Advertisement

Heart Failure Reviews

, Volume 17, Issue 3, pp 421–436 | Cite as

Intrinsic skeletal muscle alterations in chronic heart failure patients: a disease-specific myopathy or a result of deconditioning?

  • T. A. RehnEmail author
  • M. Munkvik
  • P. K. Lunde
  • I. Sjaastad
  • O. M. Sejersted
Article

Abstract

Chronic heart failure (CHF) patients frequently experience impaired exercise tolerance due to skeletal muscle fatigue. Studies suggest that this in part is due to intrinsic alterations in skeletal muscle of CHF patients, often interpreted as a disease-specific myopathy. Knowledge about the mechanisms underlying these skeletal muscle alterations is of importance for the pathophysiological understanding of CHF, therapeutic approach and rehabilitation strategies. We here critically review the evidence for skeletal muscle alterations in CHF, the underlying mechanisms of such alterations and how skeletal muscle responds to training in this patient group. Skeletal muscle characteristics in CHF patients are very similar to what is reported in response to chronic obstructive pulmonary disease (COPD), detraining and deconditioning. Furthermore, skeletal muscle alterations observed in CHF patients are reversible by training, and skeletal muscle of CHF patients seems to be at least as trainable as that of matched controls. We argue that deconditioning is a major contributor to the skeletal muscle dysfunction in CHF patients and that further research is needed to determine whether, and to what extent, the intrinsic skeletal muscle alterations in CHF represent an integral part of the pathophysiology in this disease.

Keywords

Congestive heart failure Deconditioning Skeletal muscle Inflammation Exercise Training 

Notes

Conflict of interest

Drs Rehn, Munkvik, Lunde, Sjaastad and Sejersted have no conflicts of interests or financial ties to disclose.

References

  1. 1.
    Elahi M, Mahmood M, Shahbaz A, Malick N, Sajid J, Asopa S, Matata BM (2010) Current concepts underlying benefits of exercise training in congestive heart failure patients. Curr Cardiol Rev 6:104–111PubMedGoogle Scholar
  2. 2.
    Williams SG, Ng LL, O’Brien RJ, Taylor S, Wright DJ, Li YF, Tan LB (2005) Complementary roles of simple variables, NYHA and N-BNP, in indicating aerobic capacity and severity of heart failure. Int J Cardiol 102:279–286PubMedGoogle Scholar
  3. 3.
    Russell SD, Saval MA, Robbins JL, Ellestad MH, Gottlieb SS, Handberg EM, Zhou Y, Chandler B (2009) New York Heart Association functional class predicts exercise parameters in the current era. Am Heart J 158:S24–S30PubMedGoogle Scholar
  4. 4.
    O’Neill JO, Young JB, Pothier CE, Lauer MS (2005) Peak oxygen consumption as a predictor of death in patients with heart failure receiving beta-blockers. Circulation 11:2313–2318Google Scholar
  5. 5.
    Balady GJ, Arena R, Sietsema K, Myers J, Coke L, Fletcher GF, Forman D, Franklin B, Guazzi M, Gulati M, Keteyian SJ, Lavie CJ, Macko R, Mancini D, Milani RV, American Heart Association Exercise CRaPCotCoCC, Council on Epidemiology and Prevention, Council on Peripheral Vascular Disease, Interdisciplinary Council on Quality of Care and Outcomes Research (2010) Clinician’s guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 122:191–225Google Scholar
  6. 6.
    Arena R, Myers J, Guazzi M (2008) The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review. Heart Fail Rev 13:245–269PubMedGoogle Scholar
  7. 7.
    Witte KKA, Nikitin NP, De Silva R, Cleland JGF, Clark AL (2004) Exercise capacity and cardiac function assessed by tissue Doppler imaging in chronic heart failure. Br Heart J 90:1144–1150Google Scholar
  8. 8.
    Clark AL, Swan JW, Laney R, Connelly M, Somerville J, Coats AJ (1994) The role of right and left ventricular function in the ventilatory response to exercise in chronic heart failure. Circulation 89:2062–2069PubMedGoogle Scholar
  9. 9.
    Chandrashekhar Y, Anand IS (1992) Relation between major indices of prognosis in patients with chronic congestive heart failure: studies of maximal exercise oxygen consumption, neurohormones and ventricular function. Indian Heart J 44:213–216PubMedGoogle Scholar
  10. 10.
    Davies SW, Fussell AL, Jordan SL, Poole-Wilson PA, Lipkin DP (1992) Abnormal diastolic filling patterns in chronic heart failure—relationship to exercise capacity. Eur Heart J 13:749–757PubMedGoogle Scholar
  11. 11.
    Carell ES, Murali S, Schulman DS, Estrada-Quintero T, Uretsky BF (1994) Maximal exercise tolerance in chronic congestive heart failure. Relationship to resting left ventricular function. Chest 106:1746–1752PubMedGoogle Scholar
  12. 12.
    Higginbotham MB, Morris KG, Conn EH, Coleman RE, Cobb FR (1983) Determinants of variable exercise performance among patients with severe left ventricular dysfunction. Am J Cardiol 51:52–60PubMedGoogle Scholar
  13. 13.
    Wilson JR, Martin JL, Ferraro N (1984) Impaired skeletal muscle nutritive flow during exercise in patients with congestive heart failure: role of cardiac pump dysfunction as determined by the effect of dobutamine. Am J Cardiol 53:1308–1315PubMedGoogle Scholar
  14. 14.
    Mancini DM, Schwartz M, Ferraro N, Seestedt R, Chance B, Wilson JR (1990) Effect of dobutamine on skeletal muscle metabolism in patients with congestive heart failure. Am J Cardiol 65:1121–1126PubMedGoogle Scholar
  15. 15.
    Maskin CS, Forman R, Sonnenblick EH, Frishman WH, LeJemtel TH (1983) Failure of dobutamine to increase exercise capacity despite hemodynamic improvement in severe chronic heart failure. Am J Cardiol 51:177–182PubMedGoogle Scholar
  16. 16.
    Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106:653–658PubMedGoogle Scholar
  17. 17.
    Diederich ER, Behnke BJ, McDonough P, Kindig CA, Barstow TJ, Poole DC, Musch TI (2002) Dynamics of microvascular oxygen partial pressure in contracting skeletal muscle of rats with chronic heart failure. Cardiovasc Res 56(3):479–486PubMedGoogle Scholar
  18. 18.
    Gerovasili V, Drakos S, Kravari M, Malliaras K, Karatzanos E, Dimopoulos S, Tasoulis A, nastasiou-Nana M, Roussos C, Nanas S (2009) Physical exercise improves the peripheral microcirculation of patients with chronic heart failure. J Cardiopulm Rehabil Prev 29:385–391PubMedGoogle Scholar
  19. 19.
    Lunde PK, Verburg E, Vollestad NK, Sejersted OM (1998) Skeletal muscle fatigue in normal subjects and heart failure patients. Is there a common mechanism? Acta Physiol Scand 162:215–228PubMedGoogle Scholar
  20. 20.
    Munkvik M, Lunde PK, Sejersted OM (2009) Causes of fatigue in slow-twitch rat skeletal muscle during dynamic activity. Am J Physiol Regul Integr Comp Physiol 297:R900–R910PubMedGoogle Scholar
  21. 21.
    Massie BM, Conway M, Yonge R, Frostick S, Sleight P, Ledingham J, Radda G, Rajagopalan B (1987) 31P nuclear magnetic resonance evidence of abnormal skeletal muscle metabolism in patients with congestive heart failure. Am J Cardiol 60:309–315PubMedGoogle Scholar
  22. 22.
    Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G (1988) Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation 78:320–326PubMedGoogle Scholar
  23. 23.
    Massie B, Conway M, Yonge R, Frostick S, Ledingham J, Sleight P, Radda G, Rajagopalan B (1987) Skeletal muscle metabolism in patients with congestive heart failure: relation to clinical severity and blood flow. Circulation 76:1009–1019PubMedGoogle Scholar
  24. 24.
    Massie BM, Simonini A, Sahgal P, Wells L, Dudley GA (1996) Relation of systemic and local muscle exercise capacity to skeletal muscle characteristics in men with congestive heart failure. J Am Coll Cardiol 27:140–145PubMedGoogle Scholar
  25. 25.
    Sunnerhagen KS, Cider A, Schaufelberger M, Hedberg M, Grimby G (1998) Muscular performance in heart failure. J Card Fail 4:97–104PubMedGoogle Scholar
  26. 26.
    Magnusson G, Kaijser L, Rong H, Isberg B, Sylven C, Saltin B (1996) Exercise capacity in heart failure patients: relative importance of heart and skeletal muscle. Clin Physiol 16:183–195PubMedGoogle Scholar
  27. 27.
    Minotti JR, Pillay P, Chang L, Wells L, Massie BM (1992) Neurophysiological assessment of skeletal muscle fatigue in patients with congestive heart failure. Circulation 86:903–908PubMedGoogle Scholar
  28. 28.
    Harridge SD, Magnusson G, Gordon A (1996) Skeletal muscle contractile characteristics and fatigue resistance in patients with chronic heart failure. Eur Heart J 17:896–901PubMedGoogle Scholar
  29. 29.
    Brassard P, Maltais F, Noel M, Doyon JF, LeBlanc P, Allaire J, Simard C, Leblanc MH, Poirier P, Jobin J (2006) Skeletal muscle endurance and muscle metabolism in patients with chronic heart failure. Can J Cardiol 22:387–392PubMedGoogle Scholar
  30. 30.
    Yamani MH, Sahgal P, Wells L, Massie BM (1995) Exercise intolerance in chronic heart failure is not associated with impaired recovery of muscle function or submaximal exercise performance. J Am Coll Cardiol 25:1232–1238PubMedGoogle Scholar
  31. 31.
    Buller NP, Jones D, Poole-Wilson PA (1991) Direct measurement of skeletal muscle fatigue in patients with chronic heart failure. Br Heart J 65:20–24PubMedGoogle Scholar
  32. 32.
    Schulze PC, Linke A, Schoene N, Winkler SM, Adams V, Conradi S, Busse M, Schuler G, Hambrecht R (2004) Functional and morphological skeletal muscle abnormalities correlate with reduced electromyographic activity in chronic heart failure. Eur J Cardiovasc Prev Rehabil 11:155–161PubMedGoogle Scholar
  33. 33.
    Magnusson G, Kaijser L, Sylven C, Karlberg KE, Isberg B, Saltin B (1997) Peak skeletal muscle perfusion is maintained in patients with chronic heart failure when only a small muscle mass is exercised. Cardiovasc Res 33:297–306PubMedGoogle Scholar
  34. 34.
    Drexler H, Riede U, Munzel T, Konig H, Funke E, Just H (1992) Alterations of skeletal muscle in chronic heart failure. Circulation 85:1751–1759PubMedGoogle Scholar
  35. 35.
    Sullivan MJ, Green HJ, Cobb FR (1990) Skeletal muscle biochemistry and histology in ambulatory patients with long-term heart failure. Circulation 81:518–527PubMedGoogle Scholar
  36. 36.
    Schaufelberger M, Eriksson BO, Grimby G, Held P, Swedberg K (1997) Skeletal muscle alterations in patients with chronic heart failure. Eur Heart J 18:971–980PubMedGoogle Scholar
  37. 37.
    Minotti JR, Pillay P, Oka R, Wells L, Christoph I, Massie BM (1993) Skeletal muscle size: relationship to muscle function in heart failure. J Appl Physiol 75:373–381PubMedGoogle Scholar
  38. 38.
    Mancini DM, Walter G, Reichek N, Lenkinski R, McCully KK, Mullen JL, Wilson JR (1992) Contribution of skeletal muscle atrophy to exercise intolerance and altered muscle metabolism in heart failure. Circulation 85:1364–1373PubMedGoogle Scholar
  39. 39.
    Filippatos GS, Kanatselos C, Manolatos DD, Vougas B, Sideris A, Kardara D, Anker SD, Kardaras F, Uhal B (2003) Studies on apoptosis and fibrosis in skeletal musculature: a comparison of heart failure patients with and without cardiac cachexia. Int J Cardiol 90:107–113PubMedGoogle Scholar
  40. 40.
    Adams V, Jiang H, Yu J, Mobius-Winkler S, Fiehn E, Linke A, Weigl C, Schuler G, Hambrecht R (1999) Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance. J Am Coll Cardiol 33:959–965PubMedGoogle Scholar
  41. 41.
    Vescovo G, Volterrani M, Zennaro R, Sandri M, Ceconi C, Lorusso R, Ferrari R, Ambrosio GB, Dalla LL (2000) Apoptosis in the skeletal muscle of patients with heart failure: investigation of clinical and biochemical changes. Br Heart J 84:431–437Google Scholar
  42. 42.
    Linke A, Adams V, Schulze PC, Erbs S, Gielen S, Fiehn E, Mobius-Winkler S, Schubert A, Schuler G, Hambrecht R (2005) Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation 111:1763–1770PubMedGoogle Scholar
  43. 43.
    Williams AD, Selig S, Hare DL, Hayes A, Krum H, Patterson J, Geerling RH, Toia D, Carey MF (2004) Reduced exercise tolerance in CHF may be related to factors other than impaired skeletal muscle oxidative capacity. J Card Fail 10:141–148PubMedGoogle Scholar
  44. 44.
    Duscha BD, Kraus WE, Keteyian SJ, Sullivan MJ, Green HJ, Schachat FH, Pippen AM, Brawner CA, Blank JM, Annex BH (1999) Capillary density of skeletal muscle: a contributing mechanism for exercise intolerance in class II–III chronic heart failure independent of other peripheral alterations. J Am Coll Cardiol 33:1956–1963PubMedGoogle Scholar
  45. 45.
    Duscha BD, Annex BH, Green HJ, Pippen AM, Kraus WE (2002) Deconditioning fails to explain peripheral skeletal muscle alterations in men with chronic heart failure. J Am Coll Cardiol 39:1170–1174PubMedGoogle Scholar
  46. 46.
    Lipkin DP, Jones DA, Round JM, Poole-Wilson PA (1988) Abnormalities of skeletal muscle in patients with chronic heart failure. Int J Cardiol 18:187–195PubMedGoogle Scholar
  47. 47.
    Esposito F, Mathieu-Costello O, Shabetai R, Wagner PD, Richardson RS (2010) Limited maximal exercise capacity in patients with chronic heart failure: partitioning the contributors. J Am Coll Cardiol 55:1945–1954PubMedGoogle Scholar
  48. 48.
    Mancini DM, Coyle E, Coggan A, Beltz J, Ferraro N, Montain S, Wilson JR (1989) Contribution of intrinsic skeletal muscle changes to 31P NMR skeletal muscle metabolic abnormalities in patients with chronic heart failure. Circulation 80:1338–1346PubMedGoogle Scholar
  49. 49.
    Esposito F, Mathieu-Costello O, Entin PL, Wagner PD, Richardson RS (2010) The skeletal muscle VEGF mRNA response to acute exercise in patients with chronic heart failure. Growth Factors 28:139–147PubMedGoogle Scholar
  50. 50.
    Perreault CL, Gonzalez-Serratos H, Litwin SE, Sun X, Franzini-Armstrong C, Morgan JP (1993) Alterations in contractility and intracellular Ca2+ transients in isolated bundles of skeletal muscle fibers from rats with chronic heart failure. Circ Res 73:405–412PubMedGoogle Scholar
  51. 51.
    Ward CW, Reiken S, Marks AR, Marty I, Vassort G, Lacampagne A (2003) Defects in ryanodine receptor calcium release in skeletal muscle from post-myocardial infarct rats. FASEB J 17:1517–1519PubMedGoogle Scholar
  52. 52.
    Lunde PK, Dahlstedt AJ, Bruton JD, Lannergren J, Thoren P, Sejersted OM, Westerblad H (2001) Contraction and intracellular Ca2+ handling in isolated skeletal muscle of rats with congestive heart failure. Circ Res 88:1299–1305PubMedGoogle Scholar
  53. 53.
    Reiken S, Lacampagne A, Zhou H, Kherani A, Lehnart SE, Ward C, Huang F, Gaburjakova M, Gaburjakova J, Rosemblit N, Warren MS, He KL, Yi GH, Wang J, Burkhoff D, Vassort G, Marks AR (2003) PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J Cell Biol 160:919–928PubMedGoogle Scholar
  54. 54.
    Simonini A, Chang K, Yue P, Long CS, Massie BM (1999) Expression of skeletal muscle sarcoplasmic reticulum calcium-ATPase is reduced in rats with postinfarction heart failure. Heart 81:303–307PubMedGoogle Scholar
  55. 55.
    Peters DG, Mitchell HL, McCune SA, Park S, Williams JH, Kandarian SC (1997) Skeletal muscle sarcoplasmic reticulum Ca2+-ATPase gene expression in congestive heart failure. Circ Res 81:703–710PubMedGoogle Scholar
  56. 56.
    Bekedam MA, van Beek-Harmsen BJ, van Mechelen W, Boonstra A, Visser FC, van der Laarse WJ (2009) Sarcoplasmic reticulum ATPase activity in type I and II skeletal muscle fibres of chronic heart failure patients. Int J Cardiol 133:185–190PubMedGoogle Scholar
  57. 57.
    Bueno CR, Ferreira JCB, Pereira MG, Bacurau AVN, Brum PC (2010) Aerobic exercise training improves skeletal muscle function and Ca2 + handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109:702–709PubMedGoogle Scholar
  58. 58.
    Bekedam MA, van Beek-Harmsen BJ, van Mechelen W, Boonstra A, Visser FC, van der Laarse WJ (2008) Sarcoplasmic reticulum ATPase activity in type I and II skeletal muscle fibres of chronic heart failure patients. Int J Cardiol. In Press. doi: 10.1016/j.ijcard.2007.12.025
  59. 59.
    Munkvik M, Rehn TA, Slettalokken G, Hasic A, Hallen J, Sjaastad I, Sejersted OM, Lunde PK (2010) Training effects on skeletal muscle calcium handling in human chronic heart failure. Med Sci Sports Exerc 42:847–855PubMedGoogle Scholar
  60. 60.
    Lunde PK, Sejersted OM, Thorud HMS, Tonnessen T, Henriksen UL, Christensen G, Westerblad H, Bruton J (2006) Effects of congestive heart failure on Ca2+ handling in skeletal muscle during fatigue. Circ Res 98:1514–1519PubMedGoogle Scholar
  61. 61.
    Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL (1996) Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 27:1201–1206PubMedGoogle Scholar
  62. 62.
    Aukrust P, Ueland T, Muller F, Andreassen AK, Nordoy I, Aas H, Kjekshus J, Simonsen S, Froland SS, Gullestad L (1998) Elevated circulating levels of C–C chemokines in patients with congestive heart failure. Circulation 97:1136–1143PubMedGoogle Scholar
  63. 63.
    Naito Y, Tsujino T, Fujioka Y, Ohyanagi M, Okamura H, Iwasaki T (2002) Increased circulating interleukin-18 in patients with congestive heart failure. Br Heart J 88:296–297Google Scholar
  64. 64.
    Vistnes M, Wahre A, Nygard S, Sjaastad I, Andersson KB, Husberg C, Christensen G (2010) Circulating cytokine levels in mice with heart failure are etiology-dependent. J Appl Physiol. doi: 10.1152/japplphysiol.01084.2009
  65. 65.
    Heymans S, Hirsch E, Anker SD, Aukrust P, Balligand JL, Cohen-Tervaert JW, Drexler H, Filippatos G, Felix SB, Gullestad L, Hilfiker-Kleiner D, Janssens S, Latini R, Neubauer G, Paulus WJ, Pieske B, Ponikowski P, Schroen B, Schultheiss HP, Tschope C, Van Bilsen M, Zannad F, McMurray J, Shah AM (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research committee of the heart failure association of the European society of cardiology. Eur J Heart Fail 11:119–129PubMedGoogle Scholar
  66. 66.
    Yamaoka-Tojo M, Tojo T, Inomata T, Machida Y, Osada K, Izumi T (2002) Circulating levels of interleukin 18 reflect etiologies of heart failure: Th1/Th2 cytokine imbalance exaggerates the pathophysiology of advanced heart failure. J Card Fail 8:21–27PubMedGoogle Scholar
  67. 67.
    Orus J, Roig E, Perez-Villa F, Pare C, Azqueta M, Filella X, Heras M, Sanz G (2000) Prognostic value of serum cytokines in patients with congestive heart failure. J Heart Lung Transplant 19:419–425PubMedGoogle Scholar
  68. 68.
    Deswal AM, Petersen NJP, Feldman AMM, Young JBM, White BGP, Mann DLM (2001) Cytokines and cytokine receptors in advanced heart failure: an analysis of the cytokine database from the vesnarinone trial (VEST). Circulation 103:2055–2059PubMedGoogle Scholar
  69. 69.
    Mallat Z, Heymes C, Corbaz A, Logeart D, Alouani S, Cohen-Solal A, Seidler T, Hasenfuss G, Chvatchko Y, Shah AM, Tedgui A (2004) Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. FASEB J 18:1752–1754PubMedGoogle Scholar
  70. 70.
    Damas JK, Eiken HG, Oie E, Bjerkeli V, Yndestad A, Ueland T, Tonnessen T, Geiran OR, Aass H, Simonsen S, Christensen G, Froland SS, Attramadal H, Gullestad L, Aukrust P (2000) Myocardial expression of CC- and CXC-chemokines and their receptors in human end-stage heart failure. Cardiovasc Res 47:778–787PubMedGoogle Scholar
  71. 71.
    Torre-Amione G, Kapadia S, Lee J, Bies RD, Lebovitz R, Mann DL (1995) Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 92:1487–1493PubMedGoogle Scholar
  72. 72.
    Yndestad A, Holm AM, Muller F, Simonsen S, Froland SS, Gullestad L, Aukrust P (2003) Enhanced expression of inflammatory cytokines and activation markers in T-cells from patients with chronic heart failure. Cardiovasc Res 60:141–146PubMedGoogle Scholar
  73. 73.
    Aker S, Belosjorow S, Konietzka I, Duschin A, Martin C, Heusch G, Schulz R (2003) Serum but not myocardial TNF-alpha concentration is increased in pacing-induced heart failure in rabbits. Am J Physiol Regul Integr Comp Physiol 285:R463–R469PubMedGoogle Scholar
  74. 74.
    Lommi J, Pulkki K, Koskinen P, Naveri H, Leinonen H, Harkonen M, Kupari M (1997) Haemodynamic, neuroendocrine and metabolic correlates of circulating cytokine concentrations in congestive heart failure. Eur Heart J 18:1620–1625PubMedGoogle Scholar
  75. 75.
    Anker SD, Egerer KR, Volk HD, Kox WJ, Poole-Wilson PA, Coats AJ (1997) Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 79:1426–1430PubMedGoogle Scholar
  76. 76.
    Plomgaard P, Penkowa M, Pedersen BK (2005) Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles. Exerc Immunol Rev 11:53–63PubMedGoogle Scholar
  77. 77.
    Pedersen BK, Akerstrom TCA, Nielsen AR, Fischer CP (2007) Role of myokines in exercise and metabolism. J Appl Physiol 103:1093–1098PubMedGoogle Scholar
  78. 78.
    Kunisada K, Hirota H, Fujio Y, Matsui H, Tani Y, Yamauchi-Takihara K, Kishimoto T (1996) Activation of JAK-STAT and MAP kinases by leukemia inhibitory factor through gp130 in cardiac myocytes. Circulation 94:2626–2632PubMedGoogle Scholar
  79. 79.
    Schulze PC, Gielen S, Adams V, Linke A, Mobius-Winkler S, Erbs S, Kratzsch J, Hambrecht R, Schuler G (2003) Muscular levels of proinflammatory cytokines correlate with a reduced expression of insulin like growth factor-I in chronic heart failure. Basic Res Cardiol 98:267–274PubMedGoogle Scholar
  80. 80.
    Tsutamoto T, Hisanaga T, Wada A, Maeda K, Ohnishi M, Fukai D, Mabuchi N, Sawaki M, Kinoshita M (1998) Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 31:391–398PubMedGoogle Scholar
  81. 81.
    Adams V, Nehrhoff B, Spate U, Linke A, Schulze PC, Baur A, Gielen S, Hambrecht R, Schuler G (2002) Induction of iNOS expression in skeletal muscle by IL-1β and NFκB activation: an in vitro and in vivo study. Cardiovasc Res 54:95–104PubMedGoogle Scholar
  82. 82.
    Gielen S, Adams V, Linke A, Erbs S, Mobius-Winkler S, Schubert A, Schuler G, Hambrecht R (2005) Exercise training in chronic heart failure: correlation between reduced local inflammation and improved oxidative capacity in the skeletal muscle. Eur J Cardiovasc Prev Rehabil 12:393–400PubMedGoogle Scholar
  83. 83.
    Reid MB, Lannergren J, Westerblad H (2002) Respiratory and limb muscle weakness induced by tumor necrosis factor-α: involvement of muscle myofilaments. Am J Respir Crit Care Med 166:479–484PubMedGoogle Scholar
  84. 84.
    Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB (1998) Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-κB activation in response to tumor necrosis factor α. FASEB J 12:871–880PubMedGoogle Scholar
  85. 85.
    Woldbaek PR, Sande JB, Stromme TA, Lunde PK, Djurovic S, Lyberg T, Christensen G, Tonnessen T (2005) Daily administration of interleukin-18 causes myocardial dysfunction in healthy mice. Am J Physiol Heart Circ Physiol 289:708–714Google Scholar
  86. 86.
    Chandrasekar B, Mummidi S, Claycomb WC, Mestril R, Nemer M (2005) Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. J Biol Chem 280:4553–4567PubMedGoogle Scholar
  87. 87.
    Seta Y, Kanda T, Tanaka T, Arai M, Sekiguchi K, Yokoyama T, Kurimoto M, Tamura J, Kurabayashi M (2000) Interleukin-18 in patients with congestive heart failure: induction of atrial natriuretic peptide gene expression. Res Commun Mol Pathol Pharmacol 108:87–95PubMedGoogle Scholar
  88. 88.
    Rehn TA, Borge BA, Lunde PK, Munkvik M, Sneve ML, Grondahl F, Aronsen JM, Sjaastad I, Prydz K, Kolset SO, Wiig H, Sejersted OM, Iversen PO (2009) Temporary fatigue and altered extracellular matrix in skeletal muscle during progression of heart failure in rats. Am J Physiol Regul Integr Comp Physiol 297:R26–R33PubMedGoogle Scholar
  89. 89.
    Niebauer J (2008) Effects of exercise training on inflammatory markers in patients with heart failure. Heart Fail Rev 13:39–49PubMedGoogle Scholar
  90. 90.
    Bailey AJ, Shellswell GB, Duance VC (1979) Identification and change of collagen types in differentiating myoblasts and developing chick muscle. Nature 278:67–69PubMedGoogle Scholar
  91. 91.
    Kjaer M (2004) Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 82:649–698Google Scholar
  92. 92.
    Scott JE (2001) Structure and function in extracellular matrices depend on interactions between anionic glycosaminoglycans. Pathol Biol 49:284–289PubMedGoogle Scholar
  93. 93.
    Wiberg C, Hedbom E, Khairullina A, Lamande SR, Oldberg A, Timpl R, Morgelin M, Heinegard D (2001) Biglycan and decorin bind close to the n-terminal region of the collagen VI triple helix. J Biol Chem 276:18947–18952PubMedGoogle Scholar
  94. 94.
    Radauceanu A, Ducki C, Virion JM, Rossignol P, Mallat Z, McMurray J, Van Veldhuisen DJ, Tavazzi L, Mann DL, Capiaumont-Vin J, Li M, Hanriot D, Zannad F (2008) Extracellular matrix turnover and inflammatory markers independently predict functional status and outcome in chronic heart failure. J Card Fail 14:467–474PubMedGoogle Scholar
  95. 95.
    Schiotz Thorud HM, Stranda A, Birkeland JA, Lunde PK, Sjaastad I, Kolset SO, Sejersted OM, Iversen PO (2005) Enhanced matrix metalloproteinase activity in skeletal muscles of rats with congestive heart failure. Am J Physiol Regul Integr Comp Physiol 289:R389–R394PubMedGoogle Scholar
  96. 96.
    Carvalho RF, Dariolli R, Justulin Junior LA, Sugizaki MM, Politi OM, Cicogna AC, Felisbino SL, Dal Pai-Silva M (2006) Heart failure alters matrix metalloproteinase gene expression and activity in rat skeletal muscle. Int J Exp Pathol 87:437–443PubMedGoogle Scholar
  97. 97.
    Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R (2001) Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 38:947–954PubMedGoogle Scholar
  98. 98.
    Simonini A, Long CS, Dudley GA, Yue P, McElhinny J, Massie BM (1996) Heart failure in rats causes changes in skeletal muscle morphology and gene expression that are not explained by reduced activity. Circ Res 79:128–136PubMedGoogle Scholar
  99. 99.
    Michel C, Chati Z, Mertes PM, Escanye JM, Zannad F (1998) Physical activity, skeletal muscle beta-adrenoceptor changes and oxidative metabolism in experimental chronic heart failure. Fundam Clin Pharmacol 12:263–269PubMedGoogle Scholar
  100. 100.
    Thorud HM, Verburg E, Lunde PK, Stromme TA, Sjaastad I, Sejersted OM (2005) Temperature-dependent skeletal muscle dysfunction in rats with congestive heart failure. J Appl Physiol 99:1500–1507PubMedGoogle Scholar
  101. 101.
    Lunde PK, Verburg E, Eriksen M, Sejersted OM (2002) Contractile properties of in situ perfused skeletal muscles from rats with congestive heart failure. J Physiol 540:571–580PubMedGoogle Scholar
  102. 102.
    Munkvik M, Lunde PK, Aronsen JM, Birkeland JA, Sjaastad I, Sejersted OM (2011) Attenuated fatigue in slow twitch skeletal muscle during isotonic exercise in rats with chronic heart failure. PLoS ONE [Electronic Resource] 6:e22695Google Scholar
  103. 103.
    Vescovo G, Serafini F, Facchin L, Tenderini P, Carraro U, Dalla LL, Catani C, Ambrosio GB (1996) Specific changes in skeletal muscle myosin heavy chain composition in cardiac failure: differences compared with disuse atrophy as assessed on microbiopsies by high resolution electrophoresis. Heart 76:337–343PubMedGoogle Scholar
  104. 104.
    Coyle EF, Martin WH III, Bloomfield SA, Lowry OH, Holloszy JO (1985) Effects of detraining on responses to submaximal exercise. J Appl Physiol 59:853–859PubMedGoogle Scholar
  105. 105.
    Klausen K, Andersen LB, Pelle I (1981) Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol Scand 113:9–16PubMedGoogle Scholar
  106. 106.
    Larsson L, Ansved T (1985) Effects of long-term physical training and detraining on enzyme histochemical and functional skeletal muscle characteristic in man. Muscle Nerve 8:714–722PubMedGoogle Scholar
  107. 107.
    Miller MSP, VanBuren PM, LeWinter MMM, Lecker SHM, Selby DEP, Palmer BMP, Maughan DWP, Ades PAM, Toth MJP (2009) Mechanisms underlying skeletal muscle weakness in human heart failure: alterations in single fiber myosin protein content and function. Circ Heart Fail 2:700–706PubMedGoogle Scholar
  108. 108.
    Miller MS, VanBuren P, LeWinter MM, Braddock JM, Ades PA, Maughan DW, Palmer BM, Toth MJ (2010) Chronic heart failure decreases cross-bridge kinetics in single skeletal muscle fibres from humans. J Physiol 588:4039–4053PubMedGoogle Scholar
  109. 109.
    Toth MJ, Ward K, van der Velden J, Miller MS, VanBuren P, LeWinter MM, Ades PA (2011) Chronic heart failure reduces akt phosphorylation in human skeletal muscle: relationship to muscle size and function. J Appl Physiol. doi: 10.1152/japplphysiol.00545.2010
  110. 110.
    Toth MJ, Shaw AO, Miller MS, VanBuren P, LeWinter MM, Maughan DW, Ades PA (2010) Reduced knee extensor function in heart failure is not explained by inactivity. Int J Cardiol 143:276–282PubMedGoogle Scholar
  111. 111.
    Chi MM, Hintz CS, Coyle EF, Martin WH III, Ivy JL, Nemeth PM, Holloszy JO, Lowry OH (1983) Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. Am J Physiol 244:C276–C287PubMedGoogle Scholar
  112. 112.
    Coyle EF, Martin WH III, Sinacore DR, Joyner MJ, Hagberg JM, Holloszy JO (1984) Time course of loss of adaptations after stopping prolonged intense endurance training. J Appl Physiol 57:1857–1864PubMedGoogle Scholar
  113. 113.
    Houston ME, Bentzen H, Larsen H (1979) Interrelationships between skeletal muscle adaptations and performance as studied by detraining and retraining. Acta Physiol Scand 105:163–170PubMedGoogle Scholar
  114. 114.
    Moore RL, Thacker EM, Kelley GA, Musch TI, Sinoway LI, Foster VL, Dickinson AL (1987) Effect of training/detraining on submaximal exercise responses in humans. J Appl Physiol 63:1719–1724PubMedGoogle Scholar
  115. 115.
    Wibom R, Hultman E, Johansson M, Matherei K, Constantin-Teodosiu D, Schantz PG (1992) Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol 73:2004–2010PubMedGoogle Scholar
  116. 116.
    Houmard JA, Hortobagyi T, Neufer PD, Johns RA, Fraser DD, Israel RG, Dohm GL (1993) Training cessation does not alter GLUT-4 protein levels in human skeletal muscle. J Appl Physiol 74:776–781PubMedGoogle Scholar
  117. 117.
    Houmard JA, Hortobagyi T, Johns RA, Bruno NJ, Nute CC, Shinebarger MH, Welborn JW (1992) Effect of short-term training cessation on performance measures in distance runners. Int J Sports Med 13:572–576PubMedGoogle Scholar
  118. 118.
    Amigo N, Cadefau JA, Ferrer I, Tarrados N, Cusso R (1998) Effect of summer intermission on skeletal muscle of adolescent soccer players. J Sports Med Phys Fitness 38:298–304PubMedGoogle Scholar
  119. 119.
    Hakkinen K, Alen M, Komi PV (1985) Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand 125:573–585PubMedGoogle Scholar
  120. 120.
    Hortobagyi T, Houmard JA, Stevenson JR, Fraser DD, Johns RA, Israel RG (1993) The effects of detraining on power athletes. Med Sci Sports Exerc 25:929–935PubMedGoogle Scholar
  121. 121.
    Alway SE, Degens H, Krishnamurthy G, Smith CA (2002) Potential role for Id myogenic repressors in apoptosis and attenuation of hypertrophy in muscles of aged rats. Am J Physiol Cell Physiol 283:C66–C76PubMedGoogle Scholar
  122. 122.
    Siu PM, Pistilli EE, Butler DC, Alway SE (2005) Aging influences cellular and molecular responses of apoptosis to skeletal muscle unloading. Am J Physiol Cell Physiol 288:C338–C349PubMedGoogle Scholar
  123. 123.
    Siu PM, Bryner RW, Martyn JK, Alway SE (2004) Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 18:1150–1152PubMedGoogle Scholar
  124. 124.
    Pitta F, Troosters T, Spruit MA, Probst VS, Decramer M, Gosselink R (2005) Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171:972–977PubMedGoogle Scholar
  125. 125.
    van den Berg-Emons R, Bussmann J, Balk A, Keijzer-Oster D, Stam H (2001) Level of activities associated with mobility during everyday life in patients with chronic congestive heart failure as measured with an “activity monitor”. Phys Ther 81:1502–1511PubMedGoogle Scholar
  126. 126.
    Gosker HR, Lencer NH, Franssen FM, van der Vusse GJ, Wouters EF, Schols AM (2003) Striking similarities in systemic factors contributing to decreased exercise capacity in patients with severe chronic heart failure or COPD. Chest 123:1416–1424PubMedGoogle Scholar
  127. 127.
    Serres I, Gautier V, Varray A, Prefaut C (1998) Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest 113:900–905PubMedGoogle Scholar
  128. 128.
    Degens H, Alway SE (2006) Control of muscle size during disuse, disease, and aging. Int J Sports Med 27:94–99PubMedGoogle Scholar
  129. 129.
    Conn EH, Williams RS, Wallace AG (1982) Exercise responses before and after physical conditioning in patients with severely depressed left ventricular function. Am J Cardiol 49:296–300PubMedGoogle Scholar
  130. 130.
    Letac B, Cribier A, Desplanches JF (1977) A study of left ventricular function in coronary patients before and after physical training. Circulation 56:375–378PubMedGoogle Scholar
  131. 131.
    Belardinelli R, Georgiou D, Cianci G, Purcaro A (1999) Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 99:1173–1182PubMedGoogle Scholar
  132. 132.
    Wisloff U, Stoylen A, Loennechen JP, Bruvold M, Rognmo O, Haram PM, Tjonna AE, Helgerud J, Slordahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen O, Skjaerpe T (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115:3086–3094PubMedGoogle Scholar
  133. 133.
    Tyni-Lenne R, Gordon A, Europe E, Jansson E, Sylven C (1998) Exercise-based rehabilitation improves skeletal muscle capacity, exercise tolerance, and quality of life in both women and men with chronic heart failure. J Card Fail 4:9–17PubMedGoogle Scholar
  134. 134.
    Collins E, Langbein WE, lan-Koetje J, Bammert C, Hanson K, Reda D, Edwards L (2004) Effects of exercise training on aerobic capacity and quality of life in individuals with heart failure. Heart Lung 33:154–161PubMedGoogle Scholar
  135. 135.
    Flynn KE, Pina IL, Whellan DJ, Lin L, Blumenthal JA, Ellis SJ, Fine LJ, Howlett JG, Keteyian SJ, Kitzman DW, Kraus WE, Miller NH, Schulman KA, Spertus JA, O’Connor CM, Weinfurt KP (2009) Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301:1451–1459PubMedGoogle Scholar
  136. 136.
    Piepoli MF, Davos C, Francis DP, Coats AJ (2004) Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 328:189PubMedGoogle Scholar
  137. 137.
    O’Connor CM, Whellan DJ, Lee KL, Keteyian SJ, Cooper LS, Ellis SJ, Leifer ES, Kraus WE, Kitzman DW, Blumenthal JA, Rendall DS, Miller NH, Fleg JL, Schulman KA, McKelvie RS, Zannad F, Pina IL HF-ACTIONI (2009) Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 301:1439–1450PubMedGoogle Scholar
  138. 138.
    Sullivan MJ, Higginbotham MB, Cobb FR (1988) Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation 78:506–515PubMedGoogle Scholar
  139. 139.
    Coats AJS, Adamopoulos SM, Radaelli AM, Mccance AD, Meyer TEFS, Bernardi LM, Solda PLM, Davey PM, Ormerod OM, Forfar CF, Conway JF, Sleight PF (1992) Controlled trial of physical training in chronic heart failure: exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131PubMedGoogle Scholar
  140. 140.
    Hambrecht R, Niebauer J, Fiehn E, Kalberer B, Offner B, Hauer K, Riede U, Schlierf G, Kubler W, Schuler G (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25:1239–1249PubMedGoogle Scholar
  141. 141.
    Dubach P, Myers J, Dziekan G, Goebbels U, Reinhart W, Muller P, Buser P, Stulz P, Vogt P, Ratti R (1997) Effect of high intensity exercise training on central hemodynamic responses to exercise in men with reduced left ventricular function. J Am Coll Cardiol 29:1591–1598PubMedGoogle Scholar
  142. 142.
    Hambrecht R, Gielen S, Linke A, Fiehn E, Yu J, Walther C, Schoene N, Schuler G (2000) Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial. JAMA 283:3095–3101PubMedGoogle Scholar
  143. 143.
    Nechwatal RM, Duck C, Gruber G (2002) Physical training as interval or continuous training in chronic heart failure for improving functional capacity, hemodynamics and quality of life—a controlled study. Z Kardiol 91:328–337PubMedGoogle Scholar
  144. 144.
    Belardinelli R, Georgiou D, Cianci G, Purcaro A (1996) Effects of exercise training on left ventricular filling at rest and during exercise in patients with ischemic cardiomyopathy and severe left ventricular systolic dysfunction. Am Heart J 132:61–70PubMedGoogle Scholar
  145. 145.
    Belardinelli R, Georgiou D, Scocco V, Barstow TJ, Purcaro A (1995) Low intensity exercise training in patients with chronic heart failure. J Am Coll Cardiol 26:975–982PubMedGoogle Scholar
  146. 146.
    Gustafsson T, Bodin K, Sylven C, Gordon A, Tyni-Lenne R, Jansson E (2001) Increased expression of VEGF following exercise training in patients with heart failure. Eur J Clin Invest 31:362–366PubMedGoogle Scholar
  147. 147.
    Ohtsubo M, Yonezawa K, Nishijima H, Okita K, Hanada A, Kohya T, Murakami T, Kitabatake A (1997) Metabolic abnormality of calf skeletal muscle is improved by localised muscle training without changes in blood flow in chronic heart failure. Heart 78:437–443PubMedGoogle Scholar
  148. 148.
    Magnusson G, Gordon A, Kaijser L, Sylven C, Isberg B, Karpakka J, Saltin B (1996) High intensity knee extensor training, in patients with chronic heart failure. Major skeletal muscle improvement. Eur Heart J 17:1048–1055PubMedGoogle Scholar
  149. 149.
    Gordon A, Tyni-Lenne R, Persson H, Kaijser L, Hultman E, Sylven C (1996) Markedly improved skeletal muscle function with local muscle training in patients with chronic heart failure. Clin Cardiol 19:568–574PubMedGoogle Scholar
  150. 150.
    Stratton JR, Dunn JF, Adamopoulos S, Kemp GJ, Coats AJ, Rajagopalan B (1994) Training partially reverses skeletal muscle metabolic abnormalities during exercise in heart failure. J Appl Physiol 76:1575–1582PubMedGoogle Scholar
  151. 151.
    Hambrecht R, Schulze PC, Gielen S, Linke A, Mobius-Winkler S, Erbs S, Kratzsch J, Schubert A, Adams V, Schuler G (2005) Effects of exercise training on insulin-like growth factor-I expression in the skeletal muscle of non-cachectic patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 12:401–406PubMedGoogle Scholar
  152. 152.
    Scarpelli M, Belardinelli R, Tulli D, Provinciali L (1999) Quantitative analysis of changes occurring in muscle vastus lateralis in patients with heart failure after low-intensity training. Anal Quant Cytol Histol 21:374–380PubMedGoogle Scholar
  153. 153.
    Tyni-Lenne R, Gordon A, Jansson E, Bermann G, Sylven C (1997) Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J Cardiol 80:1025–1029PubMedGoogle Scholar
  154. 154.
    Adamopoulos S, Coats AJ, Brunotte F, Arnolda L, Meyer T, Thompson CH, Dunn JF, Stratton J, Kemp GJ, Radda GK (1993) Physical training improves skeletal muscle metabolism in patients with chronic heart failure. J Am Coll Cardiol 21:1101–1106PubMedGoogle Scholar
  155. 155.
    Gielen S, Adams V, Mobius-Winkler S, Linke A, Erbs S, Yu J, Kempf W, Schubert A, Schuler G, Hambrecht R (2003) Anti-inflammatory effects of exercise training in the skeletal muscle of patients with chronic heart failure. J Am Coll Cardiol 42:861–868PubMedGoogle Scholar
  156. 156.
    Tyni-Lenne R, Jansson E, Sylven C (1999) Female-related skeletal muscle phenotype in patients with moderate chronic heart failure before and after dynamic exercise training. Cardiovasc Res 42:99–103PubMedGoogle Scholar
  157. 157.
    Breitbart A, uger-Messier M, Molkentin JD, Heineke J (2011) Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol 300:H1973–H1982PubMedGoogle Scholar
  158. 158.
    Hambrecht R, Fiehn E, Yu J, Niebauer J, Weigl C, Hilbrich L, Adams V, Riede U, Schuler G (1997) Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J Am Coll Cardiol 29:1067–1073PubMedGoogle Scholar
  159. 159.
    Harjola VP, Kiilavuori K, Virkamaki A (2006) The effect of moderate exercise training on skeletal muscle myosin heavy chain distribution in chronic heart failure. Int J Cardiol 109:335–338PubMedGoogle Scholar
  160. 160.
    Kiilavuori K, Naveri H, Salmi T, Harkonen M (2000) The effect of physical training on skeletal muscle in patients with chronic heart failure. Eur J Heart Fail 2:53–63PubMedGoogle Scholar
  161. 161.
    Keteyian SJ, Duscha BD, Brawner CA, Green HJ, Marks CR, Schachat FH, Annex BH, Kraus WE (2003) Differential effects of exercise training in men and women with chronic heart failure. Am Heart J 145:912–918PubMedGoogle Scholar
  162. 162.
    Slettalokken G, Rehn TA, Munkvik M, Rud B, Sokjer-Petersen M, Lunde PK, Sjaastad I, Sejersted OM, Hallen J (2010) Preserved metabolic reserve capacity in skeletal muscle of post-infarction heart failure patients. Scand J Med Sci Sports. doi:org/ 10.1111/j.1600-0838.2010.01226.x
  163. 163.
    Gosker HR, van MH, van Dijk PJ, Engelen MP, van der Vusse GJ, Wouters EF, Schols AM (2002) Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J 19:617–625Google Scholar
  164. 164.
    Maltais F, Leblanc P, Whittom F, Simard C, Marquis K, Belanger M, Breton MJ, Jobin J (2000) Oxidative enzyme activities of the vastus lateralis muscle and the functional status in patients with COPD. Thorax 55(10):848–853PubMedGoogle Scholar
  165. 165.
    Rabinovich RA, Bastos R, Ardite E, Llinas L, Orozco-Levi M, Gea J, Vilaro J, Barbera JA, Rodriguez-Roisin R, Fernandez-Checa JC, Roca J (2007) Mitochondrial dysfunction in COPD patients with low body mass index [see comment]. Eur Respir J 29(4):643–650Google Scholar
  166. 166.
    Gosker HR, Hesselink MK, Duimel H, Ward KA, Schols AM (2007) Reduced mitochondrial density in the vastus lateralis muscle of patients with COPD [erratum appears in Eur Respir J 2007 Oct; 30(4):817]. Eur Respir J 30(1):73–79Google Scholar
  167. 167.
    Gosker HR, Engelen MP, van Mameren H, van Dijk PJ, van d Vusse GJ, Wouters EF, Schols AM (2002) Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive pulmonary disease. Am J Clin Nutr 76(1):113–119PubMedGoogle Scholar
  168. 168.
    Allaire J, Maltais F, Doyon JF, Noel M, Leblanc P, Carrier G, Simard C, Jobin J (2004) Peripheral muscle endurance and the oxidative profile of the quadriceps in patients with COPD. Thorax 59(8):673–678PubMedGoogle Scholar
  169. 169.
    Hikida RS, Gollnick PD, Dudley GA, Convertino VA, Buchanan P (1989) Structural and metabolic characteristics of human skeletal muscle following 30 days of simulated microgravity. Aviat Space Environ Med 60:664–670PubMedGoogle Scholar
  170. 170.
    Henriksson J, Reitman JS (1977) Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol Scand 99:91–97PubMedGoogle Scholar
  171. 171.
    Jansson E, Sylven C, Arvidsson I, Eriksson E (1988) Increase in myoglobin content and decrease in oxidative enzyme activities by leg muscle immobilization in man. Acta Physiol Scand 132:515–517PubMedGoogle Scholar
  172. 172.
    Whittom F, Jobin J, Simard PM, Leblanc P, Simard C, Bernard S, Belleau R, Maltais F (1998) Histochemical and morphological characteristics of the vastus lateralis muscle in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc 30(10):1467–1474PubMedGoogle Scholar
  173. 173.
    Sato Y, Asoh T, Honda Y, Fujimatsu Y, Higuchi I, Oizumi K (1997) Morphologic and histochemical evaluation of muscle in patients with chronic pulmonary emphysema manifesting generalized emaciation. Eur Neurol 37(2):116–121PubMedGoogle Scholar
  174. 174.
    Madsen OR, Egsmose C, Hansen B, Sorensen OH (1998) Soft tissue composition, quadriceps strength, bone quality and bone mass in rheumatoid arthritis. Clin Exp Rheumatol 16:27–32PubMedGoogle Scholar
  175. 175.
    Hather BM, Adams GR, Tesch PA, Dudley GA (1992) Skeletal muscle responses to lower limb suspension in humans. J Appl Physiol 72:1493–1498PubMedGoogle Scholar
  176. 176.
    Berg HE, Larsson L, Tesch PA (1997) Lower limb skeletal muscle function after 6 wk of bed rest. J Appl Physiol 82:182–188PubMedGoogle Scholar
  177. 177.
    Berg HE, Eiken O, Miklavcic L, Mekjavic IB (2007) Hip, thigh and calf muscle atrophy and bone loss after 5-week bedrest inactivity. Eur J Appl Physiol 99:283–289PubMedGoogle Scholar
  178. 178.
    LeBlanc A, Gogia P, Schneider V, Krebs J, Schonfeld E, Evans H (1988) Calf muscle area and strength changes after five weeks of horizontal bed rest. Am J Sports Med 16:624–629PubMedGoogle Scholar
  179. 179.
    LeBlanc AD, Schneider VS, Evans HJ, Pientok C, Rowe R, Spector E (1992) Regional changes in muscle mass following 17 weeks of bed rest. J Appl Physiol 73:2172–2178PubMedGoogle Scholar
  180. 180.
    Blottner D, Salanova M, Puttmann B, Schiffl G, Felsenberg D, Buehring B, Rittweger J (2006) Human skeletal muscle structure and function preserved by vibration muscle exercise following 55 days of bed rest. Eur J Appl Physiol 97:261–271PubMedGoogle Scholar
  181. 181.
    Agusti AG, Sauleda J, Miralles C, Gomez C, Togores B, Sala E, Batle S, Busquets X (2002) Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease [see comment]. Am J Respir Crit Care Med 166(4):485–489Google Scholar
  182. 182.
    Satta A, Migliori GB, Spanevello A, Neri M, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1997) Fibre types in skeletal muscles of chronic obstructive pulmonary disease patients related to respiratory function and exercise tolerance. Eur Respir J 10(12):2853–2860PubMedGoogle Scholar
  183. 183.
    Green HJ, Burnett ME, D’Arsigny C, Iqbal S, Ouyang J, Webb KA, O’Donnell DE (2009) Muscle fiber type characteristics in females with chronic obstructive pulmonary disease. A preliminary study. J Mol Histol 40(1):41–51Google Scholar
  184. 184.
    Petersen AM, Penkowa M, Iversen M, Frydelund-Larsen L, Andersen JL, Mortensen J, Lange P, Pedersen BK (2007) Elevated levels of IL-18 in plasma and skeletal muscle in chronic obstructive pulmonary disease. Lung 185(3):161–171Google Scholar
  185. 185.
    Talmadge RJ (2000) Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms [Review] [159 refs]. Muscle Nerve 23(5):661–679Google Scholar
  186. 186.
    Morla M, Iglesias A, Sauleda J, Cosio B, Agusti A, Busquets X (2007) Reduced expression of the sarcoplasmic calcium pump SERCA2 in skeletal muscle from patients with chronic obstructive pulmonary disease and low body weight [Spanish]. Arch de Bronconeumologia 43(1):4–8Google Scholar
  187. 187.
    Salanova M, Schiffl G, Rittweger J, Felsenberg D, Blottner D (2008) Ryanodine receptor type-1 (RyR1) expression and protein S-nitrosylation pattern in human soleus myofibres following bed rest and exercise countermeasure. Histochem Cell Biol 130(1):105–118PubMedGoogle Scholar
  188. 188.
    Vogiatzis I, Stratakos G, Simoes DC, Terzis G, Georgiadou O, Roussos C, Zakynthinos S (2007) Effects of rehabilitative exercise on peripheral muscle TNFalpha, IL-6, IGF-I and MyoD expression in patients with COPD. Thorax 62(11):950–956PubMedGoogle Scholar
  189. 189.
    Rabinovich RA, Figueras M, Ardite E, Carbo N, Troosters T, Filella X, Barbera JA, Fernandez-Checa JC, Argiles JM, Roca J (2003) Increased tumour necrosis factor-alpha plasma levels during moderate-intensity exercise in COPD patients. Eur Respir J 21(5):789–794PubMedGoogle Scholar
  190. 190.
    Crul T, Spruit MA, Gayan-Ramirez G, Quarck R, Gosselink R, Troosters T, Pitta F, Decramer M (2007) Markers of inflammation and disuse in vastus lateralis of chronic obstructive pulmonary disease patients. Eur J Clin Invest 37(11):897–904PubMedGoogle Scholar
  191. 191.
    de Montes OM, Torres SH, De SJ, Mata A, Hernandez N, Talamo C (2005) Skeletal muscle inflammation and nitric oxide in patients with COPD. Eur Respir J 26(3):390–397Google Scholar
  192. 192.
    Barreiro E, Schols AM, Polkey MI, Galdiz JB, Gosker HR, Swallow EB, Coronell C, Gea J, ENIGMA in COPD (2008) Cytokine profile in quadriceps muscles of patients with severe COPD [see comment]. Thorax 63(2):100–107Google Scholar
  193. 193.
    Jatta K, Eliason G, Portela-Gomes GM, Grimelius L, Caro O, Nilholm L, Sirjso A, Piehl-Aulin K, Bdel-Halim SM (2009) Overexpression of von Hippel-Lindau protein in skeletal muscles of patients with chronic obstructive pulmonary disease. J Clin Pathol 62(1):70–76PubMedGoogle Scholar
  194. 194.
    Jobin J, Maltais F, Doyon JF, Leblanc P, Simard PM, Simard AA, Simard C (1998) Chronic obstructive pulmonary disease: capillarity and fiber-type characteristics of skeletal muscle. J Cardiopulm Rehabil 18(6):432–437Google Scholar
  195. 195.
    Janaudis-Ferreira T, Wadell K, Sundelin G, Lindstrom B (2006) Thigh muscle strength and endurance in patients with COPD compared with healthy controls. Respir Med 100(8):1451–1457PubMedGoogle Scholar
  196. 196.
    Castagna O, Boussuges A, Vallier JM, Prefaut C, Brisswalter J (2007) Is impairment similar between arm and leg cranking exercise in COPD patients? Respir Med 101(3):547–553PubMedGoogle Scholar
  197. 197.
    Serres I, Gautier V, Varray A, Prefaut C (1998) Impaired skeletal muscle endurance related to physical inactivity and altered lung function in COPD patients. Chest 113(4):900–905PubMedGoogle Scholar
  198. 198.
    Portero P, Vanhoutte C, Goubel F (1996) Surface electromyogram power spectrum changes in human leg muscles following 4 weeks of simulated microgravity. Eur J Appl Physiol 73:340–345Google Scholar
  199. 199.
    Duchateau J, Hainaut K (1991) Effects of immobilization on electromyogram power spectrum changes during fatigue. Eur J Appl Physiol 63:458–462Google Scholar
  200. 200.
    Veldhuizen JW, Verstappen FT, Vroemen JP, Kuipers H, Greep JM (1993) Functional and morphological adaptations following four weeks of knee immobilization [see comment]. Int J Sports Med 14(5):283–287Google Scholar
  201. 201.
    Larsen AI, Lindal S, Aukrust P, Toft I, Aarsland T, Dickstein K (2002) Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and exercise capacity. Int J Cardiol 83:25–32PubMedGoogle Scholar
  202. 202.
    Ennezat PV, Malendowicz SL, Testa M, Colombo PC, Cohen-Solal A, Evans T, LeJemtel TH (2001) Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol 38:194–198PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • T. A. Rehn
    • 1
    • 2
    Email author
  • M. Munkvik
    • 1
    • 2
  • P. K. Lunde
    • 1
    • 2
  • I. Sjaastad
    • 1
    • 2
    • 3
  • O. M. Sejersted
    • 1
    • 2
  1. 1.Institute for Experimental Medical ResearchOslo University HospitalOsloNorway
  2. 2.Center for Heart Failure Research, University of OsloOsloNorway
  3. 3.Department of CardiologyOslo University HospitalOsloNorway

Personalised recommendations