Heart Failure Reviews

, Volume 17, Issue 1, pp 117–128 | Cite as

Pathophysiology and pathogenesis of post-resuscitation myocardial stunning

Article

Abstract

The prognosis for cardiac arrest victims remains dismal, as only 17% survives to hospital discharge. Post-resuscitation myocardial stunning is the mechanical dysfunction that persists after the restoration of spontaneous circulation. Our knowledge regarding myocardial stunning has grown dramatically over the years, and several hypotheses have been proposed in order to explain its pathophysiology; however, the interrelationships among various mechanisms remain unclear. This review deals primarily with the basic aspects of the pathophysiology of post-resuscitation myocardial stunning. Given the large number of relevant studies and the fragmented information, an effort was made to summarize current knowledge in order to present a comprehensive pathophysiological mechanism. In this review, the pathophysiological disturbances occurring from the onset of cardiac arrest until the restoration of spontaneous circulation are addressed. Then, the pathophysiology of myocardial stunning during the post-resuscitation period is critically reviewed in 4 parts, the immediate, the early, the intermediate, and the recovery post-arrest phase. This article covers a huge gap in the existing literature regarding the pathophysiology of post-resuscitation period and provides a better understanding of the pathophysiology and pathogenesis of post-resuscitation myocardial stunning.

Keywords

Cardiac arrest Post-resuscitation myocardial stunning Pathophysiology 

References

  1. 1.
    Eisenberg MS, Mengert TJ (2001) Cardiac resuscitation. N Engl J Med 344:1304–1313PubMedCrossRefGoogle Scholar
  2. 2.
    De Maio VJ, Stiell IG, Wells GA, Spaite DW (2000) Cardiac arrest witnessed by emergency medical services personnel: descriptive epidemiology, prodromal symptoms, and predictors of survival. OPALS study group. Ann Emerg Med 35:138–146PubMedCrossRefGoogle Scholar
  3. 3.
    Müller D, Agrawal R, Arntz HR (2006) How sudden is sudden cardiac death? Circulation 114:1146–1150PubMedCrossRefGoogle Scholar
  4. 4.
    Brain Resuscitation Clinical Trial 1 Study Group (1986) A randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Engl J Med 314:397–403CrossRefGoogle Scholar
  5. 5.
    Brain Resuscitation Clinical Trial 2 Study Group (1991) A randomized clinical study of calcium-entry blocker in the treatment of comatose survivors of cardiac arrest. N Engl J Med 324:1125–1131Google Scholar
  6. 6.
    Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G, Smith K (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563PubMedCrossRefGoogle Scholar
  7. 7.
    Ruiz-Bailén M, Aguayo de Hoyos E, Ruiz-Navarro S, Díaz-Castellanos MA, Rucabado-Aguilar L, Gómez-Jiménez FJ, Martínez-Escobar S, Moreno RM, Fierro-Rosón J (2005) Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation 66:175–181PubMedCrossRefGoogle Scholar
  8. 8.
    Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1149PubMedCrossRefGoogle Scholar
  9. 9.
    Deantonio HJ, Kaul S, Lerman BB (1990) Reversible myocardial depression in survivors of cardiac arrest. PACE 13:982–985PubMedCrossRefGoogle Scholar
  10. 10.
    Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC, Kern KB, Laurent I, Longstreth WT Jr, Merchant RM, Morley P, Morrison LJ, Nadkarni V, Peberdy MA, Rivers EP, Rodriguez-Nunez A, Sellke FW, Spaulding C, Sunde K, Vanden Hoek T (2008) Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation 118:2452–2483PubMedCrossRefGoogle Scholar
  11. 11.
    Kern KB, Elchisak MA, Sanders AB, Badylak SF, Tacker WA, Ewy GA (1989) Plasma catecholamines and resuscitation from prolonged cardiac arrest. Crit Care Med 17:786–791PubMedCrossRefGoogle Scholar
  12. 12.
    Lindner KH, Haak T, Keller A, Bothner U, Lurie KG (1996) Release of endogenous vasopressors during and after cardiopulmonary resuscitation. Heart 75:145–150PubMedCrossRefGoogle Scholar
  13. 13.
    Boachie-Ansah G, Kane KA, Parratt JR (1989) Cardiac electrophysiological effects of isoprenaline, phenylephrine, and noradrenaline on normal and mildly “ischaemic” sheep Purkinje fibers. J Cardiovasc Pharmacol 13:291–298PubMedCrossRefGoogle Scholar
  14. 14.
    Rudehill A, Sollevi A, Franco-Cereceda A, Lundberg JM (1986) Neuropeptide Y (NPY) and the pig heart: release and coronary vasoconstrictor effects. Peptides 7:821–826PubMedCrossRefGoogle Scholar
  15. 15.
    Pemow J (1988) Co-release and functional interactions of neuropeptide Y and noradrenaline in peripheral sympathetic vascular control. Ada Physiol Scand 133:l–56Google Scholar
  16. 16.
    Berg RA, Sorrell VL, Kern KB, Hilwig RW, Altbach MI, Hayes MM, Bates KA, Ewy GA (2005) Magnetic resonance imaging during untreated ventricular fibrillation reveals prompt right ventricular overdistention without left ventricular volume loss. Circulation 111:1136–1140PubMedCrossRefGoogle Scholar
  17. 17.
    Schipke JD, Heusch G, Sanii AP, Gams E, Winter J (2003) Static filling pressure in patients during induced ventricular fibrillation. Am J Physiol Heart Circ Physiol 285:H2510–H2515PubMedGoogle Scholar
  18. 18.
    Steen S, Liao Q, Pierre L, Paskevicius A, Sjöberg T (2003) The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation 58:249–258PubMedCrossRefGoogle Scholar
  19. 19.
    Andreka P, Frenneaux MP (2006) Haemodynamics of cardiac arrest and resuscitation. Curr Opin Crit Care 12:198–203PubMedCrossRefGoogle Scholar
  20. 20.
    Mehlhorn U, Davis KL, Burke EJ, Adams D, Laine GA, Allen SJ (1995) Impact of cardiopulmonary bypass and cardioplegic arrest on myocardial lymphatic function. Am J Physiol 268:H178–H183PubMedGoogle Scholar
  21. 21.
    Laine GA, Granger HJ (1985) Microvascular, interstitial, and lymphatic interactions in the normal heart. Am J Physiol 249:H834–H842PubMedGoogle Scholar
  22. 22.
    Mehlhorn U, Davis KL, Laine GA, Geissler HJ, Allen SJ (1996) Myocardial fluid balance in acute hypertension. Microcirculation 3:371–378PubMedCrossRefGoogle Scholar
  23. 23.
    Garcia-Dorado D, Theroux P, Munoz R, Alonso J, Elizaga J, Fernandez-Avilés F, Botas J, Solares J, Soriano J, Duran JM (1992) Favorable effects of hyperosmotic reperfusion on myocardial edema and infarct size. Am J Physiol 262:H17–H22PubMedGoogle Scholar
  24. 24.
    Granger HJ, Laine GA, Barnes GE, Lewis RE (1984) Dynamics and control of transmicrovascular fluid exchange. In: Staub NC, Taylor AE (eds) Edema. Raven Press, New York, pp 189–228Google Scholar
  25. 25.
    Curry FE (1994) Mechanics and thermodynamics of transcapillary exchange. In: Renkin EM, Michel CC (eds). Handbook of physiology, section 2: the cardiovascular system, vol 4. The American Physiological Society, Washington, pp 309–374Google Scholar
  26. 26.
    Ziegler WH, Goresky CA (1971) Transcapillary exchange in the working left ventricle of the dog. Circ Res 29:191–207Google Scholar
  27. 27.
    El-Menyar AA (2005) The resuscitation outcome: revisit the story of the stony heart. Chest 128:2835–2846PubMedCrossRefGoogle Scholar
  28. 28.
    Niemann JT, Garner D, Lewis RJ (2004) Tumor necrosis factor-[alpha] is associated with early postresuscitation myocardial dysfunction. Crit Care Med 32:1753–1758PubMedCrossRefGoogle Scholar
  29. 29.
    Chenoweth DE, Cooper SW, Hugli TE, Stewart RW, Blackstone EH, Kirklin JW (1981) Complement activation during cardiopulmonary bypass: evidence for generation of C3a and C5a anaphylatoxins. N Engl J Med 304:497–503PubMedCrossRefGoogle Scholar
  30. 30.
    Marks RM, Todd RF, Ward P (1989) Rapid induction of neutrophil-endothelial adhesion by endothelial complement fixation. Nature 339:314–317PubMedCrossRefGoogle Scholar
  31. 31.
    Stahl GL, Reenstra WR, Frendl G (1995) Complement-mediated loss of endothelium-dependent relaxation of porcine coronary arteries. Role of the terminal membrane attack complex. Circ Res 76:575–583PubMedGoogle Scholar
  32. 32.
    Adler S, Baker PJ, Johnson RJ, Ochi RF, Pritzl P, Couser WG (1986) Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat mesangial cells. J Clin Invest 77:762–767PubMedCrossRefGoogle Scholar
  33. 33.
    Golino P, Piscione F, Benedict CR, Anderson HV, Cappelli-Bigazzi M, Indolfi C, Condorelli M, Chiariello M, Willerson JT (1994) Local effect of serotonin released during coronary angioplasty. N Engl J Med 330:523–528PubMedCrossRefGoogle Scholar
  34. 34.
    Golino P, Piscione F, Willerson JT, Cappelli-Bigazzi M, Focaccio A, Villari B, Indolfi C, Russolillo E, Condorelli M, Chiariello M (1991) Divergent effects of serotonin on coronary-artery dimensions and blood flow in patients with coronary atherosclerosis and control patients. N Engl J Med 324:641–648PubMedCrossRefGoogle Scholar
  35. 35.
    Adderley SR, Fitzgerald DJ (1999) Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. J Biol Chem 274:5038–5046PubMedCrossRefGoogle Scholar
  36. 36.
    Sharma AB, Sun J, Howard LL, Williams AG Jr, Mallet RT (2007) Oxidative stress reversibly inactivates myocardial enzymes during cardiac arrest. Am J Physiol Heart Circ Physiol 292:H198–H206PubMedCrossRefGoogle Scholar
  37. 37.
    Ellis D, Noireaud J (1987) Intracellular pH in sheep Purkinje fibres and ferret papillary muscles during hypoxia and recovery. J Physiol 383:125–141PubMedGoogle Scholar
  38. 38.
    Mallet RT, Sun J (2003) Antioxidant properties of myocardial fuels. Mol Cell Biochem 253:103–111PubMedCrossRefGoogle Scholar
  39. 39.
    Buja LM, Hagler HK, Willerson JT (1988) Altered calcium homeostasis in the pathogenesis of myocardial ischemic and hypoxic injury. Cell Calcium 9:205–217PubMedCrossRefGoogle Scholar
  40. 40.
    Buja LM (1991) Lipid abnormalities in myocardial cell injury. Trends Cardiovasc Med 1:40–45PubMedCrossRefGoogle Scholar
  41. 41.
    Weiss JN, Korge P, Honda HM, Ping P (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93:292–301PubMedCrossRefGoogle Scholar
  42. 42.
    Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312PubMedCrossRefGoogle Scholar
  43. 43.
    Dos Santos P, Kowaltowski AJ, Laclau MN, Seetharaman S, Paucek P, Boudina S, Thambo JB, Tariosse L, Garlid KD (2002) Mechanisms by which opening the mitochondrial ATP-sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol 283:H284–H295PubMedGoogle Scholar
  44. 44.
    Redberg RF, Tucker KJ, Cohen TJ, Dutton JP, Callaham ML, Schiller NB (1993) Physiology of blood flow during cardiopulmonary resuscitation. A transesophageal echocardiographic study. Circulation 88:534–542PubMedGoogle Scholar
  45. 45.
    Koster RW, Baubin MA, Bossaert LL, Caballero A, Cassan P, Castrén M, Granja C, Handley AJ, Monsieurs KG, Perkins GD, Raffay V, Sandroni C (2010) European Resuscitation Council Guidelines for Resuscitation 2010 Section 2. Adult basic life support and use of automated external defibrillators. Resuscitation 81:1277–1292PubMedCrossRefGoogle Scholar
  46. 46.
    Smekal D, Johansson J, Huzevka T, Rubertsson S (2009) No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCAS device—a pilot study. Resuscitation 80:1104–1107PubMedCrossRefGoogle Scholar
  47. 47.
    Rubertsson S, Grenvik A, Wiklund L (1995) Blood flow and perfusion pressure during open-chest versus closed-chest cardiopulmonary resuscitation in pigs. Crit Care Med 23:715–725PubMedCrossRefGoogle Scholar
  48. 48.
    Weil MH, Bisera J, Trevino RP, Rackow EC (1985) Cardiac output and end-tidal carbon dioxide. Crit Care Med 13:907–909PubMedCrossRefGoogle Scholar
  49. 49.
    Swenson RD, Weaver WD, Niskanen RA, Martin J, Dahlberg S (1988) Hemodynamics in humans during conventional and experimental methods of cardiopulmonary resuscitation. Circulation 78:630–639PubMedCrossRefGoogle Scholar
  50. 50.
    Chandra NC, Tsitlik JE, Halperin HR, Guerci AD, Weisfeldt ML (1990) Observations of hemodynamics during human cardiopulmonary resuscitation. Crit Care Med 18:929–934PubMedCrossRefGoogle Scholar
  51. 51.
    Gazmuri RJ, Becker J (1997) Cardiac resuscitation: the search for hemodynamically more effective methods. Chest 111:712–723PubMedCrossRefGoogle Scholar
  52. 52.
    Garcia-Dorado D, Oliveras J (1993) Myocardial oedema: a preventable cause of reperfusion injury. Cardiovasc Res 27:1555–1563PubMedCrossRefGoogle Scholar
  53. 53.
    Ayoub IM, Kolarova JD, Yi Z, Trevedi A, Deshmukh H, Lubell DL, Franz MR, Maldonado FA, Gazmuri RJ (2003) Sodium-hydrogen exchange inhibition during ventricular fibrillation: beneficial effects on ischemic contracture, action potential duration, reperfusion arrhythmias, myocardial function, and resuscitability. Circulation 107:1804–1809PubMedCrossRefGoogle Scholar
  54. 54.
    Koretsune Y, Marban E (1990) Mechanism of ischemic contracture in ferret hearts: relative roles of [Ca2 +]i elevation and ATP depletion. Am J Physiol 258:H9–H16PubMedGoogle Scholar
  55. 55.
    Klouche K, Weil MH, Sun S, Tang W, Povoas HP, Kamohara T, Bisera J (2002) Evolution of the stone heart after prolonged cardiac arrest. Chest 122:1006–1011PubMedCrossRefGoogle Scholar
  56. 56.
    Spotnitz HM (1995) Effects of edema on systolic and diastolic function in vivo. J Card Surg 10:454–459PubMedCrossRefGoogle Scholar
  57. 57.
    Jacob WA, Van Bogaert A, DeGroot-Lasseel MHA (1972) Myocardial ultrastructural and haemodynamic reactions during experimental subarachnoid haemorrhage. J Moll Cell Cardiol 4:287–298CrossRefGoogle Scholar
  58. 58.
    Böttinger BW, Motsch J, Böhrer H, Böker T, Aulmann M, Nawroth PP, Martin E (1995) Activation of blood coagulation after cardiac arrest is not balanced adequately by activation of endogenous fibrinolysis. Circulation 92:2572–2578Google Scholar
  59. 59.
    Park JL, Lucchesi BR (1998) Mechanisms of myocardial reperfusion injury. Ann Thorac Surg 68:1905–1912CrossRefGoogle Scholar
  60. 60.
    Heyndrickx GR (2006) Early reperfusion phenomena. Semin Cardiothorac Vasc Anesth 10:236–241PubMedCrossRefGoogle Scholar
  61. 61.
    Berg R, Hilwig R, Kern KB, Ewy G (1998) High dose epinephrine with beta-blocker during CPR results in worse outcome than standard-dose epinephrine with or without beta-blocker. Crit Care Med 26:A56CrossRefGoogle Scholar
  62. 62.
    Tang W, Weil MH, Gazmuri RJ, Sun S, Duggal C, Bisera J (1991) Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation. Circulation 84:2101–2107PubMedGoogle Scholar
  63. 63.
    Behringer W, Kittler H, Sterz F, Domanovits H, Schoerkhuber W, Holzer M, Müllner M, Laggner AN (1998) Cumulative dose of epinephrine during CPR and neurologic outcome. Ann Intern Med 129:450–456PubMedGoogle Scholar
  64. 64.
    Karch SB (1987) Resuscitation-induced myocardial necrosis. Am J Forensic Med Pathol 8:3–8PubMedCrossRefGoogle Scholar
  65. 65.
    Doherty PW, McLaughlin PR, Billingham M (1979) Cardiac damage produced by direct current countershocks applied to the heart. Am J Cardiol 43:225–232PubMedCrossRefGoogle Scholar
  66. 66.
    Tang W, Weil MH, Sun S, Jorgenson D, Morgan C, Klouche K, Snyder D (2004) The effects of biphasic waveform design on post-resuscitation myocardial function. J Am Coll Cardiol 43:1228–1235PubMedCrossRefGoogle Scholar
  67. 67.
    Clark CB, Zhang Y, Martin SM, Davies LR, Xu L, Kregel KC, Miller FJ, Buettner GR, Kerber RE (2004) The nitric oxide synthase inhibitor NG-nitro-l-arginine decreases defibrillation-induced free radical generation. Resuscitation 60:351–357PubMedCrossRefGoogle Scholar
  68. 68.
    Kern KB (2002) Postresuscitation myocardial dysfunction. Cardiol Clin 20:89–101PubMedCrossRefGoogle Scholar
  69. 69.
    Gazmuri RJ (2000) Effects of repetitive electrical shocks on postresuscitation myocardial function. Crit Care Med 28:N228–N232PubMedCrossRefGoogle Scholar
  70. 70.
    Albers J, Schroeder A, de Simone R, Möckel R, Vahl CF, Hagl S (2001) 3D evaluation of myocardial edema: experimental study on 22 pigs using magnetic resonance and tissue analysis. Thorac Cardiovasc Surg 49:199–203PubMedCrossRefGoogle Scholar
  71. 71.
    Jia CX, Rabkin DG, Hart JP, Dean DA, Cabreriza SA, Weinberg AD, Spotniz HM (2002) Regional variation in myocardial water content in the edematous pig heart. J Surg Res 106:70–75PubMedCrossRefGoogle Scholar
  72. 72.
    Spotnitz HM, Hsu DT (1994) Myocardial edema: importance in the study of left ventricular function. Adv Card Surg 5:1–25PubMedGoogle Scholar
  73. 73.
    Foglia RP, Lazar HL, Steed DL, Follete DM, Manganaro AJ, Deland E, Buckberg GD (1978) Iatrogenic myocardial edema with crystalloid primes: effects on left ventricular compliance, performance, and perfusion. Surg Forum 29:312–315PubMedGoogle Scholar
  74. 74.
    Laine GA, Allen SJ (1991) Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ Res 68:1713–1721PubMedGoogle Scholar
  75. 75.
    Rivers EP, Wortsman J, Rady MY, Blake HC, McGeorge FT, Buderer NM (1994) The effect of the total cumulative epinephrine dose administered during human CPR on hemodynamic, oxygen transport, and utilization variables in the postresuscitation period. Chest 106:1499–1507PubMedCrossRefGoogle Scholar
  76. 76.
    Fries M, Weil MH, Chang YT, Castillo C, Tang W (2006) Microcirculation during cardiac arrest and resuscitation. Crit Care Med 34:S454–S457PubMedCrossRefGoogle Scholar
  77. 77.
    Tang W, Weil MH, Sun S, Noc M, Yang L, Gazmuri RJ (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093PubMedGoogle Scholar
  78. 78.
    Angelos MG, Butke RL, Panchal AR, Torres CA, Blumberg A, Schneider JE, Aune SE (2008) Cardiovascular response to epinephrine varies with increasing duration of cardiac arrest. Resuscitation 77:101–110PubMedCrossRefGoogle Scholar
  79. 79.
    Wittstein IS, Thiemann DR, Lima JA, Baughman KL, Schulman Sp, Gerstenblith G, Wu KC, Rade JJ, Bivalacqua TJ, Champion HC (2005) Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 352:539–548PubMedCrossRefGoogle Scholar
  80. 80.
    Davis KL, Mehlhorn U, Laine GA, Allen SJ (1995) Myocardial edema, left ventricular function, and pulmonary hypertension. J Appl Physiol 78:132–137PubMedCrossRefGoogle Scholar
  81. 81.
    Pratt JW, Schertel ER, Schaefer SL, Esham KE, McClure DE, Heck CF, Myerowitz PD (1996) Acute transient coronary sinus hypertension impairs left ventricular function and induces myocardial edema. Am J Physiol 271:H834–H841PubMedGoogle Scholar
  82. 82.
    Cooper MS, Stewart PM (2003) Corticosteroid insufficiency in acutely ill patients. N Engl J Med 348:727–734PubMedCrossRefGoogle Scholar
  83. 83.
    Kelly RA, Smith TW (1997) Cytokines and cardiac contractile function. Circulation 95:778–781PubMedGoogle Scholar
  84. 84.
    Oppenheim JJ, Zachariae COC, Mukaida N, Matsushima K (1991) Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu Rev Immunol 9:617–648PubMedCrossRefGoogle Scholar
  85. 85.
    Lefer AM, Lefer DJ (1996) The role of nitric oxide and cell adhesion molecules on the microcirculation in ischaemia-reperfusion. Cardiovasc Res 32:743–751PubMedGoogle Scholar
  86. 86.
    Adrie C, Monchi M, Laurent I, Um S, Yan SB, Thuong M, Cariou A, Charpentier J, Dhainaut JF (2005) Coagulopathy after successful cardiopulmonary resuscitation following cardiac arrest: implication of the protein C anticoagulant pathway. J Am Coll Cardiol 46:21–28PubMedCrossRefGoogle Scholar
  87. 87.
    Uretzky G, Franco KL, Paolini D, Cohn LH (1983) Cardiopulmonary bypass during reperfusion after coronary occlusion attenuates the “no-reflow” phenomenon in ischemic myocardium. J Thorac Cardiovasc Surg 85:870–876PubMedGoogle Scholar
  88. 88.
    Goldhaber JI, Qayyum MS (2000) Oxygen free radicals and excitation-contraction coupling. Antioxid Redox Signal 2:55–64PubMedCrossRefGoogle Scholar
  89. 89.
    Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD (1995) High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5’-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 270:17513–17520PubMedCrossRefGoogle Scholar
  90. 90.
    Dennis SC, Gewers W, Opie LH (1991) Protons in ischemia. Where do they come from; where do they go to? J Mol Cell Cardiol 23:1077–1086PubMedCrossRefGoogle Scholar
  91. 91.
    Koretsune Y, Marban E (1989) Cell calcium in the pathophysiology of ventricular fibrillation and in the pathogenesis of postarrhythmic contractile dysfunction. Circulation 80:369–379PubMedCrossRefGoogle Scholar
  92. 92.
    Neves LA, Almeida AP, Khosla MC, Campagnole-Santos MJ, Santos RA (1997) Effect of angiotensin-(1–7) on reperfusion arrhythmias in isolated rat hearts. Braz J Med Biol Res 30:801–809PubMedCrossRefGoogle Scholar
  93. 93.
    van Alem AP, Post J, Koster RW (2003) VF recurrence: characteristics and patient outcome in out-of-hospital cardiac arrest. Resuscitation 59:181–188PubMedCrossRefGoogle Scholar
  94. 94.
    Müllner M, Domanovits H, Sterz F, Herkner H, Gamper G, Kürkciyan I, Laggner AN (1998) Measurement of myocardial contractility following successful resuscitation: quantitated left ventricular systolic function utilizing non-invasive wall stress analysis. Resuscitation 39:51–59PubMedCrossRefGoogle Scholar
  95. 95.
    Lazar HL, Haasler GB, Spotnitz WD, Collins RH, Dubroff JM, Meisner J, Spotnitz HM (1985) Compliance, mass, and shape of the canine left ventricle after global ischemia analyzed with two-dimensional echocardiography. J Surg Res 39:199–208PubMedCrossRefGoogle Scholar
  96. 96.
    Schaff HV, Magee PG, Flaherty JT, Goldman RA, Gardner TJ, Gott VL (1978) Are postischemic hearts really stiffer? Surg Forum 29:265–267PubMedGoogle Scholar
  97. 97.
    Kern KB, Berg RA, Hilwig RW, Larson DF, Gaballa MA (2008) Myocardial cytokine IL-8 and nitric oxide synthase activity during and after resuscitation: preliminary observations in regards to post-resuscitation myocardial dysfunction. Resuscitation 77:401–409PubMedCrossRefGoogle Scholar
  98. 98.
    Schultz CH, Rivers EP, Feldkamp CS, Goad EG, Smithline HA, Martin GB, Fath JJ, Wortsman J, Nowak RM (1993) A characterization of hypothalamic-pituitary-adrenal axis function during and after human cardiac arrest. Crit Care Med 21:1339–1347PubMedCrossRefGoogle Scholar
  99. 99.
    Laurent I, Monchi M, Chiche JD, Joly LM, Spaulding C, Bourgeois B, Cariou A, Rozenberg A, Carli P, Weber S, Dhainaut JF (2002) Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 40:2110–2116PubMedCrossRefGoogle Scholar
  100. 100.
    Hékimian G, Baugnon T, Thuong M, Monchi M, Dabbane H, Jaby D, Rhaoui A, Laurent I, Moret G, Fraisse F, Adrie C (2004) Cortisol levels and adrenal reserve after successful cardiac arrest resuscitation. Shock 22:116–119PubMedCrossRefGoogle Scholar
  101. 101.
    Böttiger BW, Motsch J, Braun V, Martin E, Kirschfink M (2002) Marked activation of complement and leukocytes and an increase in the concentrations of soluble endothelial adhesion molecules during cardiopulmonary resuscitation and early reperfusion after cardiac arrest in humans. Crit Care Med 11:2473–2480CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Anatomy, Medical SchoolUniversity of AthensAthensGreece

Personalised recommendations