Heart Failure Reviews

, Volume 18, Issue 4, pp 485–501 | Cite as

Iron deficiency anemia in heart failure

  • Natasha P. Arora
  • Jalal K. GhaliEmail author


Anemia and iron deficiency are quite prevalent in patients with heart failure (HF) and may overlap. Both anemia and iron deficiency are associated with worse symptoms and adverse clinical outcomes. In the past few years, there has been an enormous interest in the subject of iron deficiency and its management in patients with HF. In this review, the etiology and relevance of iron deficiency, iron metabolism in the setting of HF, studies on iron supplementation in patients with HF and potential cardiovascular effects of subclinical iron overload are discussed.


Anemia Iron deficiency Heart failure Iron therapy 



Dr. Jalal K. Ghali has received research grants from Amgen and serves on the steering committee of RED-HF trial.

Conflict of interest

Dr. Natasha P. Arora has no conflicts of interest or financial ties to disclose.


  1. 1.
    Lindenfeld J (2005) Prevalence of anemia and effects on mortality in patients with heart failure. Am Heart J 149(3):391–401. doi: 10.1016/j.ahj.2004.08.039 PubMedCrossRefGoogle Scholar
  2. 2.
    Ghali JK (2009) Anemia and heart failure. Curr Opin Cardiol 24(2):172–178. doi: 10.1097/HCO.0b013e328324ecec PubMedCrossRefGoogle Scholar
  3. 3.
    WHO (2001) Iron deficiency anaemia: assessment, prevention and control: a guide for programme managers. WHOGoogle Scholar
  4. 4.
    Groenveld HF, Januzzi JL, Damman K, van Wijngaarden J, Hillege HL, van Veldhuisen DJ, van der Meer P (2008) Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol 52(10):818–827. doi: 10.1016/j.jacc.2008.04.061 PubMedCrossRefGoogle Scholar
  5. 5.
    Zuccala G, Marzetti E, Cesari M, Lo Monaco MR, Antonica L, Cocchi A, Carbonin P, Bernabei R (2005) Correlates of cognitive impairment among patients with heart failure: results of a multicenter survey. Am J Med 118(5):496–502. doi: 10.1016/j.amjmed.2005.01.030 PubMedCrossRefGoogle Scholar
  6. 6.
    Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Borenstein J (2002) Anemia is associated with worse symptoms, greater impairment in functional capacity and a significant increase in mortality in patients with advanced heart failure. J Am Coll Cardiol 39(11):1780–1786PubMedCrossRefGoogle Scholar
  7. 7.
    Kalra PR, Bolger AP, Francis DP, Genth-Zotz S, Sharma R, Ponikowski PP, Poole-Wilson PA, Coats AJ, Anker SD (2003) Effect of anemia on exercise tolerance in chronic heart failure in men. Am J Cardiol 91(7):888–891PubMedCrossRefGoogle Scholar
  8. 8.
    Salisbury AC, Kosiborod M (2010) Outcomes associated with anemia in patients with heart failure. Heart failure clin 6(3):359–372. doi: 10.1016/j.hfc.2010.03.005 CrossRefGoogle Scholar
  9. 9.
    Adams KF Jr, Pina IL, Ghali JK, Wagoner LE, Dunlap SH, Schwartz TA, Stough WG, Mehra MR, Felker GM, Chiong JR, Patterson JH, Kim J, Butler J, Oren RM (2009) Prospective evaluation of the association between hemoglobin concentration and quality of life in patients with heart failure. Am Heart J 158(6):965–971. doi: 10.1016/j.ahj.2009.10.015 PubMedCrossRefGoogle Scholar
  10. 10.
    Eschbach JW (2002) Anemia management in chronic kidney disease: role of factors affecting epoetin responsiveness. J Am Soc Nephrol (JASN) 13(5):1412–1414CrossRefGoogle Scholar
  11. 11.
    Westenbrink BD, Visser FW, Voors AA, Smilde TD, Lipsic E, Navis G, Hillege HL, van Gilst WH, van Veldhuisen DJ (2007) Anaemia in chronic heart failure is not only related to impaired renal perfusion and blunted erythropoietin production, but to fluid retention as well. Eur Heart J 28(2):166–171. doi: 10.1093/eurheartj/ehl419 PubMedCrossRefGoogle Scholar
  12. 12.
    Androne AS, Katz SD, Lund L, LaManca J, Hudaihed A, Hryniewicz K, Mancini DM (2003) Hemodilution is common in patients with advanced heart failure. Circulation 107(2):226–229PubMedCrossRefGoogle Scholar
  13. 13.
    Adlbrecht C, Kommata S, Hulsmann M, Szekeres T, Bieglmayer C, Strunk G, Karanikas G, Berger R, Mortl D, Kletter K, Maurer G, Lang IM, Pacher R (2008) Chronic heart failure leads to an expanded plasma volume and pseudoanaemia, but does not lead to a reduction in the body’s red cell volume. Eur Heart J 29(19):2343–2350. doi: 10.1093/eurheartj/ehn359 PubMedCrossRefGoogle Scholar
  14. 14.
    Weiss G, Goodnough LT (2005) Anemia of chronic disease. New Engl J Med 352(10):1011–1023. doi: 10.1056/NEJMra041809 PubMedCrossRefGoogle Scholar
  15. 15.
    Ishani A, Weinhandl E, Zhao Z, Gilbertson DT, Collins AJ, Yusuf S, Herzog CA (2005) Angiotensin-converting enzyme inhibitor as a risk factor for the development of anemia, and the impact of incident anemia on mortality in patients with left ventricular dysfunction. J Am Coll Cardiol 45(3):391–399. doi: 10.1016/j.jacc.2004.10.038 PubMedCrossRefGoogle Scholar
  16. 16.
    van der Meer P, Lipsic E, Westenbrink BD, van de Wal RM, Schoemaker RG, Vellenga E, van Veldhuisen DJ, Voors AA, van Gilst WH (2005) Levels of hematopoiesis inhibitor N-acetyl-seryl-aspartyl-lysyl-proline partially explain the occurrence of anemia in heart failure. Circulation 112(12):1743–1747. doi: 10.1161/CIRCULATIONAHA.105.549121 PubMedCrossRefGoogle Scholar
  17. 17.
    Anand IS, Kuskowski MA, Rector TS, Florea VG, Glazer RD, Hester A, Chiang YT, Aknay N, Maggioni AP, Opasich C, Latini R, Cohn JN (2005) Anemia and change in hemoglobin over time related to mortality and morbidity in patients with chronic heart failure: results from Val-HeFT. Circulation 112(8):1121–1127. doi: 10.1161/CIRCULATIONAHA.104.512988 PubMedCrossRefGoogle Scholar
  18. 18.
    Komajda M, Anker SD, Charlesworth A, Okonko D, Metra M, Di Lenarda A, Remme W, Moullet C, Swedberg K, Cleland JG, Poole-Wilson PA (2006) The impact of new onset anaemia on morbidity and mortality in chronic heart failure: results from COMET. Eur Heart J 27(12):1440–1446. doi: 10.1093/eurheartj/ehl012 PubMedCrossRefGoogle Scholar
  19. 19.
    von Haehling S, van Veldhuisen DJ, Roughton M, Babalis D, de Boer RA, Coats AJ, Manzano L, Flather M, Anker SD (2011) Anaemia among patients with heart failure and preserved or reduced ejection fraction: results from the SENIORS study. Eur J Heart Fail 13(6):656–663. doi: 10.1093/eurjhf/hfr044 CrossRefGoogle Scholar
  20. 20.
    Westenbrink BD, Voors AA, de Boer RA, Schuringa JJ, Klinkenberg T, van der Harst P, Vellenga E, van Veldhuisen DJ, van Gilst WH (2010) Bone marrow dysfunction in chronic heart failure patients. Eur J Heart Fail 12(7):676–684. doi: 10.1093/eurjhf/hfq061 PubMedCrossRefGoogle Scholar
  21. 21.
    Kissel CK, Lehmann R, Assmus B, Aicher A, Honold J, Fischer-Rasokat U, Heeschen C, Spyridopoulos I, Dimmeler S, Zeiher AM (2007) Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. J Am Coll Cardiol 49(24):2341–2349. doi: 10.1016/j.jacc.2007.01.095 PubMedCrossRefGoogle Scholar
  22. 22.
    Okonko DO, Crosato M, Kalra PR, Cicoira M, John M, Doehner W, Coats AJ, Poole-Wilson PA, Anker SD (2005) Association of deranged adrenal steroid metabolism with anemia in chronic heart failure. Am J Cardiol 96(1):101–103. doi: 10.1016/j.amjcard.2005.02.053 PubMedCrossRefGoogle Scholar
  23. 23.
    van der Meer P, Lok DJ, Januzzi JL, de la Porte PW, Lipsic E, van Wijngaarden J, Voors AA, van Gilst WH, van Veldhuisen DJ (2008) Adequacy of endogenous erythropoietin levels and mortality in anaemic heart failure patients. Eur Heart J 29(12):1510–1515. doi: 10.1093/eurheartj/ehn205 PubMedCrossRefGoogle Scholar
  24. 24.
    Witte KK, Desilva R, Chattopadhyay S, Ghosh J, Cleland JG, Clark AL (2004) Are hematinic deficiencies the cause of anemia in chronic heart failure? Am Heart J 147(5):924–930. doi: 10.1016/j.ahj.2003.11.007 PubMedCrossRefGoogle Scholar
  25. 25.
    Opasich C, Cazzola M, Scelsi L, De Feo S, Bosimini E, Lagioia R, Febo O, Ferrari R, Fucili A, Moratti R, Tramarin R, Tavazzi L (2005) Blunted erythropoietin production and defective iron supply for erythropoiesis as major causes of anaemia in patients with chronic heart failure. Eur Heart J 26(21):2232–2237. doi: 10.1093/eurheartj/ehi388 PubMedCrossRefGoogle Scholar
  26. 26.
    Ezekowitz JA, McAlister FA, Armstrong PW (2003) Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12,065 patients with new-onset heart failure. Circulation 107(2):223–225PubMedCrossRefGoogle Scholar
  27. 27.
    Duffy TP (2004) Microcytic and hypochromic anemias. Cecil Textbook of Medicine, SaundersGoogle Scholar
  28. 28.
    de Silva R, Rigby AS, Witte KK, Nikitin NP, Tin L, Goode K, Bhandari S, Clark AL, Cleland JG (2006) Anemia, renal dysfunction, and their interaction in patients with chronic heart failure. Am J Cardiol 98(3):391–398. doi: 10.1016/j.amjcard.2006.01.107 PubMedCrossRefGoogle Scholar
  29. 29.
    Nanas JN, Matsouka C, Karageorgopoulos D, Leonti A, Tsolakis E, Drakos SG, Tsagalou EP, Maroulidis GD, Alexopoulos GP, Kanakakis JE, Anastasiou-Nana MI (2006) Etiology of anemia in patients with advanced heart failure. J Am Coll Cardiol 48(12):2485–2489. doi: 10.1016/j.jacc.2006.08.034 PubMedCrossRefGoogle Scholar
  30. 30.
    Anker SD, Comin Colet J, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Luscher TF, Bart B, Banasiak W, Niegowska J, Kirwan BA, Mori C, von Eisenhart Rothe B, Pocock SJ, Poole-Wilson PA, Ponikowski P (2009) Ferric carboxymaltose in patients with heart failure and iron deficiency. New Engl J Med 361(25):2436–2448. doi: 10.1056/NEJMoa0908355 PubMedCrossRefGoogle Scholar
  31. 31.
    Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, Borodulin-Nadzieja L, Banasiak W, Polonski L, Filippatos G, McMurray JJ, Anker SD, Ponikowski P (2010) Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J 31(15):1872–1880. doi: 10.1093/eurheartj/ehq158 PubMedCrossRefGoogle Scholar
  32. 32.
    Okonko DO, Mandal AK, Missouris CG, Poole-Wilson PA (2011) Disordered iron homeostasis in chronic heart failure: prevalence, predictors, and relation to anemia, exercise capacity, and survival. J Am Coll Cardiol 58(12):1241–1251. doi: 10.1016/j.jacc.2011.04.040 PubMedCrossRefGoogle Scholar
  33. 33.
    Lee G (1993) Iron deficiency and iron-deficiency anemia. Wintrobe’s clinical haematology. Lea & Febiger, PhiladelphiaGoogle Scholar
  34. 34.
    Zimmermann MB, Hurrell RF (2007) Nutritional iron deficiency. Lancet 370(9586):511–520. doi: 10.1016/S0140-6736(07)61235-5 PubMedCrossRefGoogle Scholar
  35. 35.
    Weiss G (2009) Iron metabolism in the anemia of chronic disease. Biochim Biophys Acta 1790(7):682–693. doi: 10.1016/j.bbagen.2008.08.006 PubMedCrossRefGoogle Scholar
  36. 36.
    Handelman GJ, Levin NW (2008) Iron and anemia in human biology: a review of mechanisms. Heart Fail Rev 13(4):393–404. doi: 10.1007/s10741-008-9086-x PubMedCrossRefGoogle Scholar
  37. 37.
    Cunietti E, Chiari MM, Monti M, Engaddi I, Berlusconi A, Neri MC, De Luca P (2004) Distortion of iron status indices by acute inflammation in older hospitalized patients. Arch Gerontol Geriatr 39(1):35–42. doi: 10.1016/j.archger.2003.12.005 PubMedCrossRefGoogle Scholar
  38. 38.
    Means RT Jr, Allen J, Sears DA, Schuster SJ (1999) Serum soluble transferrin receptor and the prediction of marrow aspirate iron results in a heterogeneous group of patients. Clin Lab Haematol 21(3):161–167PubMedCrossRefGoogle Scholar
  39. 39.
    Cook JD, Skikne BS, Baynes RD (1993) Serum transferrin receptor. Annu Rev Med 44:63–74. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  40. 40.
    Beguin Y, Clemons GK, Pootrakul P, Fillet G (1993) Quantitative assessment of erythropoiesis and functional classification of anemia based on measurements of serum transferrin receptor and erythropoietin. Blood 81(4):1067–1076PubMedGoogle Scholar
  41. 41.
    Punnonen K, Irjala K, Rajamaki A (1997) Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood 89(3):1052–1057PubMedGoogle Scholar
  42. 42.
    Thomas C, Kirschbaum A, Boehm D, Thomas L (2006) The diagnostic plot: a concept for identifying different states of iron deficiency and monitoring the response to epoetin therapy. Med Oncol 23(1):23–36. doi: 10.1385/MO:23:1:23 PubMedCrossRefGoogle Scholar
  43. 43.
    Thomas C, Thomas L (2002) Biochemical markers and hematologic indices in the diagnosis of functional iron deficiency. Clin Chem 48(7):1066–1076PubMedGoogle Scholar
  44. 44.
    Leszek P, Sochanowicz B, Szperl M, Kolsut P, Brzoska K, Piotrowski W, Rywik TM, Danko B, Polkowska-Motrenko H, Rozanski JM, Kruszewski M (2011) Myocardial iron homeostasis in advanced chronic heart failure patients. Int J Cardiol. doi: 10.1016/j.ijcard.2011.08.006 PubMedGoogle Scholar
  45. 45.
    Naito Y, Tsujino T, Fujimori Y, Sawada H, Akahori H, Hirotani S, Ohyanagi M, Masuyama T (2011) Impaired expression of duodenal iron transporters in Dahl salt-sensitive heart failure rats. J Hypertens 29(4):741–748. doi: 10.1097/HJH.0b013e3283434784 PubMedCrossRefGoogle Scholar
  46. 46.
    Merle U, Fein E, Gehrke SG, Stremmel W, Kulaksiz H (2007) The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation. Endocrinology 148(6):2663–2668. doi: 10.1210/en.2006-1331 PubMedCrossRefGoogle Scholar
  47. 47.
    Matsumoto M, Tsujino T, Lee-Kawabata M, Naito Y, Akahori H, Sakoda T, Ohyanagi M, Tomosugi N, Masuyama T (2010) Iron regulatory hormone hepcidin decreases in chronic heart failure patients with anemia. Circ J Off J Jap Circu Soc 74(2):301–306Google Scholar
  48. 48.
    Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B, Sirito M, Sawadogo M, Kahn A, Vaulont S (2002) Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc Nat Acad Sci USA 99(7):4596–4601. doi: 10.1073/pnas.072632499 PubMedCrossRefGoogle Scholar
  49. 49.
    Ganz T, Nemeth E (2011) Hepcidin and disorders of iron metabolism. Annu Rev Med 62:347–360. doi: 10.1146/annurev-med-050109-142444 PubMedCrossRefGoogle Scholar
  50. 50.
    Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306(5704):2090–2093. doi: 10.1126/science.1104742 PubMedCrossRefGoogle Scholar
  51. 51.
    van der Putten K, Jie KE, van den Broek D, Kraaijenhagen RJ, Laarakkers C, Swinkels DW, Braam B, Gaillard CA (2010) Hepcidin-25 is a marker of the response rather than resistance to exogenous erythropoietin in chronic kidney disease/chronic heart failure patients. Eur J Heart Fail 12(9):943–950. doi: 10.1093/eurjhf/hfq099 PubMedCrossRefGoogle Scholar
  52. 52.
    Haas JD, Brownlie Tt (2001) Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr 131(2S-2):676S-688S; discussion 688S-690SGoogle Scholar
  53. 53.
    Cairo G, Bernuzzi F, Recalcati S (2006) A precious metal: iron, an essential nutrient for all cells. Genes Nutr 1(1):25–39. doi: 10.1007/BF02829934 PubMedCrossRefGoogle Scholar
  54. 54.
    Anderson GJ, Vulpe CD (2009) Mammalian iron transport. Cell Mol Life Sci (CMLS) 66(20):3241–3261. doi: 10.1007/s00018-009-0051-1 CrossRefGoogle Scholar
  55. 55.
    Andrews NC (1999) Disorders of iron metabolism. New Engl J Med 341(26):1986–1995. doi: 10.1056/NEJM199912233412607 PubMedCrossRefGoogle Scholar
  56. 56.
    Sutak R, Lesuisse E, Tachezy J, Richardson DR (2008) Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 16(6):261–268. doi: 10.1016/j.tim.2008.03.005 PubMedCrossRefGoogle Scholar
  57. 57.
    Wilson MT, Reeder BJ (2008) Oxygen-binding haem proteins. Exp Physiol 93(1):128–132. doi: 10.1113/expphysiol.2007.039735 PubMedCrossRefGoogle Scholar
  58. 58.
    Gomollon F, Gisbert JP (2009) Anemia and inflammatory bowel diseases. World J Gastroenterol (WJG) 15(37):4659–4665CrossRefGoogle Scholar
  59. 59.
    Anker SD, Sharma R (2002) The syndrome of cardiac cachexia. Int J Cardiol 85(1):51–66PubMedCrossRefGoogle Scholar
  60. 60.
    Dong F, Zhang X, Culver B, Chew HG Jr, Kelley RO, Ren J (2005) Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration. Clin Sci (Lond) 109(3):277–286. doi: 10.1042/CS20040278 CrossRefGoogle Scholar
  61. 61.
    Katz SD, Zheng H (2002) Peripheral limitations of maximal aerobic capacity in patients with chronic heart failure. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 9(2):215–225CrossRefGoogle Scholar
  62. 62.
    Brownlie Tt, Utermohlen V, Hinton PS, Haas JD (2004) Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr 79(3):437–443PubMedGoogle Scholar
  63. 63.
    van Veldhuisen DJ, Anker SD, Ponikowski P, Macdougall IC (2011) Anemia and iron deficiency in heart failure: mechanisms and therapeutic approaches. Nat Rev Cardiol 8(9):485–493. doi: 10.1038/nrcardio.2011.77 PubMedCrossRefGoogle Scholar
  64. 64.
    Maeder MT, Khammy O, dos Remedios C, Kaye DM (2011) Myocardial and systemic iron depletion in heart failure implications for anemia accompanying heart failure. J Am Coll Cardiol 58(5):474–480. doi: 10.1016/j.jacc.2011.01.059 PubMedCrossRefGoogle Scholar
  65. 65.
    Jankowska EA, Ponikowski P (2010) Molecular changes in myocardium in the course of anemia or iron deficiency. Heart Fail Clin 6(3):295–304. doi: 10.1016/j.hfc.2010.03.003 PubMedCrossRefGoogle Scholar
  66. 66.
    Parikh A, Natarajan S, Lipsitz SR, Katz SD (2011) Iron deficiency in community-dwelling US adults with self-reported heart failure in the National Health and Nutrition Examination Survey III: prevalence and associations with anemia and inflammation. Circ Heart Fail 4(5):599–606. doi: 10.1161/CIRCHEARTFAILURE.111.960906 PubMedCrossRefGoogle Scholar
  67. 67.
    Palazzuoli A, Silverberg D, Iovine F, Capobianco S, Giannotti G, Calabro A, Campagna SM, Nuti R (2006) Erythropoietin improves anemia exercise tolerance and renal function and reduces B-type natriuretic peptide and hospitalization in patients with heart failure and anemia. Am Heart J 152(6):1096 e1099-1015. doi: 10.1016/j.ahj.2006.08.005 CrossRefGoogle Scholar
  68. 68.
    Macdougall IC, Tucker B, Thompson J, Tomson CR, Baker LR, Raine AE (1996) A randomized controlled study of iron supplementation in patients treated with erythropoietin. Kidney Int 50(5):1694–1699PubMedCrossRefGoogle Scholar
  69. 69.
    Van Wyck DB, Roppolo M, Martinez CO, Mazey RM, McMurray S (2005) A randomized, controlled trial comparing IV iron sucrose to oral iron in anemic patients with nondialysis-dependent CKD. Kidney Int 68(6):2846–2856. doi: 10.1111/j.1523-1755.2005.00758.x PubMedCrossRefGoogle Scholar
  70. 70.
    Toblli JE, Lombrana A, Duarte P, Di Gennaro F (2007) Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J Am Coll Cardiol 50(17):1657–1665. doi: 10.1016/j.jacc.2007.07.029 PubMedCrossRefGoogle Scholar
  71. 71.
    Okonko DO, Grzeslo A, Witkowski T, Mandal AK, Slater RM, Roughton M, Foldes G, Thum T, Majda J, Banasiak W, Missouris CG, Poole-Wilson PA, Anker SD, Ponikowski P (2008) Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: a randomized, controlled, observer-blinded trial. J Am Coll Cardiol 51(2):103–112. doi: 10.1016/j.jacc.2007.09.036 PubMedCrossRefGoogle Scholar
  72. 72.
    Bolger AP, Bartlett FR, Penston HS, O’Leary J, Pollock N, Kaprielian R, Chapman CM (2006) Intravenous iron alone for the treatment of anemia in patients with chronic heart failure. J Am Coll Cardiol 48(6):1225–1227. doi: 10.1016/j.jacc.2006.07.015 PubMedCrossRefGoogle Scholar
  73. 73.
    Usmanov RI, Zueva EB, Silverberg DS, Shaked M (2008) Intravenous iron without erythropoietin for the treatment of iron deficiency anemia in patients with moderate to severe congestive heart failure and chronic kidney insufficiency. J Nephrol 21(2):236–242PubMedGoogle Scholar
  74. 74.
    Drakos SG, Anastasiou-Nana MI, Malliaras KG, Nanas JN (2009) Anemia in chronic heart failure. Congest Heart Fail 15(2):87–92. doi: 10.1111/j.1751-7133.2009.00049.x PubMedCrossRefGoogle Scholar
  75. 75.
    Brutsaert TD, Hernandez-Cordero S, Rivera J, Viola T, Hughes G, Haas JD (2003) Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. Am J Clin Nutr 77(2):441–448PubMedGoogle Scholar
  76. 76.
    Danielson BG, Salmonson T, Derendorf H, Geisser P (1996) Pharmacokinetics of iron(III)-hydroxide sucrose complex after a single intravenous dose in healthy volunteers. Arzneimittelforschung 46(6):615–621PubMedGoogle Scholar
  77. 77.
    Seligman PA, Dahl NV, Strobos J, Kimko HC, Schleicher RB, Jones M, Ducharme MP (2004) Single-dose pharmacokinetics of sodium ferric gluconate complex in iron-deficient subjects. Pharmacotherapy 24(5):574–583PubMedCrossRefGoogle Scholar
  78. 78.
    Nissenson AR, Lindsay RM, Swan S, Seligman P, Strobos J (1999) Sodium ferric gluconate complex in sucrose is safe and effective in hemodialysis patients: North American clinical trial. Am J Kidney Dis Off J Nat Kidney Found 33(3):471–482CrossRefGoogle Scholar
  79. 79.
    Mircescu G, Garneata L, Capusa C, Ursea N (2006) Intravenous iron supplementation for the treatment of anaemia in pre-dialyzed chronic renal failure patients. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association—European Renal Association 21(1):120–124. doi: 10.1093/ndt/gfi087 CrossRefGoogle Scholar
  80. 80.
    Parkkinen J, von Bonsdorff L, Peltonen S, Gronhagen-Riska C, Rosenlof K (2000) Catalytically active iron and bacterial growth in serum of haemodialysis patients after i.v. iron-saccharate administration. Nephrology, dialysis, transplantation: official publication of the European Dialysis and Transplant Association—European Renal Association 15(11):1827–1834Google Scholar
  81. 81.
    Fishbane S (2003) Safety in iron management. Am J Kidney Dis Off J Nat Kidney Found 41(5 Suppl):18–26CrossRefGoogle Scholar
  82. 82.
    Agarwal R, Vasavada N, Sachs NG, Chase S (2004) Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kidney Int 65(6):2279–2289. doi: 10.1111/j.1523-1755.2004.00648.x PubMedCrossRefGoogle Scholar
  83. 83.
    Agarwal R, Rizkala AR, Kaskas MO, Minasian R, Trout JR (2007) Iron sucrose causes greater proteinuria than ferric gluconate in non-dialysis chronic kidney disease. Kidney Int 72(5):638–642. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  84. 84.
    Beck-da-Silva L, Rohde LE, Pereira-Barretto AC, de Albuquerque D, Bocchi E, Vilas-Boas F, Moura LZ, Montera MW, Rassi S, Clausell N (2007) Rationale and design of the IRON-HF study: a randomized trial to assess the effects of iron supplementation in heart failure patients with anemia. J Cardiac Fail 13(1):14–17. doi: 10.1016/j.cardfail.2006.09.007 CrossRefGoogle Scholar
  85. 85.
    Yuan XM, Li W (2008) Iron involvement in multiple signaling pathways of atherosclerosis: a revisited hypothesis. Curr Med Chem 15(21):2157–2172PubMedCrossRefGoogle Scholar
  86. 86.
    Sullivan JL (2004) Is stored iron safe? J Lab Clin Med 144(6):280–284. doi: 10.1016/j.lab.2004.10.006 PubMedCrossRefGoogle Scholar
  87. 87.
    Lee TS, Shiao MS, Pan CC, Chau LY (1999) Iron-deficient diet reduces atherosclerotic lesions in apoE-deficient mice. Circulation 99(9):1222–1229PubMedCrossRefGoogle Scholar
  88. 88.
    Facchini FS, Saylor KL (2002) Effect of iron depletion on cardiovascular risk factors: studies in carbohydrate-intolerant patients. Ann N Y Acad Sci 967:342–351PubMedCrossRefGoogle Scholar
  89. 89.
    Lee HT, Chiu LL, Lee TS, Tsai HL, Chau LY (2003) Dietary iron restriction increases plaque stability in apolipoprotein-e-deficient mice. J Biomed Sci 10(5):510–517. doi: 10.1159/000072378 PubMedCrossRefGoogle Scholar
  90. 90.
    Patt A, Horesh IR, Berger EM, Harken AH, Repine JE (1990) Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains. Journal of pediatric surgery 25(2):224–227; discussion 227–228Google Scholar
  91. 91.
    Ponraj D, Makjanic J, Thong PS, Tan BK, Watt F (1999) The onset of atherosclerotic lesion formation in hypercholesterolemic rabbits is delayed by iron depletion. FEBS Lett 459(2):218–222PubMedCrossRefGoogle Scholar
  92. 92.
    van Jaarsveld H, Pool GF (2002) Beneficial effects of blood donation on high density lipoprotein concentration and the oxidative potential of low density lipoprotein. Atherosclerosis 161(2):395–402PubMedCrossRefGoogle Scholar
  93. 93.
    Kruszewski M (2004) The role of labile iron pool in cardiovascular diseases. Acta Biochim Pol 51(2):471–480. doi: 035001471 PubMedGoogle Scholar
  94. 94.
    McCord JM (1998) Iron, free radicals, and oxidative injury. Semin Hematol 35(1):5–12PubMedGoogle Scholar
  95. 95.
    Gey KF (1993) Prospects for the prevention of free radical disease, regarding cancer and cardiovascular disease. Br Med Bull 49(3):679–699PubMedGoogle Scholar
  96. 96.
    Corti MC, Gaziano M, Hennekens CH (1997) Iron status and risk of cardiovascular disease. Ann Epidemiol 7(1):62–68PubMedCrossRefGoogle Scholar
  97. 97.
    Wardman P, Candeias LP (1996) Fenton chemistry: an introduction. Radiat Res 145(5):523–531PubMedCrossRefGoogle Scholar
  98. 98.
    Li L, Fink GD, Watts SW, Northcott CA, Galligan JJ, Pagano PJ, Chen AF (2003) Endothelin-1 increases vascular superoxide via endothelin(A)-NADPH oxidase pathway in low-renin hypertension. Circulation 107(7):1053–1058PubMedCrossRefGoogle Scholar
  99. 99.
    Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Investig 97(8):1916–1923. doi: 10.1172/JCI118623 PubMedCrossRefGoogle Scholar
  100. 100.
    Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT (1997) Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Nat Acad Sci USA 94(26):14483–14488PubMedCrossRefGoogle Scholar
  101. 101.
    Krieglstein CF, Granger DN (2001) Adhesion molecules and their role in vascular disease. Am J Hypertens 14(6 Pt 2):44S–54SPubMedCrossRefGoogle Scholar
  102. 102.
    Ley K, Huo Y (2001) VCAM-1 is critical in atherosclerosis. J Clin Investig 107(10):1209–1210. doi: 10.1172/JCI13005 PubMedCrossRefGoogle Scholar
  103. 103.
    Quinn MT, Gauss KA (2004) Structure and regulation of the neutrophil respiratory burst oxidase: comparison with nonphagocyte oxidases. J Leukoc Biol 76(4):760–781. doi: 10.1189/jlb.0404216 PubMedCrossRefGoogle Scholar
  104. 104.
    Yu L, Zhen L, Dinauer MC (1997) Biosynthesis of the phagocyte NADPH oxidase cytochrome b558. Role of heme incorporation and heterodimer formation in maturation and stability of gp91phox and p22phox subunits. J Biol Chem 272(43):27288–27294PubMedCrossRefGoogle Scholar
  105. 105.
    Taille C, El-Benna J, Lanone S, Dang MC, Ogier-Denis E, Aubier M, Boczkowski J (2004) Induction of heme oxygenase-1 inhibits NAD(P)H oxidase activity by down-regulating cytochrome b558 expression via the reduction of heme availability. J Biol Chem 279(27):28681–28688. doi: 10.1074/jbc.M310661200 PubMedCrossRefGoogle Scholar
  106. 106.
    Li L, Frei B (2009) Prolonged exposure to LPS increases iron, heme, and p22phox levels and NADPH oxidase activity in human aortic endothelial cells: inhibition by desferrioxamine. Arterioscler Thromb Vasc Biol 29(5):732–738. doi: 10.1161/ATVBAHA.108.183210 PubMedCrossRefGoogle Scholar
  107. 107.
    Minqin R, Watt F, Huat BT, Halliwell B (2003) Correlation of iron and zinc levels with lesion depth in newly formed atherosclerotic lesions. Free Radical Biol Med 34(6):746–752CrossRefGoogle Scholar
  108. 108.
    Thong PS, Selley M, Watt F (1996) Elemental changes in atherosclerotic lesions using nuclear microscopy. Cell Mol Biol (Noisy-le-grand) 42(1):103–110Google Scholar
  109. 109.
    Minqin R, Rajendran R, Pan N, Tan BK, Ong WY, Watt F, Halliwell B (2005) The iron chelator desferrioxamine inhibits atherosclerotic lesion development and decreases lesion iron concentrations in the cholesterol-fed rabbit. Free Radical Biol Med 38(9):1206–1211. doi: 10.1016/j.freeradbiomed.2005.01.008 CrossRefGoogle Scholar
  110. 110.
    Sullivan JL (1981) Iron and the sex difference in heart disease risk. Lancet 1(8233):1293–1294PubMedCrossRefGoogle Scholar
  111. 111.
    Stone NJ, Levy RI, Fredrickson DS, Verter J (1974) Coronary artery disease in 116 kindred with familial type II hyperlipoproteinemia. Circulation 49(3):476–488PubMedCrossRefGoogle Scholar
  112. 112.
    Sullivan JL (2003) Are menstruating women protected from heart disease because of, or in spite of, estrogen? Relevance to the iron hypothesis. Am Heart J 145(2):190–194. doi: 10.1067/mhj.2003.142 PubMedCrossRefGoogle Scholar
  113. 113.
    Kannel WB, Hjortland MC, McNamara PM, Gordon T (1976) Menopause and risk of cardiovascular disease: the Framingham study. Ann Intern Med 85(4):447–452PubMedCrossRefGoogle Scholar
  114. 114.
    Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R (1992) High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86(3):803–811PubMedCrossRefGoogle Scholar
  115. 115.
    Danesh J, Appleby P (1999) Coronary heart disease and iron status: meta-analyses of prospective studies. Circulation 99(7):852–854PubMedCrossRefGoogle Scholar
  116. 116.
    Finch CA, Cook JD, Labbe RF, Culala M (1977) Effect of blood donation on iron stores as evaluated by serum ferritin. Blood 50(3):441–447PubMedGoogle Scholar
  117. 117.
    Milman N, Kirchhoff M (1991) The influence of blood donation on iron stores assessed by serum ferritin and hemoglobin in a population survey of 1359 Danish women. Ann Hematol 63(1):27–32PubMedCrossRefGoogle Scholar
  118. 118.
    Tuomainen TP, Salonen R, Nyyssonen K, Salonen JT (1997) Cohort study of relation between donating blood and risk of myocardial infarction in 2682 men in eastern Finland. BMJ 314(7083):793–794PubMedCrossRefGoogle Scholar
  119. 119.
    Meyers DG, Strickland D, Maloley PA, Seburg JK, Wilson JE, McManus BF (1997) Possible association of a reduction in cardiovascular events with blood donation. Heart 78(2):188–193PubMedGoogle Scholar
  120. 120.
    Ascherio A, Rimm EB, Giovannucci E, Willett WC, Stampfer MJ (2001) Blood donations and risk of coronary heart disease in men. Circulation 103(1):52–57PubMedCrossRefGoogle Scholar
  121. 121.
    Meyers DG, Jensen KC, Menitove JE (2002) A historical cohort study of the effect of lowering body iron through blood donation on incident cardiac events. Transfusion 42(9):1135–1139PubMedCrossRefGoogle Scholar
  122. 122.
    Zacharski LR, Chow BK, Howes PS, Shamayeva G, Baron JA, Dalman RL, Malenka DJ, Ozaki CK, Lavori PW (2007) Reduction of iron stores and cardiovascular outcomes in patients with peripheral arterial disease: a randomized controlled trial. J Am Med Assoc (JAMA) 297(6):603–610. doi: 10.1001/jama.297.6.603 CrossRefGoogle Scholar
  123. 123.
    Zacharski LR, Chow B, Lavori PW, Howes PS, Bell MR, DiTommaso MA, Carnegie NM, Bech F, Amidi M, Muluk S (2000) The iron (Fe) and atherosclerosis study (FeAST): a pilot study of reduction of body iron stores in atherosclerotic peripheral vascular disease. Am Heart J 139(2 Pt 1):337–345PubMedGoogle Scholar
  124. 124.
    Zheng H, Huang X, Zhang Q, Katz SD (2006) Iron sucrose augments homocysteine-induced endothelial dysfunction in normal subjects. Kidney Int 69(4):679–684. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  125. 125.
    Rooyakkers TM, Stroes ES, Kooistra MP, van Faassen EE, Hider RC, Rabelink TJ, Marx JJ (2002) Ferric saccharate induces oxygen radical stress and endothelial dysfunction in vivo. Eur J Clin Invest 32(Suppl 1):9–16PubMedCrossRefGoogle Scholar
  126. 126.
    Besarab A, Bolton WK, Browne JK, Egrie JC, Nissenson AR, Okamoto DM, Schwab SJ, Goodkin DA (1998) The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. New Engl J Med 339(9):584–590. doi: 10.1056/NEJM199808273390903 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Detroit Medical CenterWayne State UniversityDetroitUSA
  2. 2.DMC Cardiovascular InstituteWayne State UniversityDetroitUSA

Personalised recommendations