Advertisement

Heart Failure Reviews

, Volume 19, Issue 2, pp 173–185 | Cite as

Fibrosis and heart failure

  • Ana Maria SeguraEmail author
  • O. H. Frazier
  • L. Maximilian Buja
Article

Abstract

The extracellular matrix (ECM) is a living network of proteins that maintains the structural integrity of the myocardium and allows the transmission of electrical and mechanical forces between the myocytes for systole and diastole. During ventricular remodeling, as a result of iterations in the hemodynamic workload, collagen, the main component of the ECM, increases and occupies the areas between the myocytes and the vessels. The resultant fibrosis (reparative fibrosis) is initially a compensatory mechanism and may progress adversely influencing tissue stiffness and ventricular function. Replacement fibrosis appears at sites of previous cardiomyocyte necrosis to preserve the structural integrity of the myocardium, but with the subsequent formation of scar tissue and widespread distribution, it has adverse functional consequences. Continued accumulation of collagen impairs diastolic function and compromises systolic mechanics. Nevertheless, the development of fibrosis is a dynamic process wherein myofibroblasts, the principal cellular elements of fibrosis, are not only metabolically active and capable of the production and upregulation of cytokines but also have contractile properties. During the process of reverse remodeling with left ventricular assist device unloading, cellular, structural, and functional improvements are observed in terminal heart failure patients. With the advent of anti-fibrotic pharmacologic therapies, cellular therapy, and ventricular support devices, fibrosis has become an important therapeutic target in heart failure patients. Herein, we review the current concepts of fibrosis as a main component of ventricular remodeling in heart failure patients. Our aim is to integrate the histopathologic process of fibrosis with the neurohormonal, cytochemical, and molecular changes that lead to ventricular remodeling and its physiologic consequences in patients. The concept of fibrosis as living scar allows us to envision targeting this scar as a means of improving ventricular function in heart failure patients.

Keywords

Heart failure Fibrosis Left ventricular remodeling Extracellular matrix Myocardium Myocyte 

Notes

Conflict of interest

Drs. Buja, Frazier, and Segura have no conflicts of interest or financial ties to disclose.

References

  1. 1.
    Schaper J, Froede R, Hein S, Buck A, Hashizume H, Speiser B, Friedl A, Bleese N (1991) Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83(2):504–514PubMedGoogle Scholar
  2. 2.
    Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. J Am Coll Cardiol 13(7):1637–1652PubMedGoogle Scholar
  3. 3.
    Weber KT (2000) Targeting pathological remodeling: concepts of cardioprotection and reparation. Circulation 102(12):1342–1345PubMedGoogle Scholar
  4. 4.
    Schaper J, Meiser E, Stammler G (1985) Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res 56(3):377–391PubMedGoogle Scholar
  5. 5.
    Kostin S, Hein S, Arnon E, Scholz D, Schaper J (2000) The cytoskeleton and related proteins in the human failing heart. Heart Fail Rev 5(3):271–280. doi: 10.1023/A:1009813621103 PubMedGoogle Scholar
  6. 6.
    Sharov VG, Kostin S, Todor A, Schaper J, Sabbah HN (2005) Expression of cytoskeletal, linkage and extracellular proteins in failing dog myocardium. Heart Fail Rev 10(4):297–303. doi: 10.1007/s10741-005-7544-2 PubMedGoogle Scholar
  7. 7.
    Brilla CG, Weber KT (1992) Reactive and reparative myocardial fibrosis in arterial hypertension in the rat. Cardiovasc Res 26(7):671–677PubMedGoogle Scholar
  8. 8.
    Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83(6):1849–1865PubMedGoogle Scholar
  9. 9.
    Gandhi MS, Kamalov G, Shahbaz AU, Bhattacharya SK, Ahokas RA, Sun Y, Gerling IC, Weber KT (2011) Cellular and molecular pathways to myocardial necrosis and replacement fibrosis. Heart Fail Rev 16(1):23–34. doi: 10.1007/s10741-010-9169-3 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87(4):1285–1342. doi: 10.1152/physrev.00012.2007 PubMedGoogle Scholar
  11. 11.
    Booz GW, Baker KM (1995) Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 30(4):537–543PubMedGoogle Scholar
  12. 12.
    Ju H, Dixon IM (1996) Extracellular matrix and cardiovascular diseases. Can J Cardiol 12(12):1259–1267PubMedGoogle Scholar
  13. 13.
    Sun Y, Weber KT (1998) Cardiac remodelling by fibrous tissue: role of local factors and circulating hormones. Ann Med 30(Suppl 1):3–8PubMedGoogle Scholar
  14. 14.
    Weber KT, Anversa P, Armstrong PW, Brilla CG, Burnett JC Jr, Cruickshank JM, Devereux RB, Giles TD, Korsgaard N, Leier CV et al (1992) Remodeling and reparation of the cardiovascular system. J Am Coll Cardiol 20(1):3–16PubMedGoogle Scholar
  15. 15.
    Medugorac I, Jacob R (1983) Characterisation of left ventricular collagen in the rat. Cardiovasc Res 17(1):15–21PubMedGoogle Scholar
  16. 16.
    Brilla CG, Zhou G, Rupp H, Maisch B, Weber KT (1995) Role of angiotensin II and prostaglandin E2 in regulating cardiac fibroblast collagen turnover. Am J Cardiol 76(13):8D–13DPubMedGoogle Scholar
  17. 17.
    Weber KT (1997) Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96(11):4065–4082PubMedGoogle Scholar
  18. 18.
    Badenhorst D, Maseko M, Tsotetsi OJ, Naidoo A, Brooksbank R, Norton GR, Woodiwiss AJ (2003) Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovasc Res 57(3):632–641PubMedGoogle Scholar
  19. 19.
    Norton GR, Tsotetsi J, Trifunovic B, Hartford C, Candy GP, Woodiwiss AJ (1997) Myocardial stiffness is attributed to alterations in cross-linked collagen rather than total collagen or phenotypes in spontaneously hypertensive rats. Circulation 96(6):1991–1998PubMedGoogle Scholar
  20. 20.
    Brower GL, Janicki JS (2001) Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol 280(2):H674–H683PubMedGoogle Scholar
  21. 21.
    Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, Bauer EP, Klovekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991PubMedGoogle Scholar
  22. 22.
    Lopez B, Gonzalez A, Diez J (2010) Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation 121(14):1645–1654. doi: 10.1161/CIRCULATIONAHA.109.912774 PubMedGoogle Scholar
  23. 23.
    Sun Y, Kiani MF, Postlethwaite AE, Weber KT (2002) Infarct scar as living tissue. Basic Res Cardiol 97(5):343–347. doi: 10.1007/s00395-002-0365-8 PubMedGoogle Scholar
  24. 24.
    Sun Y, Weber KT (2000) Infarct scar: a dynamic tissue. Cardiovasc Res 46(2):250–256PubMedGoogle Scholar
  25. 25.
    Willems IE, Havenith MG, De Mey JG, Daemen MJ (1994) The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145(4):868–875PubMedGoogle Scholar
  26. 26.
    Sappino AP, Schurch W, Gabbiani G (1990) Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 63(2):144–161PubMedGoogle Scholar
  27. 27.
    Skalli O, Schurch W, Seemayer T, Lagace R, Montandon D, Pittet B, Gabbiani G (1989) Myofibroblasts from diverse pathologic settings are heterogeneous in their content of actin isoforms and intermediate filament proteins. Lab Invest 60(2):275–285PubMedGoogle Scholar
  28. 28.
    Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179(3):1074–1080. doi: 10.1016/j.ajpath.2011.06.001 PubMedGoogle Scholar
  29. 29.
    Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961. doi: 10.1038/nm1613 PubMedGoogle Scholar
  30. 30.
    Bujak M, Frangogiannis NG (2007) The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74(2):184–195. doi: 10.1016/j.cardiores.2006.10.002 PubMedCentralPubMedGoogle Scholar
  31. 31.
    Leask A (2007) TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 74(2):207–212. doi: 10.1016/j.cardiores.2006.07.012 PubMedGoogle Scholar
  32. 32.
    Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18(7):816–827. doi: 10.1096/fj.03-1273rev PubMedGoogle Scholar
  33. 33.
    Lijnen PJ, Petrov VV, Fagard RH (2000) Induction of cardiac fibrosis by transforming growth factor-beta(1). Mol Genet Metab 71(1–2):418–435. doi: 10.1006/mgme.2000.3032 PubMedGoogle Scholar
  34. 34.
    Moens AL, Takimoto E, Tocchetti CG, Chakir K, Bedja D, Cormaci G, Ketner EA, Majmudar M, Gabrielson K, Halushka MK, Mitchell JB, Biswal S, Channon KM, Wolin MS, Alp NJ, Paolocci N, Champion HC, Kass DA (2008) Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation 117(20):2626–2636. doi: 10.1161/CIRCULATIONAHA.107.737031 PubMedCentralPubMedGoogle Scholar
  35. 35.
    Villarreal FJ, Kim NN, Ungab GD, Printz MP, Dillmann WH (1993) Identification of functional angiotensin II receptors on rat cardiac fibroblasts. Circulation 88(6):2849–2861PubMedGoogle Scholar
  36. 36.
    Xiao H, Zhang YY (2008) Understanding the role of transforming growth factor-beta signalling in the heart: overview of studies using genetic mouse models. Clin Exp Pharmacol Physiol 35(3):335–341. doi: 10.1111/j.1440-1681.2007.04876.x PubMedGoogle Scholar
  37. 37.
    Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122(1):103–111PubMedGoogle Scholar
  38. 38.
    Isaka Y, Tsujie M, Ando Y, Nakamura H, Kaneda Y, Imai E, Hori M (2000) Transforming growth factor-beta 1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 58(5):1885–1892. doi: 10.1111/j.1523-1755.2000.00360.x PubMedGoogle Scholar
  39. 39.
    Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T (2002) Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106(1):130–135Google Scholar
  40. 40.
    Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85(2):47–64. doi: 10.1111/j.0959-9673.2004.00377.x PubMedCentralPubMedGoogle Scholar
  41. 41.
    Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358(20):2148–2159. doi: 10.1056/NEJMra0800239 PubMedGoogle Scholar
  42. 42.
    Anker SD, von Haehling S (2004) Inflammatory mediators in chronic heart failure: an overview. Heart 90(4):464–470PubMedGoogle Scholar
  43. 43.
    El-Menyar AA (2008) Cytokines and myocardial dysfunction: state of the art. J Card Fail 14(1):61–74. doi: 10.1016/j.cardfail.2007.09.006 PubMedGoogle Scholar
  44. 44.
    Hedayat M, Mahmoudi MJ, Rose NR, Rezaei N (2010) Proinflammatory cytokines in heart failure: double-edged swords. Heart Fail Rev 15(6):543–562. doi: 10.1007/s10741-010-9168-4 PubMedGoogle Scholar
  45. 45.
    Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91(11):988–998PubMedGoogle Scholar
  46. 46.
    Petersen JW, Felker GM (2006) Inflammatory biomarkers in heart failure. Congest Heart Fail 12(6):324–328PubMedGoogle Scholar
  47. 47.
    Satoh M, Minami Y, Takahashi Y, Nakamura M (2008) Immune modulation: role of the inflammatory cytokine cascade in the failing human heart. Curr Heart Fail Rep 5(2):69–74PubMedGoogle Scholar
  48. 48.
    von Haehling S, Schefold JC, Lainscak M, Doehner W, Anker SD (2009) Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders. Heart Fail Clin 5(4):549–560. doi: 10.1016/j.hfc.2009.04.001 Google Scholar
  49. 49.
    Baumgarten G, Knuefermann P, Kalra D, Gao F, Taffet GE, Michael L, Blackshear PJ, Carballo E, Sivasubramanian N, Mann DL (2002) Load-dependent and -independent regulation of proinflammatory cytokine and cytokine receptor gene expression in the adult mammalian heart. Circulation 105(18):2192–2197PubMedGoogle Scholar
  50. 50.
    Gurevitch J, Frolkis I, Yuhas Y, Paz Y, Matsa M, Mohr R, Yakirevich V (1996) Tumor necrosis factor-alpha is released from the isolated heart undergoing ischemia and reperfusion. J Am Coll Cardiol 28(1):247–252PubMedGoogle Scholar
  51. 51.
    Hamid T, Gu Y, Ortines RV, Bhattacharya C, Wang G, Xuan YT, Prabhu SD (2009) Divergent tumor necrosis factor receptor-related remodeling responses in heart failure: role of nuclear factor-kappaB and inflammatory activation. Circulation 119(10):1386–1397. doi: 10.1161/CIRCULATIONAHA.108.802918 PubMedCentralPubMedGoogle Scholar
  52. 52.
    Nakano M, Knowlton AA, Dibbs Z, Mann DL (1998) Tumor necrosis factor-alpha confers resistance to hypoxic injury in the adult mammalian cardiac myocyte. Circulation 97(14):1392–1400PubMedGoogle Scholar
  53. 53.
    Sun M, Chen M, Dawood F, Zurawska U, Li JY, Parker T, Kassiri Z, Kirshenbaum LA, Arnold M, Khokha R, Liu PP (2007) Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 115(11):1398–1407. doi: 10.1161/CIRCULATIONAHA.106.643585 PubMedGoogle Scholar
  54. 54.
    Higuchi Y, McTiernan CF, Frye CB, McGowan BS, Chan TO, Feldman AM (2004) Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation 109(15):1892–1897. doi: 10.1161/01.CIR.0000124227.00670.AB PubMedGoogle Scholar
  55. 55.
    Wong GH, Goeddel DV (1988) Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 242(4880):941–944PubMedGoogle Scholar
  56. 56.
    Dibbs ZI, Diwan A, Nemoto S, DeFreitas G, Abdellatif M, Carabello BA, Spinale FG, Feuerstein G, Sivasubramanian N, Mann DL (2003) Targeted overexpression of transmembrane tumor necrosis factor provokes a concentric cardiac hypertrophic phenotype. Circulation 108(8):1002–1008. doi: 10.1161/01.CIR.0000085203.46621.F4 PubMedGoogle Scholar
  57. 57.
    Janczewski AM, Kadokami T, Lemster B, Frye CS, McTiernan CF, Feldman AM (2003) Morphological and functional changes in cardiac myocytes isolated from mice overexpressing TNF-alpha. Am J Physiol Heart Circ Physiol 284(3):H960–H969. doi: 10.1152/ajpheart.00718.2001 PubMedGoogle Scholar
  58. 58.
    Yokoyama T, Nakano M, Bednarczyk JL, McIntyre BW, Entman M, Mann DL (1997) Tumor necrosis factor-alpha provokes a hypertrophic growth response in adult cardiac myocytes. Circulation 95(5):1247–1252PubMedGoogle Scholar
  59. 59.
    Flesch M, Hoper A, Dell’Italia L, Evans K, Bond R, Peshock R, Diwan A, Brinsa TA, Wei CC, Sivasubramanian N, Spinale FG, Mann DL (2003) Activation and functional significance of the renin-angiotensin system in mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 108(5):598–604. doi: 10.1161/01.CIR.0000081768.13378.BF PubMedGoogle Scholar
  60. 60.
    Siwik DA, Colucci WS (2004) Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart Fail Rev 9(1):43–51. doi: 10.1023/B:HREV.0000011393.40674.13 PubMedGoogle Scholar
  61. 61.
    Sivasubramanian N, Coker ML, Kurrelmeyer KM, MacLellan WR, DeMayo FJ, Spinale FG, Mann DL (2001) Left ventricular remodeling in transgenic mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 104(7):826–831PubMedGoogle Scholar
  62. 62.
    Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OH (1995) Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation 91(1):161–170PubMedGoogle Scholar
  63. 63.
    Doering CW, Jalil JE, Janicki JS, Pick R, Aghili S, Abrahams C, Weber KT (1988) Collagen network remodelling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc Res 22(10):686–695PubMedGoogle Scholar
  64. 64.
    Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT (1989) Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 64(6):1041–1050PubMedGoogle Scholar
  65. 65.
    Jugdutt BI (2003) Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation 108(11):1395–1403. doi: 10.1161/01.CIR.0000085658.98621.49 PubMedGoogle Scholar
  66. 66.
    Smart N, Mojet MH, Latchman DS, Marber MS, Duchen MR, Heads RJ (2006) IL-6 induces PI 3-kinase and nitric oxide-dependent protection and preserves mitochondrial function in cardiomyocytes. Cardiovasc Res 69(1):164–177. doi: 10.1016/j.cardiores.2005.08.017 PubMedGoogle Scholar
  67. 67.
    Maass DL, White J, Horton JW (2002) IL-1beta and IL-6 act synergistically with TNF-alpha to alter cardiac contractile function after burn trauma. Shock 18(4):360–366PubMedGoogle Scholar
  68. 68.
    Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M (2005) Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. J Biol Chem 280(6):4553–4567. doi: 10.1074/jbc.M411787200 PubMedGoogle Scholar
  69. 69.
    Dai RP, Dheen ST, He BP, Tay SS (2004) Differential expression of cytokines in the rat heart in response to sustained volume overload. Eur J Heart Fail 6(6):693–703. doi: 10.1016/j.ejheart.2003.11.014 PubMedGoogle Scholar
  70. 70.
    Shioi T, Matsumori A, Kihara Y, Inoko M, Ono K, Iwanaga Y, Yamada T, Iwasaki A, Matsushima K, Sasayama S (1997) Increased expression of interleukin-1 beta and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in the hypertrophied and failing heart with pressure overload. Circ Res 81(5):664–671PubMedGoogle Scholar
  71. 71.
    Yamauchi-Takihara K, Kishimoto T (2000) Cytokines and their receptors in cardiovascular diseases–role of gp130 signalling pathway in cardiac myocyte growth and maintenance. Int J Exp Pathol 81(1):1–16PubMedCentralPubMedGoogle Scholar
  72. 72.
    Coker ML, Thomas CV, Clair MJ, Hendrick JW, Krombach RS, Galis ZS, Spinale FG (1998) Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Physiol 274(5 Pt 2):H1516–H1523PubMedGoogle Scholar
  73. 73.
    Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98(17):1728–1734PubMedGoogle Scholar
  74. 74.
    Mann DL, Spinale FG (1998) Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds. Circulation 98(17):1699–1702PubMedGoogle Scholar
  75. 75.
    Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L (1998) Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 82(4):482–495PubMedGoogle Scholar
  76. 76.
    Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P (2005) Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 3(3):221–229PubMedCentralPubMedGoogle Scholar
  77. 77.
    Li YY, McTiernan CF, Feldman AM (2000) Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 46(2):214–224PubMedGoogle Scholar
  78. 78.
    Fedak PW, Verma S, Weisel RD, Li RK (2005) Cardiac remodeling and failure from molecules to man (Part II). Cardiovasc Pathol 14(2):49–60. doi: 10.1016/j.carpath.2005.01.005 PubMedGoogle Scholar
  79. 79.
    Stawowy P, Margeta C, Kallisch H, Seidah NG, Chretien M, Fleck E, Graf K (2004) Regulation of matrix metalloproteinase MT1-MMP/MMP-2 in cardiac fibroblasts by TGF-beta1 involves furin-convertase. Cardiovasc Res 63(1):87–97. doi: 10.1016/j.cardiores.2004.03.010 PubMedGoogle Scholar
  80. 80.
    Dostal DE, Baker KM (1999) The cardiac renin-angiotensin system: conceptual, or a regulator of cardiac function? Circ Res 85(7):643–650PubMedGoogle Scholar
  81. 81.
    Ma TK, Kam KK, Yan BP, Lam YY (2010) Renin-angiotensin-aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol 160(6):1273–1292. doi: 10.1111/j.1476-5381.2010.00750.x PubMedGoogle Scholar
  82. 82.
    Raman VK, Lee YA, Lindpaintner K (1995) The cardiac renin-angiotensin-aldosterone system and hypertensive cardiac hypertrophy. Am J Cardiol 76(13):18D–23DPubMedGoogle Scholar
  83. 83.
    Gradman AH, Papademetriou V (2009) Combined renin-angiotensin-aldosterone system inhibition in patients with chronic heart failure secondary to left ventricular systolic dysfunction. Am Heart J 157(6 Suppl):S17–S23. doi: 10.1016/j.ahj.2009.04.007 PubMedGoogle Scholar
  84. 84.
    Ohta K, Kim S, Wanibuchi H, Ganten D, Iwao H (1996) Contribution of local renin-angiotensin system to cardiac hypertrophy, phenotypic modulation, and remodeling in TGR (mRen2)27 transgenic rats. Circulation 94(4):785–791PubMedGoogle Scholar
  85. 85.
    Schnee JM, Hsueh WA (2000) Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc Res 46(2):264–268PubMedGoogle Scholar
  86. 86.
    Schultz Jel J, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL, Kimball TR, Doetschman T (2002) TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin Invest 109(6):787–796. doi: 10.1172/JCI14190 PubMedGoogle Scholar
  87. 87.
    Kumar R, Singh VP, Baker KM (2009) The intracellular renin-angiotensin system in the heart. Curr Hypertens Rep 11(2):104–110PubMedGoogle Scholar
  88. 88.
    Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86(3):747–803. doi: 10.1152/physrev.00036.2005 PubMedGoogle Scholar
  89. 89.
    Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanagi M, Katoh M, Yamamoto H, Tamaki K, Shimokawa H, Takeshita A (1998) Early induction of transforming growth factor-beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 32(2):273–279PubMedGoogle Scholar
  90. 90.
    Brilla CG (2000) Aldosterone and myocardial fibrosis in heart failure. Herz 25(3):299–306PubMedGoogle Scholar
  91. 91.
    Grieve DJ, Shah AM (2003) Oxidative stress in heart failure. More than just damage. Eur Heart J 24(24):2161–2163PubMedGoogle Scholar
  92. 92.
    Zimmet JM, Hare JM (2006) Nitroso-redox interactions in the cardiovascular system. Circulation 114(14):1531–1544PubMedGoogle Scholar
  93. 93.
    Tsutsui H, Kinugawa S, Matsushima S (2008) Oxidative stress and mitochondrial DNA damage in heart failure. Circ J 72(Suppl A):A31–A37PubMedGoogle Scholar
  94. 94.
    Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81(3):449–456. doi: 10.1093/cvr/cvn280 PubMedGoogle Scholar
  95. 95.
    Coker ML, Doscher MA, Thomas CV, Galis ZS, Spinale FG (1999) Matrix metalloproteinase synthesis and expression in isolated LV myocyte preparations. Am J Physiol 277(2 Pt 2):H777–H787PubMedGoogle Scholar
  96. 96.
    Rabelink TJ, Luscher TF (2006) Endothelial nitric oxide synthase: host defense enzyme of the endothelium? Arterioscler Thromb Vasc Biol 26(2):267–271. doi: 10.1161/01.ATV.0000196554.85799.77 PubMedGoogle Scholar
  97. 97.
    Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49(2):241–248. doi: 10.1161/01.HYP.0000254415.31362.a7 PubMedGoogle Scholar
  98. 98.
    Frazier OH, Gradinac S, Segura AM, Przybylowski P, Popovic Z, Vasiljevic J, Hernandez A, McAllister HA Jr, Bojic M, Radovancevic B (2000) Partial left ventriculectomy: which patients can be expected to benefit? Ann Thorac Surg 69(6):1836–1841PubMedGoogle Scholar
  99. 99.
    Miner EC, Miller WL (2006) A look between the cardiomyocytes: the extracellular matrix in heart failure. Mayo Clin Proc 81(1):71–76. doi: 10.4065/81.1.71 PubMedGoogle Scholar
  100. 100.
    Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH, Olivetti G, Anversa P (1994) Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 89(1):151–163PubMedGoogle Scholar
  101. 101.
    Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J (2009) The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54(19):1747–1762. doi: 10.1016/j.jacc.2009.05.015 PubMedGoogle Scholar
  102. 102.
    Sun Y (2009) Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc Res 81(3):482–490. doi: 10.1093/cvr/cvn333 PubMedGoogle Scholar
  103. 103.
    Ikeuchi M, Tsutsui H, Shiomi T, Matsusaka H, Matsushima S, Wen J, Kubota T, Takeshita A (2004) Inhibition of TGF-beta signaling exacerbates early cardiac dysfunction but prevents late remodeling after infarction. Cardiovasc Res 64(3):526–535. doi: 10.1016/j.cardiores.2004.07.017 PubMedGoogle Scholar
  104. 104.
    Roy S, Khanna S, Bickerstaff AA, Subramanian SV, Atalay M, Bierl M, Pendyala S, Levy D, Sharma N, Venojarvi M, Strauch A, Orosz CG, Sen CK (2003) Oxygen sensing by primary cardiac fibroblasts: a key role of p21(Waf1/Cip1/Sdi1). Circ Res 92(3):264–271PubMedGoogle Scholar
  105. 105.
    O’Riordan E, Mendelev N, Patschan S, Patschan D, Eskander J, Cohen-Gould L, Chander P, Goligorsky MS (2007) Chronic NOS inhibition actuates endothelial-mesenchymal transformation. Am J Physiol Heart Circ Physiol 292(1):H285–H294. doi: 10.1152/ajpheart.00560.2006 PubMedGoogle Scholar
  106. 106.
    Okada H, Takemura G, Kosai K, Li Y, Takahashi T, Esaki M, Yuge K, Miyata S, Maruyama R, Mikami A, Minatoguchi S, Fujiwara T, Fujiwara H (2005) Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation 111(19):2430–2437. doi: 10.1161/01.CIR.0000165066.71481.8E PubMedGoogle Scholar
  107. 107.
    Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF Jr (1996) Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 148(5):1639–1648PubMedGoogle Scholar
  108. 108.
    Zellner JL, Spinale FG, Eble DM, Hewett KW, Crawford FA Jr (1991) Alterations in myocyte shape and basement membrane attachment with tachycardia-induced heart failure. Circ Res 69(3):590–600PubMedGoogle Scholar
  109. 109.
    Diez J, Gonzalez A, Lopez B, Querejeta R (2005) Mechanisms of disease: pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nat Clin Pract Cardiovasc Med 2(4):209–216. doi: 10.1038/ncpcardio0158 PubMedGoogle Scholar
  110. 110.
    Berk BC, Fujiwara K, Lehoux S (2007) ECM remodeling in hypertensive heart disease. J Clin Invest 117(3):568–575. doi: 10.1172/JCI31044 PubMedCentralPubMedGoogle Scholar
  111. 111.
    Diez J (2007) Mechanisms of cardiac fibrosis in hypertension. J Clin Hypertens (Greenwich) 9(7):546–550Google Scholar
  112. 112.
    Diez J, Lopez B, Gonzalez A, Querejeta R (2001) Clinical aspects of hypertensive myocardial fibrosis. Curr Opin Cardiol 16(6):328–335PubMedGoogle Scholar
  113. 113.
    Diez J (2009) Towards a new paradigm about hypertensive heart disease. Med Clin North Am 93(3):637–645. doi: 10.1016/j.mcna.2009.02.002 PubMedGoogle Scholar
  114. 114.
    Feldman AM, McNamara D (2000) Myocarditis. N Engl J Med 343(19):1388–1398. doi: 10.1056/NEJM200011093431908 PubMedGoogle Scholar
  115. 115.
    Cooper LT Jr (2009) Myocarditis. N Engl J Med 360(15):1526–1538. doi: 10.1056/NEJMra0800028 PubMedGoogle Scholar
  116. 116.
    Liu P, Martino T, Opavsky MA, Penninger J (1996) Viral myocarditis: balance between viral infection and immune response. Can J Cardiol 12(10):935–943PubMedGoogle Scholar
  117. 117.
    Kawai C (1999) From myocarditis to cardiomyopathy: mechanisms of inflammation and cell death: learning from the past for the future. Circulation 99(8):1091–1100PubMedGoogle Scholar
  118. 118.
    Yajima T, Knowlton KU (2009) Viral myocarditis: from the perspective of the virus. Circulation 119(19):2615–2624. doi: 10.1161/CIRCULATIONAHA.108.766022 PubMedGoogle Scholar
  119. 119.
    Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Gatewood SJ, Njoku DB, Rose NR (2004) Interferon-gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the profibrotic cytokines transforming growth factor-beta 1, interleukin-1 beta, and interleukin-4 in the heart. Am J Pathol 165(6):1883–1894PubMedGoogle Scholar
  120. 120.
    Fairweather D, Frisancho-Kiss S, Yusung SA, Barrett MA, Davis SE, Steele RA, Gatewood SJ, Rose NR (2005) IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. J Immunol 174(1):261–269PubMedGoogle Scholar
  121. 121.
    Kania G, Blyszczuk P, Stein S, Valaperti A, Germano D, Dirnhofer S, Hunziker L, Matter CM, Eriksson U (2009) Heart-infiltrating prominin-1+/CD133+ progenitor cells represent the cellular source of transforming growth factor beta-mediated cardiac fibrosis in experimental autoimmune myocarditis. Circ Res 105(5):462–470. doi: 10.1161/CIRCRESAHA.109.196287 PubMedGoogle Scholar
  122. 122.
    Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV (2000) Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 101(19):2271–2276PubMedGoogle Scholar
  123. 123.
    Ilercil A, Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Welty TK, Robbins DC, Fabsitz RR, Howard BV, Lee ET (2001) Relationship of impaired glucose tolerance to left ventricular structure and function: the strong heart study. Am Heart J 141(6):992–998. doi: 10.1067/mhj.2001.115302 PubMedGoogle Scholar
  124. 124.
    Chen S, Evans T, Mukherjee K, Karmazyn M, Chakrabarti S (2000) Diabetes-induced myocardial structural changes: role of endothelin-1 and its receptors. J Mol Cell Cardiol 32(9):1621–1629. doi: 10.1006/jmcc.2000.1197 PubMedGoogle Scholar
  125. 125.
    Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P (2000) Myocardial cell death in human diabetes. Circ Res 87(12):1123–1132PubMedGoogle Scholar
  126. 126.
    Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121(9):748–757. doi: 10.1016/j.amjmed.2008.03.046 PubMedGoogle Scholar
  127. 127.
    Zieman SJ, Kass DA (2004) Advanced glycation end product crosslinking in the cardiovascular system: potential therapeutic target for cardiovascular disease. Drugs 64(5):459–470PubMedGoogle Scholar
  128. 128.
    Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101(8):899–907PubMedGoogle Scholar
  129. 129.
    Tesfamariam B, Brown ML, Cohen RA (1991) Elevated glucose impairs endothelium-dependent relaxation by activating protein kinase C. J Clin Invest 87(5):1643–1648. doi: 10.1172/JCI115179 PubMedCentralPubMedGoogle Scholar
  130. 130.
    Brilla CG (2000) Regression of myocardial fibrosis in hypertensive heart disease: diverse effects of various antihypertensive drugs. Cardiovasc Res 46(2):324–331PubMedGoogle Scholar
  131. 131.
    Wagman G, Fudim M, Kosmas CE, Panni RE, Vittorio TJ (2012) The neurohormonal network in the RAAS can bend before breaking. Curr Heart Fail Rep 9(2):81–91. doi: 10.1007/s11897-012-0091-y PubMedGoogle Scholar
  132. 132.
    Flather MD, Yusuf S, Kober L, Pfeffer M, Hall A, Murray G, Torp-Pedersen C, Ball S, Pogue J, Moye L, Braunwald E (2000) Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet 355(9215):1575–1581PubMedGoogle Scholar
  133. 133.
    Xu Y, Tang T, Ding Y, Yao R, Xie J, Liao M, Xiao H, Chen Y, Yu X, Fu M, Liao Y, Zhao G, Cheng X (2010) Improved cardiac performance by rosuvastatin is associated with attenuations in both myocardial tumor necrosis factor-alpha and p38 MAP kinase activity in rats after myocardial infarction. Am J Med Sci 340(2):121–127. doi: 10.1097/MAJ.0b013e3181e2b353 PubMedGoogle Scholar
  134. 134.
    Landmesser U, Wollert KC, Drexler H (2009) Potential novel pharmacological therapies for myocardial remodelling. Cardiovasc Res 81(3):519–527. doi: 10.1093/cvr/cvn317 PubMedGoogle Scholar
  135. 135.
    Gonzalez A, Ravassa S, Beaumont J, Lopez B, Diez J (2011) New targets to treat the structural remodeling of the myocardium. J Am Coll Cardiol 58(18):1833–1843. doi: 10.1016/j.jacc.2011.06.058 PubMedGoogle Scholar
  136. 136.
    Bauersachs J (2010) Regulation of myocardial fibrosis by MicroRNAs. J Cardiovasc Pharmacol 56(5):454–459. doi: 10.1097/FJC.0b013e3181ee81df PubMedGoogle Scholar
  137. 137.
    Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S (2008) MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456(7224):980–984. doi: 10.1038/nature07511 PubMedGoogle Scholar
  138. 138.
    Berry MF, Engler AJ, Woo YJ, Pirolli TJ, Bish LT, Jayasankar V, Morine KJ, Gardner TJ, Discher DE, Sweeney HL (2006) Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am J Physiol Heart Circ Physiol 290(6):H2196–H2203. doi: 10.1152/ajpheart.01017.2005 PubMedGoogle Scholar
  139. 139.
    Xu X, Xu Z, Xu Y, Cui G (2005) Effects of mesenchymal stem cell transplantation on extracellular matrix after myocardial infarction in rats. Coron Artery Dis 16(4):245–255PubMedGoogle Scholar
  140. 140.
    Gnecchi M, Danieli P, Cervio E (2012) Mesenchymal stem cell therapy for heart disease. Vascul Pharmacol 57(1):48–55. doi: 10.1016/j.vph.2012.04.002 PubMedGoogle Scholar
  141. 141.
    Perin EC, Silva G, Gahremanpour A, Canales J, Zheng Y, Cabreira-Hansen MG, Mendelsohn F, Chronos N, Haley R, Willerson JT, Annex BH (2011) A randomized, controlled study of autologous therapy with bone marrow-derived aldehyde dehydrogenase bright cells in patients with critical limb ischemia. Catheter Cardiovascul Interv Off J Soc Cardiac Angiogr Interv 78(7):1060–1067. doi: 10.1002/ccd.23066 Google Scholar
  142. 142.
    Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, Silva GV, Lai D, Thomas JD, Kronenberg MW, Martin AD, Anderson RD, Traverse JH, Penn MS, Anwaruddin S, Hatzopoulos AK, Gee AP, Taylor DA, Cogle CR, Smith D, Westbrook L, Chen J, Handberg E, Olson RE, Geither C, Bowman S, Francescon J, Baraniuk S, Piller LB, Simpson LM, Loghin C, Aguilar D, Richman S, Zierold C, Bettencourt J, Sayre SL, Vojvodic RW, Skarlatos SI, Gordon DJ, Ebert RF, Kwak M, Moye LA, Simari RD, Cardiovascular Cell Therapy Research N (2012) Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA J Am Med Assoc 307(16):1717–1726. doi: 10.1001/jama.2012.418 Google Scholar
  143. 143.
    Xydas S, Rosen RS, Ng C, Mercando M, Cohen J, DiTullio M, Magnano A, Marboe CC, Mancini DM, Naka Y, Oz MC, Maybaum S (2006) Mechanical unloading leads to echocardiographic, electrocardiographic, neurohormonal, and histologic recovery. J Heart Lung Transpl Off Public Int Soc Heart Transpl 25(1):7–15. doi: 10.1016/j.healun.2005.08.001 Google Scholar
  144. 144.
    Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D (1995) Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation 91(11):2717–2720PubMedGoogle Scholar
  145. 145.
    Nakatani S, McCarthy PM, Kottke-Marchant K, Harasaki H, James KB, Savage RM, Thomas JD (1996) Left ventricular echocardiographic and histologic changes: impact of chronic unloading by an implantable ventricular assist device. J Am Coll Cardiol 27(4):894–901PubMedGoogle Scholar
  146. 146.
    Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB (1998) Regression of cellular hypertrophy after left ventricular assist device support. Circulation 98(7):656–662PubMedGoogle Scholar
  147. 147.
    Bruckner BA, Stetson SJ, Perez-Verdia A, Youker KA, Radovancevic B, Connelly JH, Koerner MM, Entman ME, Frazier OH, Noon GP, Torre-Amione G (2001) Regression of fibrosis and hypertrophy in failing myocardium following mechanical circulatory support. J Heart Lung Transpl Off Public Int Soc Heart Transpl 20(4):457–464Google Scholar
  148. 148.
    Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD, Miller LW, Margulies K, McRee S, Frazier OH, Torre-Amione G, LVAD Working Group (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD working group. Circulation 115(19):2497–2505. doi: 10.1161/CIRCULATIONAHA.106.633180 PubMedGoogle Scholar
  149. 149.
    Thohan V, Stetson SJ, Nagueh SF, Rivas-Gotz C, Koerner MM, Lafuente JA, Loebe M, Noon GP, Torre-Amione G (2005) Cellular and hemodynamics responses of failing myocardium to continuous flow mechanical circulatory support using the DeBakey-Noon left ventricular assist device: a comparative analysis with pulsatile-type devices. J Heart Lung Transpl Off Public Int Soc Heart Transpl 24(5):566–575. doi: 10.1016/j.healun.2004.02.017 Google Scholar
  150. 150.
    Bruggink AH, van Oosterhout MF, de Jonge N, Ivangh B, van Kuik J, Voorbij RH, Cleutjens JP, Gmelig-Meyling FH, de Weger RA (2006) Reverse remodeling of the myocardial extracellular matrix after prolonged left ventricular assist device support follows a biphasic pattern. J Heart Lung Transpl Off Public Int Soc Heart Transpl 25(9):1091–1098. doi: 10.1016/j.healun.2006.05.011 Google Scholar
  151. 151.
    Li YY, Feng Y, McTiernan CF, Pei W, Moravec CS, Wang P, Rosenblum W, Kormos RL, Feldman AM (2001) Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104(10):1147–1152PubMedGoogle Scholar
  152. 152.
    Klotz S, Foronjy RF, Dickstein ML, Gu A, Garrelds IM, Danser AH, Oz MC, D’Armiento J, Burkhoff D (2005) Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation 112(3):364–374. doi: 10.1161/CIRCULATIONAHA.104.515106 PubMedGoogle Scholar
  153. 153.
    Drakos SG, Kfoury AG, Selzman CH, Verma DR, Nanas JN, Li DY, Stehlik J (2011) Left ventricular assist device unloading effects on myocardial structure and function: current status of the field and call for action. Curr Opin Cardiol 26(3):245–255. doi: 10.1097/HCO.0b013e328345af13 PubMedCentralPubMedGoogle Scholar
  154. 154.
    Burkhoff D, Klotz S, Mancini DM (2006) LVAD-induced reverse remodeling: basic and clinical implications for myocardial recovery. J Card Fail 12(3):227–239. doi: 10.1016/j.cardfail.2005.10.012 PubMedGoogle Scholar
  155. 155.
    Maybaum S, Kamalakannan G, Murthy S (2008) Cardiac recovery during mechanical assist device support. Semin Thorac Cardiovasc Surg 20(3):234–246. doi: 10.1053/j.semtcvs.2008.08.003 PubMedGoogle Scholar
  156. 156.
    Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, Webb C, Bougard R, Amrani M, Yacoub MH, Dreyfus G, Khaghani A (2011) Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy: a prospective study. Circulation 123(4):381–390. doi: 10.1161/CIRCULATIONAHA.109.933960 PubMedGoogle Scholar
  157. 157.
    Birks EJ (2010) Myocardial recovery in patients with chronic heart failure: is it real? J Card Surg 25(4):472–477. doi: 10.1111/j.1540-8191.2010.01051.x PubMedGoogle Scholar
  158. 158.
    Segura AM, Frazier OH, Demirozu Z, Buja LM (2011) Histopathologic correlates of myocardial improvement in patients supported by a left ventricular assist device. Cardiovasc Pathol 20(3):139–145. doi: 10.1016/j.carpath.2010.01.011 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ana Maria Segura
    • 1
    Email author
  • O. H. Frazier
    • 2
  • L. Maximilian Buja
    • 1
    • 3
  1. 1.Department of Cardiovascular Pathology ResearchTexas Heart Institute at St. Luke’s Episcopal HospitalHoustonUSA
  2. 2.Department of Cardiopulmonary TransplantationTexas Heart Institute at St. Luke’s Episcopal HospitalHoustonUSA
  3. 3.Department of Pathology and Laboratory MedicineThe University of Texas Health Science CenterHoustonUSA

Personalised recommendations