Heart Failure Reviews

, Volume 19, Issue 6, pp 709–716 | Cite as

Volume control in treatment-resistant congestive heart failure: role for peritoneal dialysis

  • K. E. Broekman
  • S. J. Sinkeler
  • F. Waanders
  • G. L. Bartels
  • G. Navis
  • W. M. T. Janssen
Article

Abstract

Chronic congestive heart failure (HF) has a rising prevalence and increasing impact on health care systems. Current treatment consists of diuretics, renin–angiotensin–aldosterone system blockers, and restriction of salt and fluids. This strategy is often hampered by a drop in effective circulating volume and hence renal perfusion and function, triggering harmful counter regulatory mechanisms. Slow ultrafiltration by peritoneal dialysis (PD) might be an effective treatment strategy to relieve fluid overload without compromising cardiac output and thereby renal function. In this review, we discuss the (patho)physiological mechanisms of the cardiorenal interaction and the current literature on PD strategies in congestive HF.

Keywords

Congestive heart failure Peritoneal ultrafiltration Cardiorenal axis Central venous pressure 

Notes

Conflict of interest

Authors Broekman, Sinkeler, Waanders, Bartels, Navis and Janssen have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Francis GS, Benedict C, Johnstone DE et al (1990) Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the studies of left ventricular dysfunction (SOLVD). Circulation 82:1724–1729CrossRefPubMedGoogle Scholar
  2. 2.
    Damman K, van Deursen VM, Navis G et al (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53:582–588CrossRefPubMedGoogle Scholar
  3. 3.
    Knauf H, Mutschler E (1997) Sequential nephron blockade breaks resistance to diuretics in edematous states. J Cardiovasc Pharmacol 29:367–372CrossRefPubMedGoogle Scholar
  4. 4.
    Ellison DH (1991) The physiologic basis of diuretic synergism: its role in treating diuretic resistance. Ann Intern Med 114:886–894CrossRefPubMedGoogle Scholar
  5. 5.
    De Vecchis R, Ariano C, Esposito C et al (2012) In right or biventricular chronic heart failure addition of thiazides to loop diuretics to achieve a sequential blockade of the nephron is associated with increased risk of dilutional hyponatremia: results of a case-control study. Minerva Cardioangiol 60:517–529PubMedGoogle Scholar
  6. 6.
    Felker GM, Lee KL, Bull DA et al (2011) Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med 364:797–805CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Testani JM, Chen J, McCauley BD et al (2010) Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122:265–272CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Faris RF, Flather M, Purcell H et al (2012) Diuretics for heart failure. Cochrane Database Syst Rev 2. doi: 10.1002/14651858
  9. 9.
    Hasselblad V, Gattis Stough W, Shah MR et al (2007) Relation between dose of loop diuretics and outcomes in a heart failure population: results of the ESCAPE trial. Eur J Heart Fail 9:1064–1069CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14:803–869CrossRefPubMedGoogle Scholar
  11. 11.
    Ellison DH (2001) Diuretic therapy and resistance in congestive heart failure. Cardiology 96:132–143CrossRefPubMedGoogle Scholar
  12. 12.
    Vogt L, Waanders F, Boomsma F et al (2008) Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan. J Am Soc Nephrol 19:999–1007CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cook NR, Cutler JA, Obarzanek E et al (2007) Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ 334:885–888CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Krikken JA, Laverman GD, Navis G (2009) Benefits of dietary sodium restriction in the management of chronic kidney disease. Curr Opin Nephrol Hypertens 18:531–538CrossRefPubMedGoogle Scholar
  15. 15.
    van den Berg E, Geleijnse JM, Brink EJ et al (2012) Sodium intake and blood pressure in renal transplant recipients. Nephrol Dial Transplant 27:3352–3359CrossRefPubMedGoogle Scholar
  16. 16.
    Zmily HD, Daifallah S, Ghali JK (2011) Tolvaptan, hyponatremia, and heart failure. Int J Nephrol Renovasc Dis 4:57–71PubMedPubMedCentralGoogle Scholar
  17. 17.
    Metra M, O’Connor CM, Davison BA et al (2011) Early dyspnoea relief in acute heart failure: prevalence, association with mortality, and effect of rolofylline in the PROTECT Study. Eur Heart J 32:1519–1534CrossRefPubMedGoogle Scholar
  18. 18.
    Adams KF Jr, Fonarow GC, Emerman CL et al (2005) Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 149:209–216CrossRefPubMedGoogle Scholar
  19. 19.
    Costanzo MR, Guglin ME, Saltzberg MT (2007) Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 49:675–683CrossRefPubMedGoogle Scholar
  20. 20.
    Wilcox CS, Mitch WE, Kelly RA et al (1983) Response of the kidney to furosemide. I. Effects of salt intake and renal compensation. J Lab Clin Med 102:450–458PubMedGoogle Scholar
  21. 21.
    Ellison DH, Velázquez H, Wright FS (1989) Adaptation of the distal convoluted tubule of the rat. Structural and functional effects of dietary salt intake and chronic diuretic infusion. J Clin Investig 1:113–126CrossRefGoogle Scholar
  22. 22.
    Fallick C, Sobotka PA, Dunlap ME (2011) Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail 4:669–675CrossRefPubMedGoogle Scholar
  23. 23.
    Zeidel ML, Kikeri D, Silva P et al (1988) Atrial natriuretic peptides inhibit conductive sodium uptake by rabbit inner medullary collecting duct cells. J Clin Investig 82:1067–1074CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Janssen WM, de Zeeuw D, van der Hem GK et al (1989) Atrial natriuretic peptide-induced decreases in renal blood flow in man: implications for the natriuretic mechanism. Clin Sci Lond 77:55–60PubMedGoogle Scholar
  25. 25.
    Smilde TD, Damman K, van der Harst P et al (2009) Differential associations between renal function and “modifiable” risk factors in patients with chronic heart failure. Clin Res Cardiol 98:121–129CrossRefPubMedGoogle Scholar
  26. 26.
    Damman K, Navis G, Smilde TD et al (2007) Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail 9:872–878CrossRefPubMedGoogle Scholar
  27. 27.
    Tanaka M, Yoshida H, Furuhashi M et al (2011) Deterioration of renal function by chronic heart failure is associated with congestion and oxidative stress in the tubulointerstitium. Intern Med 50:2877–2887CrossRefPubMedGoogle Scholar
  28. 28.
    Shilo S, Slotki IN, Iaina A (1987) Improved renal function following acute peritoneal dialysis in patients with intractable congestive heart failure. Isr J Med Sci 23:821–824PubMedGoogle Scholar
  29. 29.
    Mullens W, Abrahams Z, Francis GS et al (2008) Prompt reduction in intra-abdominal pressure following large-volume mechanical fluid removal improves renal insufficiency in refractory decompensated heart failure. J Card Fail 14:508–514CrossRefPubMedGoogle Scholar
  30. 30.
    Nessim SJ, Bargman JM (2013) The peritoneal–renal syndrome. Nat Rev Nephrol 9:302–306CrossRefPubMedGoogle Scholar
  31. 31.
    Johnson DW, Agar J, Collins J et al (2003) Recommendations for the use of icodextrin in peritoneal dialysis patients. Nephrology (Carlton) 8:1–7CrossRefGoogle Scholar
  32. 32.
    Qi H, Xu C, Yan H et al (2011) Comparison of icodextrin and glucose solutions for long dwell exchange in peritoneal dialysis: a meta-analysis of randomized controlled trials. Perit Dial Int 31:179–188CrossRefPubMedGoogle Scholar
  33. 33.
    Testani JM, Cappola TP, Brensinger CM et al (2011) Interaction between loop diuretic-associated mortality and blood urea nitrogen concentration in chronic heart failure. J Am Coll Cardiol 58:375–382CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Foley RN, Parfrey PS (1997) Cardiac disease in chronic uremia: clinical outcome and risk factors. Adv Ren Replace Ther 4:234–248PubMedGoogle Scholar
  35. 35.
    Dimitriadis C, Sekercioglu N, Pipili C et al (2013) Hyponatremia in peritoneal dialysis: epidemiology in a single center and correlation with clinical and biochemical parameters. Perit Dial Int. doi: 10.3747/pdi.2012.00095
  36. 36.
    Cnossen TT, Konings CJAM, van der Sande FM et al (2008) Clinical effects of icodextrin in peritoneal dialysis. Nephrol Dial Transplant Plus 1(Suppl4):iv18–iv22Google Scholar
  37. 37.
    Bertoli SV, Musetti C, Ciurlino D et al (2013) Peritoneal ultrafiltration in refractory heart failure: a cohort study. Perit Dial Int. doi: 10.3747/pdi.2012.00290
  38. 38.
    Cnossen TT, Kooman JP, Konings CJAM (2010) Peritoneal dialysis in patients with primary cardiac failure complicated by renal failure. Blood Purif 30:146–152PubMedGoogle Scholar
  39. 39.
    Iwashima Y, Horio T, Takami Y et al (2002) Effects of the creation of arteriovenous fistula for hemodialysis on cardiac function and natriuretic peptide levels in CRF. Am J Kidney Dis 40:974–982CrossRefPubMedGoogle Scholar
  40. 40.
    Bart BA, Boyle A, Bank AJ et al (2005) Ultrafiltration versus usual care for hospitalized patients with heart failure: the relief for acutely fluid-overloaded patients with decompensated congestive heart failure (RAPID-CHF) trial. J Am Coll Cardiol 11:2043–2046CrossRefGoogle Scholar
  41. 41.
    Bart BA, Goldsmith SR, Lee KL et al (2012) Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med 367:2296–2304CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Marenzi G, Muratori M, Cosentino ER et al (2013) Continuous ultrafiltration for congestive heart failure the cuore trial. J Card Fail (Epub ahead of print)Google Scholar
  43. 43.
    Koch M, Kohnle M, Trapp R (2011) Comparable outcome of acute unplanned peritoneal dialysis and haemodialysis. Nephrol Dial Transplant 27:375–380CrossRefPubMedGoogle Scholar
  44. 44.
    Sheppard R, Panyon J, Pohwani AL (2004) Intermittent outpatient ultrafiltration for the treatment of severe refractory congestive heart failure. J Card Fail 10:380–383CrossRefPubMedGoogle Scholar
  45. 45.
    Mehrotra R, Kathuria P (2006) Place of peritoneal dialysis in the management of treatment-resistant congestive heart failure. Kidney Int Suppl 103:S67–S71CrossRefPubMedGoogle Scholar
  46. 46.
    Rizkallah J, Sood MM, Reslerova M et al (2013) Reduced hospitalizations in severe, refractory congestive heart failure with peritoneal dialysis: a consecutive case series. Clin Nephrol 80:334–341CrossRefPubMedGoogle Scholar
  47. 47.
    Courivaud C, Kazory A, Crepin T et al (2013) Peritoneal dialysis reduces the number of hospitalization days in heart failure patients refractory to diuretics. Perit Dial Int. doi: 10.3747/pdi.2012.00149
  48. 48.
    Sens F, Schott-Pethelaz AM, Labeeuw M et al (2011) REIN registry. Survival advantage of hemodialysis relative to peritoneal dialysis in patients with end-stage renal disease and congestive heart failure. Kidney Int 80:970–977CrossRefPubMedGoogle Scholar
  49. 49.
    Bertoli SV (2005) Home peritoneal ultrafiltration in patients with severe congestive heart failure without end-stage renal disease. Adv Perit Dial 21:123–127PubMedGoogle Scholar
  50. 50.
    Núnez J, González M, Minana G et al (2012) Continuous ambulatory peritoneal dialysis as a therapeutic alternative in patients with advanced congestive heart failure. Eur J Heart Fail 14:540–548CrossRefPubMedGoogle Scholar
  51. 51.
    Koch M, Haastert B, Kohnle M et al (2012) Peritoneal dialysis relieves clinical symptoms and is well tolerated in patients with refractory heart failure and chronic kidney disease. Eur J Heart Fail 14:530–539CrossRefPubMedGoogle Scholar
  52. 52.
    Vaartjes I, Reitsma JB, de Bruin A et al (2008) Verschillen tussen mannen en vrouwen in sterftekans na een eerste ziekenhuisopname vanwege hartfalen. Netherlands Heart Foundation, The Hague. http://www.hartstichting.nl/9800/13341/15305/rapport_hvz_2008_hfd_4_hartfalen
  53. 53.
    Pocock SJ, Wang D, Pfeffer MA et al (2006) Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J 27:65–75CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • K. E. Broekman
    • 1
  • S. J. Sinkeler
    • 2
  • F. Waanders
    • 2
  • G. L. Bartels
    • 3
  • G. Navis
    • 2
  • W. M. T. Janssen
    • 1
  1. 1.Department of Internal MedicineMartini HospitalGroningenThe Netherlands
  2. 2.Division of Nephrology, Department of Internal MedicineUniversity Medical Centre GroningenGroningenThe Netherlands
  3. 3.Department of CardiologyMartini HospitalGroningenThe Netherlands

Personalised recommendations