Heart Failure Reviews

, Volume 20, Issue 1, pp 25–38 | Cite as

Role of interleukin-6 in regulation of immune responses to remodeling after myocardial infarction

  • Mingyuan Huang
  • Du Yang
  • Meixiang Xiang
  • Jianan Wang


Myocardial remodeling following myocardial infarction (MI) is emerging as key causes of chronic infarct mortality. Interleukin-6 is a classic pro-inflammatory cytokine needed to mount an effective immune response. It seems that interleukin-6 acts as an important role in the dynamic and superbly orchestrated process of innate immunity after MI. Interleukin-6 timely suppresses of innate immune signals to prevent the catastrophic consequences of uncontrolled inflammation on cardiac geometry and function, and thus tunes myocardial remodeling. A comprehensive understanding of biological processes of interleukin-6 in innate immunity leading to inflammatory response and disease-related ventricular remodeling is helpful to find the solution of chronic heart failure. To accomplish this, we reviewed the articles of interleukin-6 regard to inflammation, innate immunity, and cardiac remodeling. This review focuses on the role of interleukin-6 that dominates cell-mediated immunity, especially on neutrophils, monocytes, macrophages, and fibroblasts. In addition, we will also briefly discuss other inflammatory cytokines involved in this process within the paper.


Interleukin-6 Ventricular remodeling Immunity Inflammation 



We thank Kunshi Yang for editing the figures. This study was supported by grants from the National Natural Science Foundation of China to Xiang Meixiang (No.81270127), and by National Science and Technology Major Project of China to Wang Jianan (No.2011ZX09302-002-02).

Conflict of interest



  1. 1.
    Widimsky P, Wijns W, Fajadet J, de Belder M, Knot J, Aaberge L, Andrikopoulos G, Baz JA, Betriu A, Claeys M, Danchin N, Djambazov S et al (2010) Reperfusion therapy for ST elevation acute myocardial infarction in Europe: description of the current situation in 30 countries. Eur Heart J 31:943–957PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91:988–998PubMedCrossRefGoogle Scholar
  3. 3.
    Maskrey BH, Megson IL, Whitfield PD, Rossi AG (2011) Mechanisms of resolution of inflammation: a focus on cardiovascular disease. Arterioscler Thromb Vasc Biol 31:1001–1006PubMedCrossRefGoogle Scholar
  4. 4.
    Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58:88–111PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, Libby P, Weissleder R, Pittet MJ (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Anzai A, Anzai T, Nagai S, Maekawa Y, Naito K, Kaneko H, Sugano Y, Takahashi T, Abe H, Mochizuki S, Sano M, Yoshikawa T et al (2012) Regulatory role of dendritic cells in postinfarction healing and left ventricular remodeling. Circulation 125:1234–1245PubMedCrossRefGoogle Scholar
  7. 7.
    Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, Bauersachs J, Ertl G, Kerkau T, Frantz S (2012) Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125:1652–1663PubMedCrossRefGoogle Scholar
  8. 8.
    Frangogiannis NG, Lindsey ML, Michael LH, Youker KA, Bressler RB, Mendoza LH, Spengler RN, Smith CW, Entman ML (1998) Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98:699–710PubMedCrossRefGoogle Scholar
  9. 9.
    Kishimoto T, Akira S, Taga T (1992) Interleukin-6 and its receptor: a paradigm for cytokines. Science 258:593–597PubMedCrossRefGoogle Scholar
  10. 10.
    Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A et al (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73–76PubMedCrossRefGoogle Scholar
  11. 11.
    Fredj S, Bescond J, Louault C, Delwail A, Lecron JC, Potreau D (2005) Role of interleukin-6 in cardiomyocyte/cardiac fibroblast interactions during myocyte hypertrophy and fibroblast proliferation. J Cell Physiol 204:428–436PubMedCrossRefGoogle Scholar
  12. 12.
    Tsutamoto T, Hisanaga T, Wada A, Maeda K, Ohnishi M, Fukai D, Mabuchi N, Sawaki M, Kinoshita M (1998) Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 31:391–398PubMedCrossRefGoogle Scholar
  13. 13.
    van den Borne SW, van de Schans VA, Strzelecka AE, Vervoort-Peters HT, Lijnen PM, Cleutjens JP, Smits JF, Daemen MJ, Janssen BJ, Blankesteijn WM (2009) Mouse strain determines the outcome of wound healing after myocardial infarction. Cardiovasc Res 84:273–282PubMedCrossRefGoogle Scholar
  14. 14.
    Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, Achong MK (1998) IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Investig 101:311–320PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Fredj S, Bescond J, Louault C, Potreau D (2005) Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. J Cell Physiol 202:891–899PubMedCrossRefGoogle Scholar
  16. 16.
    Sano M, Fukuda K, Kodama H, Pan J, Saito M, Matsuzaki J, Takahashi T, Makino S, Kato T, Ogawa S (2000) Interleukin-6 family of cytokines mediate angiotensin II-induced cardiac hypertrophy in rodent cardiomyocytes. J Biol Chem 275:29717–29723PubMedCrossRefGoogle Scholar
  17. 17.
    Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa K, Forster O, Quint A, Landmesser U, Doerries C, Luchtefeld M, Poli V et al (2007) A cathepsin D-cleaved 16 kDa form of prolactin mediates postpartum cardiomyopathy. Cell 128:589–600PubMedCrossRefGoogle Scholar
  18. 18.
    Hilfiker-Kleiner D, Hilfiker A, Fuchs M, Kaminski K, Schaefer A, Schieffer B, Hillmer A, Schmiedl A, Ding Z, Podewski E, Podewski E, Poli V et al (2004) Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ Res 95:187–195PubMedCrossRefGoogle Scholar
  19. 19.
    Hilfiker-Kleiner D, Shukla P, Klein G, Schaefer A, Stapel B, Hoch M, Muller W, Scherr M, Theilmeier G, Ernst M, Hilfiker A, Drexler H (2010) Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation 122:145–155PubMedCrossRefGoogle Scholar
  20. 20.
    Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489PubMedCrossRefGoogle Scholar
  22. 22.
    Soehnlein O, Weber C, Lindbom L (2009) Neutrophil granule proteins tune monocytic cell function. Trends Immunol 30:538–546PubMedCrossRefGoogle Scholar
  23. 23.
    Quercioli A, Mach F, Bertolotto M, Lenglet S, Vuilleumier N, Galan K, Pagano S, Braunersreuther V, Pelli G, Pistoia V, Bianchi G, Cittadini G et al (2012) Receptor activator of NF-kappaB ligand (RANKL) increases the release of neutrophil products associated with coronary vulnerability. Thromb Haemost 107:124–139PubMedCrossRefGoogle Scholar
  24. 24.
    Soehnlein O, Kai-Larsen Y, Frithiof R, Sorensen OE, Kenne E, Scharffetter-Kochanek K, Eriksson EE, Herwald H, Agerberth B, Lindbom L (2008) Neutrophil primary granule proteins HBP and HNP1-3 boost bacterial phagocytosis by human and murine macrophages. J Clin Investig 118:3491–3502PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herwald H, Bidzhekov K, Rottenberg ME, Weber C, Lindbom L (2008) Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112:1461–1471PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439PubMedCrossRefGoogle Scholar
  27. 27.
    Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339:161–166PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Furman MI, Becker RC, Yarzebski J, Savegeau J, Gore JM, Goldberg RJ (1996) Effect of elevated leukocyte count on in-hospital mortality following acute myocardial infarction. Am J Cardiol 78:945–948PubMedCrossRefGoogle Scholar
  29. 29.
    Barron HV, Harr SD, Radford MJ, Wang Y, Krumholz HM (2001) The association between white blood cell count and acute myocardial infarction mortality in patients ≥65 years of age: findings from the cooperative cardiovascular project. J Am Coll Cardiol 38:1654–1661PubMedCrossRefGoogle Scholar
  30. 30.
    Meissner J, Irfan A, Twerenbold R, Mueller S, Reiter M, Haaf P, Reichlin T, Schaub N, Winkler K, Pfister O, Heinisch C, Mueller C (2011) Use of neutrophil count in early diagnosis and risk stratification of AMI. Am J Med 124:534–542PubMedCrossRefGoogle Scholar
  31. 31.
    Kolpakov MA, Seqqat R, Rafiq K, Xi H, Margulies KB, Libonati JR, Powel P, Houser SR, Dell’italia LJ, Sabri A (2009) Pleiotropic effects of neutrophils on myocyte apoptosis and left ventricular remodeling during early volume overload. J Mol Cell Cardiol 47:634–645PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Bratton DL, Henson PM (2011) Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol 32:350–357PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini W, van Hinsbergh V, Sozzani S, Bussolino F, Poli V et al (1997) Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6:315–325PubMedCrossRefGoogle Scholar
  34. 34.
    Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, Rose-John S, Fuller GM, Topley N, Jones SA (2001) Il-6 and its soluble receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflammation. Immunity 14:705–714PubMedCrossRefGoogle Scholar
  35. 35.
    Chalaris A, Rabe B, Paliga K, Lange H, Laskay T, Fielding CA, Jones SA, Rose-John S, Scheller J (2007) Apoptosis is a natural stimulus of IL6R shedding and contributes to the proinflammatory trans-signaling function of neutrophils. Blood 110:1748–1755PubMedCrossRefGoogle Scholar
  36. 36.
    El-Adawi H, Deng L, Tramontano A, Smith S, Mascareno E, Ganguly K, Castillo R, El-Sherif N (2003) The functional role of the JAK-STAT pathway in post-infarction remodeling. Cardiovasc Res 57:129–138PubMedCrossRefGoogle Scholar
  37. 37.
    Youker K, Smith CW, Anderson DC, Miller D, Michael LH, Rossen RD, Entman ML (1992) Neutrophil adherence to isolated adult cardiac myocytes. Induction by cardiac lymph collected during ischemia and reperfusion. J Clin Investig 89:602–609PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kukielka GL, Smith CW, Manning AM, Youker KA, Michael LH, Entman ML (1995) Induction of interleukin-6 synthesis in the myocardium. Potential role in postreperfusion inflammatory injury. Circulation 92:1866–1875PubMedCrossRefGoogle Scholar
  39. 39.
    Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T, Hirano T, Kishimoto T (1989) Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58:573–581PubMedCrossRefGoogle Scholar
  40. 40.
    McLoughlin RM, Witowski J, Robson RL, Wilkinson TS, Hurst SM, Williams AS, Williams JD, Rose-John S, Jones SA, Topley N (2003) Interplay between IFN-gamma and IL-6 signaling governs neutrophil trafficking and apoptosis during acute inflammation. J Clin Investig 112:598–607PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Ganeshan K, Johnston LK, Bryce PJ (2013) TGF-beta1 limits the onset of innate lung inflammation by promoting mast cell-derived IL-6. J Immunol 190:5731–5738PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Kaplanski G, Marin V, Montero-Julian F, Mantovani A, Farnarier C (2003) IL-6: a regulator of the transition from neutrophil to monocyte recruitment during inflammation. Trends Immunol 24:25–29PubMedCrossRefGoogle Scholar
  43. 43.
    Duffin R, Leitch AE, Fox S, Haslett C, Rossi AG (2010) Targeting granulocyte apoptosis: mechanisms, models, and therapies. Immunol Rev 236:28–40PubMedCrossRefGoogle Scholar
  44. 44.
    Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C, Cosmi L, Lunardi C, Annunziato F, Romagnani S, Cassatella MA (2010) Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115:335–343PubMedCrossRefGoogle Scholar
  45. 45.
    Brereton CF, Blander JM (2011) The unexpected link between infection-induced apoptosis and a TH17 immune response. J Leukoc Biol 89:565–576PubMedCrossRefGoogle Scholar
  46. 46.
    Szardien S, Nef HM, Voss S, Troidl C, Liebetrau C, Hoffmann J, Rauch M, Mayer K, Kimmich K, Rolf A, Rixe J, Troidl K et al (2012) Regression of cardiac hypertrophy by granulocyte colony-stimulating factor-stimulated interleukin-1beta synthesis. Eur Heart J 33:595–605PubMedCrossRefGoogle Scholar
  47. 47.
    Altznauer F, Martinelli S, Yousefi S, Thurig C, Schmid I, Conway EM, Schoni MH, Vogt P, Mueller C, Fey MF, Zangemeister-Wittke U, Simon HU (2004) Inflammation-associated cell cycle-independent block of apoptosis by survivin in terminally differentiated neutrophils. J Exp Med 199:1343–1354PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Harada M, Qin Y, Takano H, Minamino T, Zou Y, Toko H, Ohtsuka M, Matsuura K, Sano M, Nishi J, Iwanaga K, Akazawa H et al (2005) G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat Med 11:305–311PubMedCrossRefGoogle Scholar
  49. 49.
    Chomarat P, Banchereau J, Davoust J, Palucka AK (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1:510–514PubMedCrossRefGoogle Scholar
  50. 50.
    Jansen JH, Kluin-Nelemans JC, Van Damme J, Wientjens GJ, Willemze R, Fibbe WE (1992) Interleukin 6 is a permissive factor for monocytic colony formation by human hematopoietic progenitor cells. J Exp Med 175:1151–1154PubMedCrossRefGoogle Scholar
  51. 51.
    Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ (2007) Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am J Pathol 170:818–829PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Fritzenwanger M, Meusel K, Foerster M, Kuethe F, Krack A, Figulla HR (2007) Cardiotrophin-1 induces interleukin-6 synthesis in human monocytes. Cytokine 38:137–144PubMedCrossRefGoogle Scholar
  54. 54.
    Matsushita K, Iwanaga S, Oda T, Kimura K, Shimada M, Sano M, Umezawa A, Hata J, Ogawa S (2005) Interleukin-6/soluble interleukin-6 receptor complex reduces infarct size via inhibiting myocardial apoptosis. Lab Investig 85:1210–1223PubMedCrossRefGoogle Scholar
  55. 55.
    Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, Kaisho T, Kuwata H, Takeuchi O, Takeshige K, Saitoh T, Yamaoka S et al (2004) Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 430:218–222PubMedCrossRefGoogle Scholar
  56. 56.
    McMillen MA, Huribal M, Cunningham ME, Kumar R, Sumpio BE (1995) Endothelin-1 increases intracellular calcium in human monocytes and causes production of interleukin-6. Crit Care Med 23:34–40PubMedCrossRefGoogle Scholar
  57. 57.
    Tamandl D, Bahrami M, Wessner B, Weigel G, Ploder M, Furst W, Roth E, Boltz-Nitulescu G, Spittler A (2003) Modulation of toll-like receptor 4 expression on human monocytes by tumor necrosis factor and interleukin-6: tumor necrosis factor evokes lipopolysaccharide hyporesponsiveness, whereas interleukin-6 enhances lipopolysaccharide activity. Shock 20:224–229PubMedCrossRefGoogle Scholar
  58. 58.
    Tsianakas A, Varga G, Barczyk K, Bode G, Nippe N, Kran N, Roth J, Luger TA, Ehrchen J, Sunderkoetter C (2012) Induction of an anti-inflammatory human monocyte subtype is a unique property of glucocorticoids, but can be modified by IL-6 and IL-10. Immunobiology 217:329–335PubMedCrossRefGoogle Scholar
  59. 59.
    Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J et al (2010) Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80PubMedCrossRefGoogle Scholar
  60. 60.
    Gregory AD, Capoccia BJ, Woloszynek JR, Link DC (2010) Systemic levels of G-CSF and interleukin-6 determine the angiogenic potential of bone marrow resident monocytes. J Leukoc Biol 88:123–131PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR et al (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Pereira FE, Cronin C, Ghosh M, Zhou SY, Agosto M, Subramani J, Wang R, Shen JB, Schacke W, Liang B, Yang TH, McAulliffe B et al (2013) CD13 is essential for inflammatory trafficking and infarct healing following permanent coronary artery occlusion in mice. Cardiovasc Res 100:74–83PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Tsujioka H, Imanishi T, Ikejima H, Kuroi A, Takarada S, Tanimoto T, Kitabata H, Okochi K, Arita Y, Ishibashi K, Komukai K, Kataiwa H et al (2009) Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol 54:130–138PubMedCrossRefGoogle Scholar
  64. 64.
    Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, Gorbatov R, Iwamoto Y, Dutta P, Wojtkiewicz G, Courties G, Sebas M et al (2013) Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation 127:2038–2046PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Biswas P, Delfanti F, Bernasconi S, Mengozzi M, Cota M, Polentarutti N, Mantovani A, Lazzarin A, Sozzani S, Poli G (1998) Interleukin-6 induces monocyte chemotactic protein-1 in peripheral blood mononuclear cells and in the U937 cell line. Blood 91:258–265PubMedGoogle Scholar
  66. 66.
    Hayashidani S, Tsutsui H, Shiomi T, Ikeuchi M, Matsusaka H, Suematsu N, Wen J, Egashira K, Takeshita A (2003) Anti-monocyte chemoattractant protein-1 gene therapy attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 108:2134–2140PubMedCrossRefGoogle Scholar
  67. 67.
    Morimoto H, Takahashi M, Izawa A, Ise H, Hongo M, Kolattukudy PE, Ikeda U (2006) Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction. Circ Res 99:891–899PubMedCrossRefGoogle Scholar
  68. 68.
    Bartoccioni E, Scuderi F, Marino M, Provenzano C (2003) IL-6, monocyte infiltration and parenchymal cells. Trends Immunol 24:299–300 (author reply 300–301)PubMedCrossRefGoogle Scholar
  69. 69.
    Aderka D, Le JM, Vilcek J (1989) IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultured human monocytes, U937 cells, and in mice. J Immunol 143:3517–3523PubMedGoogle Scholar
  70. 70.
    Duerrschmid C, Crawford JR, Reineke E, Taffet GE, Trial J, Entman ML, Haudek SB (2013) TNF receptor 1 signaling is critically involved in mediating angiotensin-II-induced cardiac fibrosis. J Mol Cell Cardiol 57:59–67PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Rossato M, Curtale G, Tamassia N, Castellucci M, Mori L, Gasperini S, Mariotti B, De Luca M, Mirolo M, Cassatella MA, Locati M, Bazzoni F (2012) IL-10-induced microRNA-187 negatively regulates TNF-alpha, IL-6, and IL-12p40 production in TLR4-stimulated monocytes. Proc Natl Acad Sci USA 109:E3101–E3110PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Harel-Adar T, Ben MT, Amsalem Y, Feinberg MS, Leor J, Cohen S (2011) Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci USA 108:1827–1832PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555PubMedCrossRefGoogle Scholar
  74. 74.
    Troidl C, Mollmann H, Nef H, Masseli F, Voss S, Szardien S, Willmer M, Rolf A, Rixe J, Troidl K, Kostin S, Hamm C et al (2009) Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J Cell Mol Med 13:3485–3496PubMedCrossRefGoogle Scholar
  75. 75.
    Hu Y, Zhang H, Lu Y, Bai H, Xu Y, Zhu X, Zhou R, Ben J, Xu Y, Chen Q (2011) Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization. Basic Res Cardiol 106:1311–1328PubMedCrossRefGoogle Scholar
  76. 76.
    Ma Y, Halade GV, Zhang J, Ramirez TA, Levin D, Voorhees A, Jin YF, Han HC, Manicone AM, Lindsey ML (2013) Matrix metalloproteinase-28 deletion exacerbates cardiac dysfunction and rupture after myocardial infarction in mice by inhibiting M2 macrophage activation. Circ Res 112:675–688PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ (2009) CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284:34342–34354PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Zhang C, Li Y, Wu Y, Wang L, Wang X, Du J (2013) Interleukin-6/signal transducer and activator of transcription 3 (STAT3) pathway is essential for macrophage infiltration and myoblast proliferation during muscle regeneration. J Biol Chem 288:1489–1499PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Frisdal E, Lesnik P, Olivier M, Robillard P, Chapman MJ, Huby T, Guerin M, Le GW (2011) Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J Biol Chem 286:30926–30936PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Ma F, Li Y, Jia L, Han Y, Cheng J, Li H, Qi Y, Du J (2012) Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF beta/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS One 7:1–8 Google Scholar
  81. 81.
    Kobara M, Noda K, Kitamura M, Okamoto A, Shiraishi T, Toba H, Matsubara H, Nakata T (2010) Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovasc Res 87:424–430PubMedCrossRefGoogle Scholar
  82. 82.
    Sundararaj KP, Samuvel DJ, Li Y, Sanders JJ, Lopes-Virella MF, Huang Y (2009) Interleukin-6 released from fibroblasts is essential for up-regulation of matrix metalloproteinase-1 expression by U937 macrophages in coculture: cross-talking between fibroblasts and U937 macrophages exposed to high glucose. J Biol Chem 284:13714–13724PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252PubMedCrossRefGoogle Scholar
  84. 84.
    Austyn JM (1996) New insights into the mobilization and phagocytic activity of dendritic cells. J Exp Med 183:1287–1292PubMedCrossRefGoogle Scholar
  85. 85.
    Naito K, Anzai T, Sugano Y, Maekawa Y, Kohno T, Yoshikawa T, Matsuno K, Ogawa S (2008) Differential effects of GM-CSF and G-CSF on infiltration of dendritic cells during early left ventricular remodeling after myocardial infarction. J Immunol 181:5691–5701PubMedCrossRefGoogle Scholar
  86. 86.
    Dawicki W, Jawdat DW, Xu N, Marshall JS (2010) Mast cells, histamine, and IL-6 regulate the selective influx of dendritic cell subsets into an inflamed lymph node. J Immunol 184:2116–2123PubMedCrossRefGoogle Scholar
  87. 87.
    Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, Kamimura D, Ueda N, Iwakura Y, Ishihara K, Murakami M, Hirano T (2004) IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation. J Immunol 173:3844–3854PubMedCrossRefGoogle Scholar
  88. 88.
    Santiago-Schwarz F, Tucci J, Carsons SE (1996) Endogenously produced interleukin 6 is an accessory cytokine for dendritic cell hematopoiesis. Stem Cells 14:225–231PubMedCrossRefGoogle Scholar
  89. 89.
    Bleier JI, Pillarisetty VG, Shah AB, DeMatteo RP (2004) Increased and long-term generation of dendritic cells with reduced function from IL-6-deficient bone marrow. J Immunol 172:7408–7416PubMedCrossRefGoogle Scholar
  90. 90.
    Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+ CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036PubMedCrossRefGoogle Scholar
  91. 91.
    Seder RA, Paul WE (1994) Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 12:635–673PubMedCrossRefGoogle Scholar
  92. 92.
    Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6:1123–1132PubMedCrossRefGoogle Scholar
  93. 93.
    Littman DR, Rudensky AY (2010) Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140:845–858PubMedCrossRefGoogle Scholar
  94. 94.
    Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210PubMedCentralPubMedCrossRefGoogle Scholar
  95. 95.
    Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA (1997) Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med 185:461–469PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    Diehl S, Anguita J, Hoffmeyer A, Zapton T, Ihle JN, Fikrig E, Rincon M (2000) Inhibition of Th1 differentiation by IL-6 is mediated by SOCS1. Immunity 13:805–815PubMedCrossRefGoogle Scholar
  97. 97.
    Yang Y, Ochando J, Yopp A, Bromberg JS, Ding Y (2005) IL-6 plays a unique role in initiating c-Maf expression during early stage of CD4 T cell activation. J Immunol 174:2720–2729PubMedCrossRefGoogle Scholar
  98. 98.
    Cheng X, Liao YH, Ge H, Li B, Zhang J, Yuan J, Wang M, Liu Y, Guo Z, Chen J, Zhang J, Zhang L (2005) TH1/TH2 functional imbalance after acute myocardial infarction: coronary arterial inflammation or myocardial inflammation. J Clin Immunol 25:246–253PubMedCrossRefGoogle Scholar
  99. 99.
    Dodge IL, Carr MW, Cernadas M, Brenner MB (2003) IL-6 production by pulmonary dendritic cells impedes Th1 immune responses. J Immunol 170:4457–4464PubMedCrossRefGoogle Scholar
  100. 100.
    Bending D, De la Pena H, Veldhoen M, Phillips JM, Uyttenhove C, Stockinger B, Cooke A (2009) Highly purified Th17 cells from BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. J Clin Investig 119:565–572PubMedCentralPubMedCrossRefGoogle Scholar
  101. 101.
    Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487PubMedCentralPubMedCrossRefGoogle Scholar
  102. 102.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMedCrossRefGoogle Scholar
  103. 103.
    Kimura A, Naka T, Kishimoto T (2007) IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc Natl Acad Sci USA 104:12099–12104PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Sonderegger I, Iezzi G, Maier R, Schmitz N, Kurrer M, Kopf M (2008) GM-CSF mediates autoimmunity by enhancing IL-6-dependent Th17 cell development and survival. J Exp Med 205:2281–2294PubMedCentralPubMedCrossRefGoogle Scholar
  105. 105.
    Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, Hatton RD, Wahl SM, Schoeb TR, Weaver CT (2006) Transforming growth factor-beta induces development of the T(H)17 lineage. Nature 441:231–234PubMedCrossRefGoogle Scholar
  106. 106.
    Xu L, Kitani A, Fuss I, Strober W (2007) Cutting edge: regulatory T cells induce CD4+ CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 178:6725–6729PubMedCrossRefGoogle Scholar
  107. 107.
    Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–991PubMedCrossRefGoogle Scholar
  108. 108.
    Tang TT, Yuan J, Zhu ZF, Zhang WC, Xiao H, Xia N, Yan XX, Nie SF, Liu J, Zhou SF, Li JJ, Yao R et al (2012) Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol 107:232PubMedCrossRefGoogle Scholar
  109. 109.
    Kakkar R, Lee RT (2010) Intramyocardial fibroblast myocyte communication. Circ Res 106:47–57PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, Sano M, Otsu K, Snider P, Conway SJ, Nagai R (2010) Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Investig 120:254–265PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong TT, Shaw RM, Srivastava D (2009) Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell 16:233–244PubMedCentralPubMedCrossRefGoogle Scholar
  112. 112.
    Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J et al (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456:980–984PubMedCrossRefGoogle Scholar
  113. 113.
    Abe R, Donnelly SC, Peng T, Bucala R, Metz CN (2001) Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. J Immunol 166:7556–7562PubMedCrossRefGoogle Scholar
  114. 114.
    Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Investig 110:341–350PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    Crawford JR, Haudek SB, Cieslik KA, Trial J, Entman ML (2012) Origin of developmental precursors dictates the pathophysiologic role of cardiac fibroblasts. J Cardiovasc Transl Res 5:749–759PubMedCentralPubMedCrossRefGoogle Scholar
  116. 116.
    Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81PubMedCentralPubMedGoogle Scholar
  117. 117.
    Reilkoff RA, Bucala R, Herzog EL (2011) Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol 11:427–435PubMedCentralPubMedCrossRefGoogle Scholar
  118. 118.
    Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, Gomer RH, Trial J, Frangogiannis NG, Entman ML (2006) Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci USA 103:18284–18289PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Shao DD, Suresh R, Vakil V, Gomer RH, Pilling D (2008) Pivotal advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol 83:1323–1333PubMedCentralPubMedCrossRefGoogle Scholar
  120. 120.
    Wang JF, Jiao H, Stewart TL, Shankowsky HA, Scott PG, Tredget EE (2007) Fibrocytes from burn patients regulate the activities of fibroblasts. Wound Repair Regen 15:113–121PubMedCrossRefGoogle Scholar
  121. 121.
    Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R (1998) Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 160:419–425PubMedGoogle Scholar
  122. 122.
    Mollmann H, Nef HM, Troidl C (2010) ‘Turning the right screw’: targeting the interleukin-6 receptor to reduce unfavourable tissue remodelling after myocardial infarction. Cardiovasc Res 87:395–396PubMedCrossRefGoogle Scholar
  123. 123.
    Cieslik KA, Taffet GE, Carlson S, Hermosillo J, Trial J, Entman ML (2011) Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart. J Mol Cell Cardiol 50:248–256PubMedCentralPubMedCrossRefGoogle Scholar
  124. 124.
    Dixon IM (2010) The soluble interleukin 6 receptor takes its place in the pantheon of interleukin 6 signaling proteins: phenoconversion of cardiac fibroblasts to myofibroblasts. Hypertension 56:193–195PubMedCrossRefGoogle Scholar
  125. 125.
    Sarkar S, Vellaichamy E, Young D, Sen S (2004) Influence of cytokines and growth factors in ANG II-mediated collagen upregulation by fibroblasts in rats: role of myocytes. Am J Physiol Heart Circ Physiol 287:H107–H117PubMedCrossRefGoogle Scholar
  126. 126.
    Melendez GC, McLarty JL, Levick SP, Du Y, Janicki JS, Brower GL (2010) Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56:225–231PubMedCentralPubMedCrossRefGoogle Scholar
  127. 127.
    Banerjee I, Fuseler JW, Intwala AR, Baudino TA (2009) IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol 296:H1694–H1704PubMedCentralPubMedCrossRefGoogle Scholar
  128. 128.
    Diaz JA, Booth AJ, Lu G, Wood SC, Pinsky DJ, Bishop DK (2009) Critical role for IL-6 in hypertrophy and fibrosis in chronic cardiac allograft rejection. Am J Transplant 9:1773–1783PubMedCentralPubMedCrossRefGoogle Scholar
  129. 129.
    Mir SA, Chatterjee A, Mitra A, Pathak K, Mahata SK, Sarkar S (2012) Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart. J Biol Chem 287:2666–2677PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Skoumal R, Toth M, Serpi R, Rysa J, Leskinen H, Ulvila J, Saiho T, Aro J, Ruskoaho H, Szokodi I, Kerkela R (2011) Parthenolide inhibits STAT3 signaling and attenuates angiotensin II-induced left ventricular hypertrophy via modulation of fibroblast activity. J Mol Cell Cardiol 50:634–641PubMedCrossRefGoogle Scholar
  131. 131.
    Yang J, Chen J, Yan J, Zhang L, Chen G, He L, Wang Y (2012) Effect of interleukin 6 deficiency on renal interstitial fibrosis. PLoS ONE 7:e52415PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Kovalovich K, DeAngelis RA, Li W, Furth EE, Ciliberto G, Taub R (2000) Increased toxin-induced liver injury and fibrosis in interleukin-6-deficient mice. Hepatology 31:149–159PubMedCrossRefGoogle Scholar
  133. 133.
    De Benedetti F, Brunner HI, Ruperto N, Kenwright A, Wright S, Calvo I, Cuttica R, Ravelli A, Schneider R, Woo P, Wouters C, Xavier R et al (2012) Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med 367:2385–2395PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mingyuan Huang
    • 1
  • Du Yang
    • 1
  • Meixiang Xiang
    • 1
  • Jianan Wang
    • 1
  1. 1.Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina

Personalised recommendations