.
    McCann CJ, Glover BM, Menown IB, Moore MJ, McEneny J, Owens CG, Smith B, Sharpe PC, Young IS, Adgey JA (2008) Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T. Eur Heart J 29(23):2843–2850. doi: 10.1093/eurheartj/ehn363 PubMedCrossRefGoogle Scholar
  176. 176.
    Seino Y, Ogata K, Takano T, Ishii J, Hishida H, Morita H, Takeshita H, Takagi Y, Sugiyama H, Tanaka T, Kitaura Y (2003) Use of a whole blood rapid panel test for heart-type fatty acid-binding protein in patients with acute chest pain: comparison with rapid troponin T and myoglobin tests. Am J Med 115(3):185–190PubMedCrossRefGoogle Scholar
  177. 177.
    Viswanathan K, Kilcullen N, Morrell C, Thistlethwaite SJ, Sivananthan MU, Hassan TB, Barth JH, Hall AS (2010) Heart-type fatty acid-binding protein predicts long-term mortality and re-infarction in consecutive patients with suspected acute coronary syndrome who are troponin-negative. J Am Coll Cardiol 55(23):2590–2598. doi: 10.1016/j.jacc.2009.12.062 PubMedCrossRefGoogle Scholar
  178. 178.
    Morrow DA, Sabatine MS, Brennan ML, de Lemos JA, Murphy SA, Ruff CT, Rifai N, Cannon CP, Hazen SL (2008) Concurrent evaluation of novel cardiac biomarkers in acute coronary syndrome: myeloperoxidase and soluble CD40 ligand and the risk of recurrent ischaemic events in TACTICS-TIMI 18. Eur Heart J 29(9):1096–1102. doi: 10.1093/eurheartj/ehn071 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Nicholls SJ, Hazen SL (2005) Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol 25(6):1102–1111. doi: 10.1161/01.ATV.0000163262.83456.6d PubMedCrossRefGoogle Scholar
  180. 180.
    van der Velde AR, Meijers WC, de Boer RA (2014) Biomarkers for risk prediction in acute decompensated heart failure. Curr Heart Fail Rep. doi: 10.1007/s11897-014-0207-7 PubMedGoogle Scholar
  181. 181.
    Morrow DA, de Lemos JA, Sabatine MS, Murphy SA, Demopoulos LA, DiBattiste PM, McCabe CH, Gibson CM, Cannon CP, Braunwald E (2003) Evaluation of B-type natriuretic peptide for risk assessment in unstable angina/non-ST-elevation myocardial infarction: B-type natriuretic peptide and prognosis in TACTICS-TIMI 18. J Am Coll Cardiol 41(8):1264–1272PubMedCrossRefGoogle Scholar
  182. 182.
    Jernberg T, James S, Lindahl B, Stridsberg M, Venge P, Wallentin L (2004) NT-proBNP in unstable coronary artery disease—experiences from the FAST, GUSTO IV and FRISC II trials. Eur J Heart Fail 6(3):319–325. doi: 10.1016/j.ejheart.2004.01.007 PubMedCrossRefGoogle Scholar
  183. 183.
    Dasgupta A, Chow L, Tso G, Nazareno L (2003) Stability of NT-proBNP in serum specimens collected in Becton Dickinson Vacutainer (SST) tubes. Clin Chem 49(6 Pt 1):958–960PubMedCrossRefGoogle Scholar
  184. 184.
    Altara R, Gu Y, Struijker-Boudier H, Staessen J, Blankesteijn WM (2015) Circulating CXCL-9, -10 and -11 levels improve the discrimination of risk prediction models for left ventricular dysfunction. FASEB J 29(Suppl 1):46.2Google Scholar
  185. 185.
    Eggers KM, Kempf T, Allhoff T, Lindahl B, Wallentin L, Wollert KC (2008) Growth-differentiation factor-15 for early risk stratification in patients with acute chest pain. Eur Heart J 29(19):2327–2335. doi: 10.1093/eurheartj/ehn339 PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Wollert KC, Kempf T, Peter T, Olofsson S, James S, Johnston N, Lindahl B, Horn-Wichmann R, Brabant G, Simoons ML, Armstrong PW, Califf RM, Drexler H, Wallentin L (2007) Prognostic value of growth-differentiation factor-15 in patients with non-ST-elevation acute coronary syndrome. Circulation 115(8):962–971. doi: 10.1161/CIRCULATIONAHA.106.650846 PubMedCrossRefGoogle Scholar
  187. 187.
    Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J, Li K, Yu B, Li Z, Wang R, Wang L, Li Q, Wang N, Shan H, Yang B (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391(1):73–77. doi: 10.1016/j.bbrc.2009.11.005 PubMedCrossRefGoogle Scholar
  188. 188.
    D’Alessandra Y, Devanna P, Limana F, Straino S, Di Carlo A, Brambilla PG, Rubino M, Carena MC, Spazzafumo L, De Simone M, Micheli B, Biglioli P, Achilli F, Martelli F, Maggiolini S, Marenzi G, Pompilio G, Capogrossi MC (2010) Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31(22):2765–2773. doi: 10.1093/eurheartj/ehq167 PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Gidlof O, Andersson P, van der Pals J, Gotberg M, Erlinge D (2011) Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 118(4):217–226. doi: 10.1159/000328869 PubMedCrossRefGoogle Scholar
  190. 190.
    Li YQ, Zhang MF, Wen HY, Hu CL, Liu R, Wei HY, Ai CM, Wang G, Liao XX, Li X (2013) Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics (Sao Paulo) 68(1):75–80CrossRefGoogle Scholar
  191. 191.
    Olivieri F, Antonicelli R, Lorenzi M, D’Alessandra Y, Lazzarini R, Santini G, Spazzafumo L, Lisa R, La Sala L, Galeazzi R, Recchioni R, Testa R, Pompilio G, Capogrossi MC, Procopio AD (2013) Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol 167(2):531–536. doi: 10.1016/j.ijcard.2012.01.075 PubMedCrossRefGoogle Scholar
  192. 192.
    Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J, Qin YW, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666. doi: 10.1093/eurheartj/ehq013 PubMedCrossRefGoogle Scholar
  193. 193.
    Dinh W, Bansemir L, Futh R, Nickl W, Stasch JP, Coll-Barroso M, Lapp H, Bufe A, Wolfertz J, Scheffold T, Lankisch M (2009) Increased levels of laminin and collagen type VI may reflect early remodelling in patients with acute myocardial infarction. Acta Cardiol 64(3):329–334PubMedCrossRefGoogle Scholar
  194. 194.
    Sato A, Aonuma K, Imanaka-Yoshida K, Yoshida T, Isobe M, Kawase D, Kinoshita N, Yazaki Y, Hiroe M (2006) Serum tenascin-C might be a novel predictor of left ventricular remodeling and prognosis after acute myocardial infarction. J Am Coll Cardiol 47(11):2319–2325. doi: 10.1016/j.jacc.2006.03.033 PubMedCrossRefGoogle Scholar
  195. 195.
    Halade GV, Jin YF, Lindsey ML (2013) Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther 139(1):32–40. doi: 10.1016/j.pharmthera.2013.03.009 PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, Meyer J, Cambien F, Tiret L (2003) Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation 107(12):1579–1585. doi: 10.1161/01.CIR.0000058700.41738.12 PubMedCrossRefGoogle Scholar
  197. 197.
    Squire IB, Evans J, Ng LL, Loftus IM, Thompson MM (2004) Plasma MMP-9 and MMP-2 following acute myocardial infarction in man: correlation with echocardiographic and neurohumoral parameters of left ventricular dysfunction. J Cardiac Fail 10(4):328–333CrossRefGoogle Scholar
  198. 198.
    van den Borne SW, Cleutjens JP, Hanemaaijer R, Creemers EE, Smits JF, Daemen MJ, Blankesteijn WM (2009) Increased matrix metalloproteinase-8 and -9 activity in patients with infarct rupture after myocardial infarction. Cardiovasc Pathol 18(1):37–43. doi: 10.1016/j.carpath.2007.12.012 PubMedCrossRefGoogle Scholar
  199. 199.
    Dobaczewski M, Bujak M, Zymek P, Ren G, Entman ML, Frangogiannis NG (2006) Extracellular matrix remodeling in canine and mouse myocardial infarcts. Cell Tissue Res 324(3):475–488. doi: 10.1007/s00441-005-0144-6 PubMedCrossRefGoogle Scholar
  200. 200.
    Luther DJ, Thodeti CK, Shamhart PE, Adapala RK, Hodnichak C, Weihrauch D, Bonaldo P, Chilian WM, Meszaros JG (2012) Absence of type VI collagen paradoxically improves cardiac function, structure, and remodeling after myocardial infarction. Circ Res 110(6):851–856. doi: 10.1161/CIRCRESAHA.111.252734 PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Casscells W, Kimura H, Sanchez JA, Yu ZX, Ferrans VJ (1990) Immunohistochemical study of fibronectin in experimental myocardial infarction. Am J Pathol 137(4):801–810PubMedPubMedCentralGoogle Scholar
  202. 202.
    Stanton LW, Garrard LJ, Damm D, Garrick BL, Lam A, Kapoun AM, Zheng Q, Protter AA, Schreiner GF, White RT (2000) Altered patterns of gene expression in response to myocardial infarction. Circ Res 86(9):939–945PubMedCrossRefGoogle Scholar
  203. 203.
    Komatsubara I, Murakami T, Kusachi S, Nakamura K, Hirohata S, Hayashi J, Takemoto S, Suezawa C, Ninomiya Y, Shiratori Y (2003) Spatially and temporally different expression of osteonectin and osteopontin in the infarct zone of experimentally induced myocardial infarction in rats. Cardiovasc Pathol 12(4):186–194PubMedCrossRefGoogle Scholar
  204. 204.
    Krause SW, Rehli M, Kreutz M, Schwarzfischer L, Paulauskis JD, Andreesen R (1996) Differential screening identifies genetic markers of monocyte to macrophage maturation. J Leukoc Biol 60(4):540–545PubMedGoogle Scholar
  205. 205.
    Li G, Oparil S, Sanders JM, Zhang L, Dai M, Chen LB, Conway SJ, McNamara CA, Sarembock IJ (2006) Phosphatidylinositol-3-kinase signaling mediates vascular smooth muscle cell expression of periostin in vivo and in vitro. Atherosclerosis 188(2):292–300. doi: 10.1016/j.atherosclerosis.2005.11.002 PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Lindner V, Wang Q, Conley BA, Friesel RE, Vary CP (2005) Vascular injury induces expression of periostin: implications for vascular cell differentiation and migration. Arterioscler Thromb Vasc Biol 25(1):77–83. doi: 10.1161/01.ATV.0000149141.81230.c6 PubMedGoogle Scholar
  207. 207.
    Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M, Saito M, Fukuda K, Nishiyama T, Kitajima S, Saga Y, Fukayama M, Sata M, Kudo A (2008) Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 205(2):295–303. doi: 10.1084/jem.20071297 PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Wen W, Chau E, Jackson-Boeters L, Elliott C, Daley TD, Hamilton DW (2010) TGF-ss1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89(12):1439–1443. doi: 10.1177/0022034510378684 PubMedCrossRefGoogle Scholar
  209. 209.
    Raugi GJ, Mumby SM, Abbott-Brown D, Bornstein P (1982) Thrombospondin: synthesis and secretion by cells in culture. J Cell Biol 95(1):351–354PubMedCrossRefGoogle Scholar
  210. 210.
    Sezaki S, Hirohata S, Iwabu A, Nakamura K, Toeda K, Miyoshi T, Yamawaki H, Demircan K, Kusachi S, Shiratori Y, Ninomiya Y (2005) Thrombospondin-1 is induced in rat myocardial infarction and its induction is accelerated by ischemia/reperfusion. Exp Biol Med (Maywood) 230(9):621–630Google Scholar
  211. 211.
    Willems IE, Arends JW, Daemen MJ (1996) Tenascin and fibronectin expression in healing human myocardial scars. J Pathol 179(3):321–325. doi: 10.1002/(SICI)1096-9896(199607)179:3<321:AID-PATH555>3.0.CO;2-8 PubMedCrossRefGoogle Scholar
  212. 212.
    Doi M, Kusachi S, Murakami T, Ninomiya Y, Murakami M, Nakahama M, Takeda K, Komatsubara I, Naito I, Tsuji T (2000) Time-dependent changes of decorin in the infarct zone after experimentally induced myocardial infarction in rats: comparison with biglycan. Pathol Res Pract 196(1):23–33. doi: 10.1016/S0344-0338(00)80018-7 PubMedCrossRefGoogle Scholar
  213. 213.
    Weis SM, Zimmerman SD, Shah M, Covell JW, Omens JH, Ross J Jr, Dalton N, Jones Y, Reed CC, Iozzo RV, McCulloch AD (2005) A role for decorin in the remodeling of myocardial infarction. Matrix Biol 24(4):313–324. doi: 10.1016/j.matbio.2005.05.003 PubMedCrossRefGoogle Scholar
  214. 214.
    Li J, Brown LF, Laham RJ, Volk R, Simons M (1997) Macrophage-dependent regulation of syndecan gene expression. Circ Res 81(5):785–796PubMedCrossRefGoogle Scholar
  215. 215.
    Endo C, Kusachi S, Ninomiya Y, Yamamoto K, Murakami M, Murakami T, Shinji T, Koide N, Kondo J, Tsuji T (1997) Time-dependent increases in syndecan-1 and fibroglycan messenger RNA expression in the infarct zone after experimentally induced myocardial infarction in rats. Coron Artery Dis 8(3–4):155–161PubMedCrossRefGoogle Scholar
  216. 216.
    Xie J, Wang J, Li R, Dai Q, Yong Y, Zong B, Xu Y, Li E, Ferro A, Xu B (2012) Syndecan-4 over-expression preserves cardiac function in a rat model of myocardial infarction. J Mol Cell Cardiol 53(2):250–258. doi: 10.1016/j.yjmcc.2012.04.014 PubMedCrossRefGoogle Scholar
  217. 217.
    Yamamoto K, Kusachi S, Ninomiya Y, Murakami M, Doi M, Takeda K, Shinji T, Higashi T, Koide N, Tsuji T (1998) Increase in the expression of biglycan mRNA expression co-localized closely with that of type I collagen mRNA in the infarct zone after experimentally-induced myocardial infarction in rats. J Mol Cell Cardiol 30(9):1749–1756. doi: 10.1006/jmcc.1998.0737 PubMedCrossRefGoogle Scholar
  218. 218.
    Melchior-Becker A, Dai G, Ding Z, Schafer L, Schrader J, Young MF, Fischer JW (2011) Deficiency of biglycan causes cardiac fibroblasts to differentiate into a myofibroblast phenotype. J Biol Chem 286(19):17365–17375. doi: 10.1074/jbc.M110.192682 PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Visse R, Nagase H (2003) Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92(8):827–839. doi: 10.1161/01.RES.0000070112.80711.3D PubMedCrossRefGoogle Scholar
  220. 220.
    Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27(6):1281–1292PubMedCrossRefGoogle Scholar
  221. 221.
    Papadopoulos DP, Moyssakis I, Makris TK, Poulakou M, Stavroulakis G, Perrea D, Votteas VE (2005) Clinical significance of matrix metalloproteinases activity in acute myocardial infarction. Eur Cytokine Netw 16(2):152–160PubMedGoogle Scholar
  222. 222.
    Danielsen CC, Wiggers H, Andersen HR (1998) Increased amounts of collagenase and gelatinase in porcine myocardium following ischemia and reperfusion. J Mol Cell Cardiol 30(7):1431–1442PubMedCrossRefGoogle Scholar
  223. 223.
    Tyagi SC, Cleutjens JP (1996) Myocardial collagenase: purification and structural characterization. Can J Cardiol 12(2):165–171PubMedGoogle Scholar
  224. 224.
    Tyagi SC, Kumar SG, Banks J, Fortson W (1995) Co-expression of tissue inhibitor and matrix metalloproteinase in myocardium. J Mol Cell Cardiol 27(10):2177–2189PubMedCrossRefGoogle Scholar
  225. 225.
    Chandler S, Coates R, Gearing A, Lury J, Wells G, Bone E (1995) Matrix metalloproteinases degrade myelin basic protein. Neurosci Lett 201(3):223–226PubMedCrossRefGoogle Scholar
  226. 226.
    Fukai F, Ohtaki M, Fujii N, Yajima H, Ishii T, Nishizawa Y, Miyazaki K, Katayama T (1995) Release of biological activities from quiescent fibronectin by a conformational change and limited proteolysis by matrix metalloproteinases. Biochemistry 34(36):11453–11459PubMedCrossRefGoogle Scholar
  227. 227.
    Matsumura S, Iwanaga S, Mochizuki S, Okamoto H, Ogawa S, Okada Y (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Investig 115(3):599–609. doi: 10.1172/JCI22304 PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Chow AK, Cena J, Schulz R (2007) Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 152(2):189–205. doi: 10.1038/sj.bjp.0707344 PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Mukherjee R, Mingoia JT, Bruce JA, Austin JS, Stroud RE, Escobar GP, McClister DM Jr, Allen CM, Alfonso-Jaume MA, Fini ME, Lovett DH, Spinale FG (2006) Selective spatiotemporal induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 transcription after myocardial infarction. Am J Physiol Heart Circ Physiol 291(5):H2216–H2228. doi: 10.1152/ajpheart.01343.2005 PubMedCrossRefGoogle Scholar
  230. 230.
    Romanic AM, Burns-Kurtis CL, Gout B, Berrebi-Bertrand I, Ohlstein EH (2001) Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci 68(7):799–814PubMedCrossRefGoogle Scholar
  231. 231.
    Chin JR, Murphy G, Werb Z (1985) Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. J Biol Chem 260(22):12367–12376PubMedGoogle Scholar
  232. 232.
    Ito A, Mukaiyama A, Itoh Y, Nagase H, Thogersen IB, Enghild JJ, Sasaguri Y, Mori Y (1996) Degradation of interleukin 1beta by matrix metalloproteinases. J Biol Chem 271(25):14657–14660PubMedCrossRefGoogle Scholar
  233. 233.
    Kelly D, Khan S, Cockerill G, Ng LL, Thompson M, Samani NJ, Squire IB (2008) Circulating stromelysin-1 (MMP-3): a novel predictor of LV dysfunction, remodelling and all-cause mortality after acute myocardial infarction. Eur J Heart Fail 10(2):133–139. doi: 10.1016/j.ejheart.2007.12.009 PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Lu L, Zhang JQ, Ramires FJ, Sun Y (2004) Molecular and cellular events at the site of myocardial infarction: from the perspective of rebuilding myocardial tissue. Biochem Biophys Res Commun 320(3):907–913. doi: 10.1016/j.bbrc.2004.06.034 PubMedCrossRefGoogle Scholar
  235. 235.
    Sasaki T, Gohring W, Mann K, Maurer P, Hohenester E, Knauper V, Murphy G, Timpl R (1997) Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J Biol Chem 272(14):9237–9243PubMedCrossRefGoogle Scholar
  236. 236.
    Johnson LL, Bornemeier DA, Janowicz JA, Chen J, Pavlovsky AG, Ortwine DF (1999) Effect of species differences on stromelysin-1 (MMP-3) inhibitor potency. An explanation of inhibitor selectivity using homology modeling and chimeric proteins. J Biol Chem 274(35):24881–24887PubMedCrossRefGoogle Scholar
  237. 237.
    Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ 3rd, Spinale FG (1998) Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97(17):1708–1715PubMedCrossRefGoogle Scholar
  238. 238.
    Chiao YA, Zamilpa R, Lopez EF, Dai Q, Escobar GP, Hakala K, Weintraub ST, Lindsey ML (2010) In vivo matrix metalloproteinase-7 substrates identified in the left ventricle post-myocardial infarction using proteomics. J Proteome Res 9(5):2649–2657. doi: 10.1021/pr100147r PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Gearing AJ, Beckett P, Christodoulou M, Churchill M, Clements JM, Crimmin M, Davidson AH, Drummond AH, Galloway WA, Gilbert R et al (1995) Matrix metalloproteinases and processing of pro-TNF-alpha. J Leukoc Biol 57(5):774–777PubMedGoogle Scholar
  240. 240.
    Nguyen Q, Murphy G, Hughes CE, Mort JS, Roughley PJ (1993) Matrix metalloproteinases cleave at two distinct sites on human cartilage link protein. Biochem J 295(Pt 2):595–598PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Wilson EM, Moainie SL, Baskin JM, Lowry AS, Deschamps AM, Mukherjee R, Guy TS, St John-Sutton MG, Gorman JH 3rd, Edmunds LH Jr, Gorman RC, Spinale FG (2003) Region- and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation 107(22):2857–2863. doi: 10.1161/01.CIR.0000068375.40887.FA PubMedCrossRefGoogle Scholar
  242. 242.
    Lin M, Jackson P, Tester AM, Diaconu E, Overall CM, Blalock JE, Pearlman E (2008) Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide Pro-Gly-Pro. Am J Pathol 173(1):144–153. doi: 10.2353/ajpath.2008.080081 PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Peterson JT, Li H, Dillon L, Bryant JW (2000) Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res 46(2):307–315PubMedCrossRefGoogle Scholar
  244. 244.
    Felkin LE, Birks EJ, George R, Wong S, Khaghani A, Yacoub MH, Barton PJ (2006) A quantitative gene expression profile of matrix metalloproteinases (MMPS) and their inhibitors (TIMPS) in the myocardium of patients with deteriorating heart failure requiring left ventricular assist device support. J Heart Lung Transplant 25(12):1413–1419. doi: 10.1016/j.healun.2006.09.006 PubMedCrossRefGoogle Scholar
  245. 245.
    Kossmehl P, Schonberger J, Shakibaei M, Faramarzi S, Kurth E, Habighorst B, von Bauer R, Wehland M, Kreutz R, Infanger M, Schulze-Tanzil G, Paul M, Grimm D (2005) Increase of fibronectin and osteopontin in porcine hearts following ischemia and reperfusion. J Mol Med (Berl) 83(8):626–637. doi: 10.1007/s00109-005-0642-8 CrossRefGoogle Scholar
  246. 246.
    Gijbels K, Proost P, Masure S, Carton H, Billiau A, Opdenakker G (1993) Gelatinase B is present in the cerebrospinal fluid during experimental autoimmune encephalomyelitis and cleaves myelin basic protein. J Neurosci Res 36(4):432–440. doi: 10.1002/jnr.490360409 PubMedCrossRefGoogle Scholar
  247. 247.
    Imai K, Shikata H, Okada Y (1995) Degradation of vitronectin by matrix metalloproteinases-1, -2, -3, -7 and -9. FEBS Lett 369(2–3):249–251PubMedCrossRefGoogle Scholar
  248. 248.
    Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5(10):1135–1142. doi: 10.1038/13459 PubMedCrossRefGoogle Scholar
  249. 249.
    Tao ZY, Cavasin MA, Yang F, Liu YH, Yang XP (2004) Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. Life Sci 74(12):1561–1572PubMedCrossRefGoogle Scholar
  250. 250.
    Knauper V, Cowell S, Smith B, Lopez-Otin C, O’Shea M, Morris H, Zardi L, Murphy G (1997) The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem 272(12):7608–7616PubMedCrossRefGoogle Scholar
  251. 251.
    Lemaitre V, Jungbluth A, Eeckhout Y (1997) The recombinant catalytic domain of mouse collagenase-3 depolymerizes type I collagen by cleaving its aminotelopeptides. Biochem Biophys Res Commun 230(1):202–205PubMedCrossRefGoogle Scholar
  252. 252.
    Welgus HG, Kobayashi DK, Jeffrey JJ (1983) The collagen substrate specificity of rat uterus collagenase. J Biol Chem 258(23):14162–14165PubMedGoogle Scholar
  253. 253.
    Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem 271(48):30375–30380PubMedCrossRefGoogle Scholar
  254. 254.
    Coker ML, Jolly JR, Joffs C, Etoh T, Holder JR, Bond BR, Spinale FG (2001) Matrix metalloproteinase expression and activity in isolated myocytes after neurohormonal stimulation. Am J Physiol Heart Circ Physiol 281(2):H543–H551PubMedGoogle Scholar
  255. 255.
    d’Ortho MP, Will H, Atkinson S, Butler G, Messent A, Gavrilovic J, Smith B, Timpl R, Zardi L, Murphy G (1997) Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Biochem 250(3):751–757PubMedCrossRefGoogle Scholar
  256. 256.
    Imai K, Ohuchi E, Aoki T, Nomura H, Fujii Y, Sato H, Seiki M, Okada Y (1996) Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res 56(12):2707–2710PubMedGoogle Scholar
  257. 257.
    Ohuchi E, Imai K, Fujii Y, Sato H, Seiki M, Okada Y (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem 272(4):2446–2451PubMedCrossRefGoogle Scholar
  258. 258.
    Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90(5):520–530PubMedCrossRefGoogle Scholar
  259. 259.
    Lohi J, Wilson CL, Roby JD, Parks WC (2001) Epilysin, a novel human matrix metalloproteinase (MMP-28) expressed in testis and keratinocytes and in response to injury. J Biol Chem 276(13):10134–10144. doi: 10.1074/jbc.M001599200 PubMedCrossRefGoogle Scholar
  260. 260.
    Manicone AM, Birkland TP, Lin M, Betsuyaku T, van Rooijen N, Lohi J, Keski-Oja J, Wang Y, Skerrett SJ, Parks WC (2009) Epilysin (MMP-28) restrains early macrophage recruitment in Pseudomonas aeruginosa pneumonia. J Immunol 182(6):3866–3876. doi: 10.4049/jimmunol.0713949 PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Werner SR, Mescher AL, Neff AW, King MW, Chaturvedi S, Duffin KL, Harty MW, Smith RC (2007) Neural MMP-28 expression precedes myelination during development and peripheral nerve repair. Dev Dyn 236(10):2852–2864. doi: 10.1002/dvdy.21301 PubMedCrossRefGoogle Scholar
  262. 262.
    Ma Y, Halade GV, Zhang J, Ramirez TA, Levin D, Voorhees A, Jin YF, Han HC, Manicone AM, Lindsey ML (2013) Matrix metalloproteinase-28 deletion exacerbates cardiac dysfunction and rupture after myocardial infarction in mice by inhibiting M2 macrophage activation. Circ Res 112(4):675–688. doi: 10.1161/CIRCRESAHA.111.300502 PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Wollert KC, Kempf T, Lagerqvist B, Lindahl B, Olofsson S, Allhoff T, Peter T, Siegbahn A, Venge P, Drexler H, Wallentin L (2007) Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome. Circulation 116(14):1540–1548. doi: 10.1161/CIRCULATIONAHA.107.697714 PubMedCrossRefGoogle Scholar
  264. 264.
    Kempf T, von Haehling S, Peter T, Allhoff T, Cicoira M, Doehner W, Ponikowski P, Filippatos GS, Rozentryt P, Drexler H, Anker SD, Wollert KC (2007) Prognostic utility of growth differentiation factor-15 in patients with chronic heart failure. J Am Coll Cardiol 50(11):1054–1060. doi: 10.1016/j.jacc.2007.04.091 PubMedCrossRefGoogle Scholar
  265. 265.
    Zhao CH, Cheng GC, He RL, Hong Y, Wan QL, Wang ZZ, Pan ZY (2015) Analysis and clinical significance of microRNA-499 expression levels in serum of patients with acute myocardial infarction. Genet Mol Res 14(2):4027–4034. doi: 10.4238/2015.April.27.17 PubMedCrossRefGoogle Scholar
  266. 266.
    Reddy AM, Zheng Y, Jagadeeswaran G, Macmil SL, Graham WB, Roe BA, Desilva U, Zhang W, Sunkar R (2009) Cloning, characterization and expression analysis of porcine microRNAs. BMC Genom 10:65. doi: 10.1186/1471-2164-10-65 CrossRefGoogle Scholar
  267. 267.
    Kakoti A, Goswami P (2013) Heart type fatty acid binding protein: structure, function and biosensing applications for early detection of myocardial infarction. Biosens Bioelectron 43:400–411. doi: 10.1016/j.bios.2012.12.057 PubMedCrossRefGoogle Scholar
  268. 268.
    Alhadi HA, Fox KA (2004) Do we need additional markers of myocyte necrosis: the potential value of heart fatty-acid-binding protein. QJM 97(4):187–198PubMedCrossRefGoogle Scholar
  269. 269.
    Glatz JF, van der Vusse GJ, Simoons ML, Kragten JA, van Dieijen-Visser MP, Hermens WT (1998) Fatty acid-binding protein and the early detection of acute myocardial infarction. Clin Chim Acta 272(1):87–92PubMedCrossRefGoogle Scholar
  270. 270.
    Glatz JF, Kleine AH, van Nieuwenhoven FA, Hermens WT, van Dieijen-Visser MP, van der Vusse GJ (1994) Fatty-acid-binding protein as a plasma marker for the estimation of myocardial infarct size in humans. Br Heart J 71(2):135–140PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Goldmann BU, Rudolph V, Rudolph TK, Holle AK, Hillebrandt M, Meinertz T, Baldus S (2009) Neutrophil activation precedes myocardial injury in patients with acute myocardial infarction. Free Radic Biol Med 47(1):79–83. doi: 10.1016/j.freeradbiomed.2009.04.004 PubMedCrossRefGoogle Scholar
  272. 272.
    Imanaka-Yoshida K, Hiroe M, Yoshida T (2004) Interaction between cell and extracellular matrix in heart disease: multiple roles of tenascin-C in tissue remodeling. Histol Histopathol 19(2):517–525PubMedGoogle Scholar
  273. 273.
    Lin S, Yokoyama H, Rac VE, Brooks SC (2012) Novel biomarkers in diagnosing cardiac ischemia in the emergency department: a systematic review. Resuscitation 83(6):684–691. doi: 10.1016/j.resuscitation.2011.12.015 PubMedCrossRefGoogle Scholar
  274. 274.
    Morita E, Yasue H, Yoshimura M, Ogawa H, Jougasaki M, Matsumura T, Mukoyama M, Nakao K (1993) Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation 88(1):82–91PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Raffaele Altara
    • 1
    • 2
  • Marco Manca
    • 3
  • Ramzi Sabra
    • 4
  • Assaad A. Eid
    • 5
  • George W. Booz
    • 2
  • Fouad A. Zouein
    • 2
    • 4
  1. 1.Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonUSA
  2. 2.Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonUSA
  3. 3.DG-DI, Medical ApplicationsCERNGenevaSwitzerland
  4. 4.Department of Pharmacology and Toxicology, Faculty of MedicineAmerican University of BeirutBeirutLebanon
  5. 5.Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of MedicineAmerican University of BeirutBeirutLebanon

Personalised recommendations