Heart Failure Reviews

, Volume 19, Issue 6, pp 699–708

Renal dysfunction in acute congestive heart failure: a common problem for cardiologists and nephrologists

  • Giorgio Graziani
  • Daniela Pini
  • Silvia Oldani
  • David Cucchiari
  • Manuel Alfredo Podestà
  • Salvatore Badalamenti


The term acute heart failure (AHF) refers to a clinical syndrome with typical symptoms and signs, in which a structural or functional heart abnormality leads to defective oxygen delivery. The term cardiorenal syndrome has been proposed to outline the strict interplay between cardiac and renal function. In the setting of acute cardiac decompensation, acute kidney injury (AKI) is generally referred to as cardiorenal syndrome type 1. In this review, we summarize the fundamental pathophysiological aspects of both AHF and AHF-related AKI. We also review the latest therapeutic options, including both pharmacological ones, such as loop diuretics, potassium-sparing diuretics and vaptans, and non-pharmacological ones, such as ultrafiltration, and their impact on patients’ outcome. We discuss the pathophysiology of diuretic resistance, a common occurrence in these patients, reviewing the available strategies to treat it and highlighting how a close collaboration between cardiologists and nephrologists is frequently crucial for the management of this complication. Finally, we discuss three new promising non-pharmacological tools for the prevention of AHF recurrence, including two methods that exploit sympathetic denervation and one technique that acts by increasing vagal tone.


AHF Cardiorenal syndrome Vaptans Ultrafiltration Diuretic resistance 


  1. 1.
    Nieminen MS, Brutsaert D, Dickstein K et al (2006) EuroHeart Failure Survey II (EHFS II) a survey on hospitalized heart failure patients: description of population. Eur Heart J 27:2725–2736CrossRefPubMedGoogle Scholar
  2. 2.
    Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics—2009 update: a report from American Heart Association Statistics Committee and Stroke statistics subcommittee. Circulation 119:e21–e181CrossRefPubMedGoogle Scholar
  3. 3.
    Adams KF Jr, Fonarow GC, Emerman CL et al (2005) Characteristics and outcomes of patients hospitalized for heart failure in the United States rationale, design and preliminary observation from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J 149:209–216CrossRefPubMedGoogle Scholar
  4. 4.
    Fang J, Mensah GA, Croft JB, Keenan NL (2008) Heart failure-related hospitalization in the US, 1979–2004. J Am Coll Cardiol 52:428–434CrossRefPubMedGoogle Scholar
  5. 5.
    Ronco C, Haapio M, House AA et al (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539CrossRefPubMedGoogle Scholar
  6. 6.
    Chan EJ, Dellsperger KC (2011) Cardiorenal syndrome: the clinical cardiologists’ perspective. Cardiorenal Med 1:13–22CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Heywood JT, Fonarow GC, Costanzo MR et al (2007) High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from ADHERE database. J Cardiac Fail 13:422–430CrossRefGoogle Scholar
  8. 8.
    Ismail Y, Kasmikha Z, Green HL et al (2012) Cardio-renal syndrome type 1: epidemiology, pathophysiology and treatment. Semin Nephrol 32(1):18–25CrossRefPubMedGoogle Scholar
  9. 9.
    Cicoira M, Anker SD, Ronco C (2011) Cardio-renal cachexia syndrome (CRCS): pathophysiological foundations of a vicious pathological circle. J Cachexia Sarcopenia Muscle 2(3):135–142CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Marenzi G, Assanelli E, Campodonico I et al (2010) Acute kidney injury in ST-segment elevation acute myocardial infarction complicated by cardiogenic shock at admission. Crit Care Med 38:438–444CrossRefPubMedGoogle Scholar
  11. 11.
    Koney M, Karth GD, Geppert A et al (2002) Prognosis of patients who develop acute renal failure during the first 24 hours of cardiogenic shock after myocardial infarction. Am J Med 112:115–119CrossRefGoogle Scholar
  12. 12.
    Gheorghiade M, Filippatos SG, De Luca L et al (2006) Congestion in acute heart failure syndrome an essential target of evaluation and treatment. Am J Med 119:S3–S10CrossRefPubMedGoogle Scholar
  13. 13.
    Chaudry SI, Wang Y, Concato J et al (2007) Patterns of weight change preceding hospitalization for heart failure. Circulation 116:1549–1554CrossRefGoogle Scholar
  14. 14.
    Adamson PB, Magalski A, Braunschweig F et al (2003) Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system. J Am Coll Cardiol 41:565–571CrossRefPubMedGoogle Scholar
  15. 15.
    Cotter G, Metra M, Milo-Cotter O et al (2008) Fluid overload in acute heart failure—re-distribution and other mechanisms beyond fluid accumulation. Eur J Heart Fail 10:165–169CrossRefPubMedGoogle Scholar
  16. 16.
    Shah SJ, Gheorghiade M (2008) Heart failure with preserved ejection fraction, treat now by treating comorbidities. JAMA 300:431–433CrossRefPubMedGoogle Scholar
  17. 17.
    Cotter G, Felker GM, Adams KF et al (2008) The pathophysiology of acute heart failure—is it all about fluid accumulation? Am Heart J 155:9–18CrossRefPubMedGoogle Scholar
  18. 18.
    Gheorghiade M, De Luca F, Fonarow GC (2005) Pathophysiologic targets in the early phase of acute heart failure syndromes. Am J Cardiol 96:11G–17GCrossRefPubMedGoogle Scholar
  19. 19.
    Flaherty JD, Bax JJ, De Luca L (2009) Acute heart failures syndromes in patients with coronary artery disease: early assessment and treatment. J Am Coll Cardiol 53:254–263CrossRefPubMedGoogle Scholar
  20. 20.
    Schrier RW, Abraham WT (1999) Hormones and hemodynamics in heart failure. N Engl J Med 341:577–585CrossRefPubMedGoogle Scholar
  21. 21.
    Gheorghiade M, Filippatos G, Pang PS et al (2008) Changes in clinical, neurohormonal, electrolyte, renal, and hepatic profiles during and after hospitalization for acute decompensated heart failure: analysis from the EVEREST trial (late breaking clinical trial). Paper presented at: European Society of Cardiology, Munich, GermanyGoogle Scholar
  22. 22.
    Cadnapaphorcnai MA, Gurevich AK, Weinberger HD et al (2001) Pathophysiology of sodium and water retention in heart failure. Cardiology 96:122–131CrossRefGoogle Scholar
  23. 23.
    Jackson G, Gibbs CR, Davies MK (2000) ABC of heart failure: pathophysiology. Brit Med J 320:167–170CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    McDonough AA (2010) Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am J Physiol Regul Integr Comp Physiol 298:R851–R861CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Schrimpf C, Duffield JS (2011) Mechanisms of fibrosis: the role of the pericyte. Curr Opin Nephrol Hypertens 20:297–305CrossRefPubMedGoogle Scholar
  26. 26.
    Sharma UC, Pokharel S, van Brakel TJ et al (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110:3121–3128CrossRefPubMedGoogle Scholar
  27. 27.
    Chatterjee K (2005) Neurohormonal activation in congestive heart failure and the role of vasopressin. Am J Cardiol 95:8B–13BCrossRefPubMedGoogle Scholar
  28. 28.
    Schirer RW (2006) Role of diminished renal function in cardiovascular mortality: marker of pathogenetic factor? J Am Coll Cardiol 47:1–8CrossRefGoogle Scholar
  29. 29.
    Aronson D, Burger AJ (2010) The relationship between transient and persistent worsening renal function and mortality in patients with acute decompensated heart failure. J Card Fail 16:541–547CrossRefPubMedGoogle Scholar
  30. 30.
    Gottlieb SS, Abraham W, Butler J et al (2002) The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Cardiol Fail 8:136–141CrossRefGoogle Scholar
  31. 31.
    Weinfeld MS, Chertow GM, Stevenson LW (1999) Aggravated renal dysfunction during intensive therapy for advanced chronic heart failure. Am Heart J 138:285–290CrossRefPubMedGoogle Scholar
  32. 32.
    Nohria A, Lewis E, Stevenson LW (2002) Medical management of advanced heart failure. JAMA 287:628–640CrossRefPubMedGoogle Scholar
  33. 33.
    Firth JD, Raine AE, Ledingham JG et al (1988) Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 1:1033–1035CrossRefPubMedGoogle Scholar
  34. 34.
    Ronco C, Cicoira M (2012) Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol 60(12):1031–1042CrossRefPubMedGoogle Scholar
  35. 35.
    Severo M, Gaio AR, Lourenço P et al (2012) Diagnostic value of patterns of symptoms and signs of heart failure: application of latent class analysis with concomitant variables in a cross-sectional study. BMJ Open 2(6):e001510Google Scholar
  36. 36.
    McMurray JJ, Adamopoulos S, Anker SD et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur Heart J 33(14):1787–1847CrossRefPubMedGoogle Scholar
  37. 37.
    Tang WH, Francis GS, Morrow DA et al (2007) National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: clinical utilization of cardiac biomarker testing in heart failure. Circulation 116:e99–e109CrossRefPubMedGoogle Scholar
  38. 38.
    Chen S (2013) Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J Am Soc Nephrol 24(6):877–878CrossRefPubMedGoogle Scholar
  39. 39.
    Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2:1–138Google Scholar
  40. 40.
    Macdonald J, Marcora S, Jibani M et al (2006) GFR estimation using Cystatin C is not independent of body composition. Am J Kidney Dis 48(5):712–719CrossRefPubMedGoogle Scholar
  41. 41.
    Harman G, Akbari A, Hiremath S et al (2013) Accuracy of Cystatin C-based estimates of glomerular filtration rate in kidney transplant recipients: a systematic review. Nephrol Dial Transpl 28(3):741–757CrossRefGoogle Scholar
  42. 42.
    McCullough PA, Shaw AD, Haase M et al (2013) Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib Nephrol 182:13–29CrossRefPubMedGoogle Scholar
  43. 43.
    Felker MG (2011) Loop diuretics in heart failure. Heart Fail Rev 17:305–311CrossRefGoogle Scholar
  44. 44.
    Testani JM, Chen J, Mc Cauley BD, Kimmel SE, Sahnnon RP (2010) Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation 122:265–272CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Brater DC (1998) Diuretic therapy. N Engl J Med 339:387–395CrossRefPubMedGoogle Scholar
  46. 46.
    Felker GM, Lee KL, Bull DA et al (2011) Diuretic strategies in patients with decompensated heart failure. N Engl J Med 364:797–805CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Felker GM, Mentz RJ (2012) Diuretics and ultrafiltration in acute decompensated heart failure. J Am Coll Cardiol 59:2145–2153CrossRefPubMedGoogle Scholar
  48. 48.
    Gheorghiade M, Abraham WT, Albert NM et al (2006) Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure. JAMA 296:2217–2226CrossRefPubMedGoogle Scholar
  49. 49.
    Sweitzer NK, Lopatin M, Yancy CW et al (2008) Comparison of clinical features and outcome in patients hospitalized with heart failure and normal ejection fraction (> or =55%) versus those with mildly reduced (40 % to 55 %) and moderately to severely reduced (<40%) fractions. Am J Cardiol 101:1151–1156CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Jourdain P, Jondeau G, Funck F et al (2007) Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter study. J Am Coll Cardiol 49:1733–1739CrossRefPubMedGoogle Scholar
  51. 51.
    Logeart D, Thabut G, Jourdain P et al (2004) Pre-discharge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J Am Coll Cardiol 43:635–641CrossRefPubMedGoogle Scholar
  52. 52.
    Paterna S, Fasullo S, Parrinello G et al (2011) Short-term effects of hypertonic saline solution in AHF and long-term effects of a moderate sodium restriction in compensated heart failure with NYHA class III. Am J Med Sci 342:27–37CrossRefPubMedGoogle Scholar
  53. 53.
    Ellison DH (2001) Diuretic therapy and resistance in congestive heart failure. Cardiology 96:132–143CrossRefPubMedGoogle Scholar
  54. 54.
    Puscas I, Coltau M, Baican M, Pasca R, Domuta G (1999) The inhibitory effect of diuretics on carbonic anhydrases. Res Commun Mol Pathol Pharmacol 105:213–236PubMedGoogle Scholar
  55. 55.
    Liszkowski M, Nohria A (2010) Rubbing salts into wounds: hypertonic saline to assist with volume removal in heart failure. Curr Heart Fail Rep 7:134–139CrossRefPubMedGoogle Scholar
  56. 56.
    Arques S, Ambrosi P (2011) Human serum albumin in the clinical syndrome of heart failure. J Cardiac Fail 17:451–458CrossRefGoogle Scholar
  57. 57.
    Pitt B, Remme W, Zannad WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 341:712–717Google Scholar
  58. 58.
    Pitt B et al (2003) Eplerenone, a selective aldosterone blocker in patients with ventricular dysfunction after myocardial infarction. N Engl J Med 348:1309–1321CrossRefPubMedGoogle Scholar
  59. 59.
    Palmer BF (2004) Managing of hyperkalemia caused by inhibitors of renin–angiotensin–aldosterone system. N Engl J Med 351:585–592CrossRefPubMedGoogle Scholar
  60. 60.
    Juurlink DN, Mamdani MM, Lee DS et al (2004) Rates of hyperkalemia after publication of the randomized aldactone evaluation study. N Engl J Med 351:543–551CrossRefPubMedGoogle Scholar
  61. 61.
    Mohammed AA, Van Kimmenade RR, Richards M et al (2010) Hyponatremia, natriuretic peptides, and outcomes in acutely decompensated heart failure: results from the International Collaborative of NT-proBNP Study. Circ Heart Fail 3:354–361CrossRefPubMedGoogle Scholar
  62. 62.
    Udelson JE, Orlandi C, Ouyang J et al (2008) Acute hemodynamic effects of tolvaptan a vasopressin V2 receptor blocker, in patients with symptomatic heart failure and systolic dysfunction: an international multicenter, randomized trial. J Am Coll Cardiol 52:1540–1545CrossRefPubMedGoogle Scholar
  63. 63.
    Rossi J, Bayram M, Udelson JE et al (2007) Improvement in hyponatremia during hospitalisation for worsening heart failure is associated with improved outcome: from acute and chronic therapeutic impact of a vasopressin antagonist in chronic heart failure. Acute Cardiol Care 9:82–86CrossRefGoogle Scholar
  64. 64.
    Costello-Boerrighter LC, Smith WB, Boerrighter G et al (2006) Vasopressin-2 receptor antagonism augments water excretion without changes in renal hemodynamic or sodium and potassium excretion in human heart failure. Am J Physiol Renal Physiol 290:F273–F278CrossRefGoogle Scholar
  65. 65.
    Berl T, Quintnat-Pellettier F, Verbalis JG et al (2010) Oral Tolvaptan is safe and effective in chronic hyponatremia. J Am Soc Nephrol 21:705–712CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Udelson JE, Mc Grew FA, Flores E et al (2007) Multicenter randomized double-blind placebo-controlled study on the effect of oral tolvaptan on left ventricular dilatation and function in patients with heart failure and systolic dysfunction. J Am Coll Cardiol 49:2151–2159CrossRefPubMedGoogle Scholar
  67. 67.
    Mebazaa A, Pang PS, Tavares M et al (2010) The impact of early standard therapy on dyspnoea in patients with acute heart failure: the URGENT—dyspnoea study. Eur Heart J 31:832–841CrossRefPubMedGoogle Scholar
  68. 68.
    Pang PS, Konstam MA, Krasa HB et al (2009) Effects of tolvaptan on dyspnoea relief from the EVEREST trials. Eur Heart J 30:2233–2240CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Ambrosy A, Goldsmith SR, Gheoghiade M (2011) Tolvaptan for the treatment of heart failure: a review of the literature. Exp Opin Pharmacother 12:961–976CrossRefGoogle Scholar
  70. 70.
    Ronco C, Levin NW (2005) Mechanisms of solute transport in extracorporeal therapies. Contrib Nephrol 149:10–17CrossRefPubMedGoogle Scholar
  71. 71.
    Ronco C, Ricci Z, Bellomo R, Bedogni F (2001) Extracorporeal ultrafiltration for the treatment of overhydration and congestive heart failure. Cardiology 96:155–168CrossRefPubMedGoogle Scholar
  72. 72.
    Jaski BE, Ha J, Denis BG et al (2003) Peripherally inserted veno-venous ultrafiltration for rapid treatment of volume overloaded patients. J Card Fail 9:227–231CrossRefPubMedGoogle Scholar
  73. 73.
    Nalesso F, Garzotto F, Ronco C (2012) Technical aspects of extracorporeal ultrafiltration: mechanisms, monitoring and dedicated technology. Contrib Nephrol 164:199–208CrossRefGoogle Scholar
  74. 74.
    Marenzi G, Grazi S, Giraldi F et al (1993) Interrelation of humoral factors hemodynamics and fluid and salt metabolism in congestive heart failure: effect of extracorporeal ultrafiltration. Am J Med 94:49–56CrossRefPubMedGoogle Scholar
  75. 75.
    Costanzo MR, Guglin ME, Saltzberg MT et al (2007) Ultrafiltration versus intravenous diuretics for patients hospitalized for acute decompensated heart failure. J Am Coll Cardiol 49:675–683CrossRefPubMedGoogle Scholar
  76. 76.
    Bart BA, Goldsmith SR, Goldsmith MD et al (2012) Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med 367:2296–2304CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Bradley SM, Levy WC, Veenstra DL et al (2009) Cost-consequence of ultrafiltration for acute heart failure. A decision model analysis. Circ Cardiovasc Qual Outcomes 2:566–573CrossRefPubMedGoogle Scholar
  78. 78.
    Boyle A, Bank AJ (2005) Ultrafiltration versus usual care for hospitalized patients with heart failure. The relief for acutely fluid-overloaded patients with decompensated congestive heart failure. RAPID CHF Trial J Am Coll Cardiol 46:2043–2046CrossRefGoogle Scholar
  79. 79.
    Costanzo MR, Saltzberg MT, Jessup M et al (2010) Ultrafiltration is associated with fewer rehospitalization than continuous diuretic infusion in patients with acute decompensated heart failure: results from UNLOAD. J Cardiol Fail 16:277–284CrossRefGoogle Scholar
  80. 80.
    Fiaccadori E, Regolisti G, Maggiore U (2011) Ultrafiltration in heart failure. Am Heart J 161:439–449CrossRefPubMedGoogle Scholar
  81. 81.
    Conceiao-Souza GE, Pego-Fernandes PM, Cruz F et al (2012) Left cardiac sympathetic denervation for treatment of symptomatic systolic heart failure patients: a pilot study. Eur J heart fail 14:1366–1373CrossRefGoogle Scholar
  82. 82.
    Krum H, Schlaich M, Whitbourn R et al (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373:1275–1281CrossRefPubMedGoogle Scholar
  83. 83.
    Krum H, Sobotka P, Mahfoud F et al (2011) Device-based antihypertensive therapy, therapeutic modulation of the autonomic nervous system. Circulation 123:209–215CrossRefPubMedGoogle Scholar
  84. 84.
    Mahfoud F, Schlaich M, Kindermann I et al (2011) Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 123(18):1940–1946CrossRefPubMedGoogle Scholar
  85. 85.
    Davies JE, Manistry CH, Petraco R et al (2013) First-in man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol 162:189–192CrossRefPubMedGoogle Scholar
  86. 86.
    Rothstein M (2009) Chronic treatment of resistant hypertension with an implantable device: interim 2 years results of two studies of the Rheos hypertension system. Presented at late breaking clinical trial, Am Coll Cardiol, 30 Mar 2009, Orlando FloridaGoogle Scholar
  87. 87.
    Sanchez LA, Illing K, Levy M (2010) Implantable carotid sinus stimulator for the treatment of resistant hypertension: local effects on carotid artery morphology. Ann Vasc Surg 24:178–184CrossRefPubMedGoogle Scholar
  88. 88.
    Georgakopoulos D, Little WC, Abraham WT et al (2011) Chronic baroreflex activation: a potential therapeutic approach to heart failure with preserved ejection fraction. J Cardiac Fail 17(2):167–178CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Giorgio Graziani
    • 1
  • Daniela Pini
    • 2
  • Silvia Oldani
    • 1
  • David Cucchiari
    • 1
  • Manuel Alfredo Podestà
    • 1
  • Salvatore Badalamenti
    • 1
  1. 1.Nephrology and Dialysis UnitHumanitas Clinical and Research CenterRozzanoItaly
  2. 2.Cardiology UnitHumanitas Clinical and Research CenterRozzanoItaly

Personalised recommendations