Heart Failure Reviews

, Volume 17, Issue 1, pp 45–64

Chronic Chagas’ heart disease: a disease on its way to becoming a worldwide health problem: epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine

  • Silvia Gilka Muñoz-Saravia
  • Annekathrin Haberland
  • Gerd Wallukat
  • Ingolf Schimke


Chagas’ disease, caused by Trypanosoma cruzi infection, is ranked as the most serious parasitic disease in Latin America. Nearly 30% of infected patients develop life-threatening complications, and with a latency of 10–30 years, mostly Chagas’ heart disease which is currently the major cause of morbidity and mortality in Latin America, enormously burdening economic resources and dramatically affecting patients’ social and labor situations. Because of increasing migration, international tourism and parasite transfer by blood contact, intrauterine transfer and organ transplantation, Chagas’ heart disease could potentially become a worldwide problem. To raise awareness of this problem, we reflect on the epidemiology and etiopathology of Chagas’ disease, particularly Chagas’ heart disease. To counteract Chagas’ heart disease, in addition to the general interruption of the infection cycle and chemotherapeutic elimination of the infection agent, early and effective causal or symptomatic therapies would be indispensable. Prerequisites for this are improved knowledge of the pathogenesis and optimized patient management. From economic and logistics viewpoints, this last prerequisite should be performed using laboratory medicine tools. Consequently, we first summarize the mechanisms that have been suggested as driving Chagas’ heart disease, mainly those associated with the presence of autoantibodies against G-protein-coupled receptors; secondly, we indicate new treatment strategies involving autoantibody apheresis and in vivo autoantibody neutralization; thirdly, we present laboratory medicine tools such as autoantibody estimation and heart marker measurement, proposed for diagnosis, risk assessment and patient guidance and lastly, we critically reflect upon the increase in inflammation and oxidative stress markers in Chagas’ heart disease.


Autoantibodies Chagas’ heart disease Heart marker Inflammation marker Oxidative stress marker Trypanosoma cruzi 


  1. 1.
    Prata A (1994) Chagas’ disease. Infect Dis Clin North Am 8:61–76PubMedGoogle Scholar
  2. 2.
    Prata A (2001) Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis 1:92–100PubMedCrossRefGoogle Scholar
  3. 3.
    Teixeira AR, Nitz N, Guimaro MC, Gomes C, Santos-Buch CA (2006) Chagas disease. Posgrad Med 82:788–798CrossRefGoogle Scholar
  4. 4.
    Teixeira AR, Nascimento RJ, Sturm NR (2006) Evolution and pathology in Chagas disease—a review. Mem Inst Oswaldo Cruz 101:463–491PubMedCrossRefGoogle Scholar
  5. 5.
    Marin-Neto JA, Cunha-Nerto E, Maciel BC, Simoes MV (2007) Pathogenesis of chronic Chagas heart disease. Circulation 115:1109–1123PubMedCrossRefGoogle Scholar
  6. 6.
    Moncayo A (2003) Chagas disease: current epidemiological trends after the interruption of vectorial and transfusional transmission in the Southern Cone countries. Mem Inst Oswaldo Cruz 98:577–591PubMedCrossRefGoogle Scholar
  7. 7.
    Dorn PL, Perniciaro L, Yabsley MJ, Roelling DM, Balsamo G, Diaz J, Wesson D (2007) Autochthonous transmission of Trypanosoma cruzi, Louisiana. Emerg Infect Dis 13:605–607PubMedCrossRefGoogle Scholar
  8. 8.
    Dias JC, Schofield CJ, Machado EM, Fernandes AJ (2005) Ticks, ivermectin, and experimental Chagas disease. Mem Inst Oswldo Cruz 100:829–832CrossRefGoogle Scholar
  9. 9.
    Dias JC, Silveira AC, Schofield CJ (2002) The impact of Chagas disease control in Latin America—a review. Mem Inst Oswaldo Cruz 97:603–612PubMedCrossRefGoogle Scholar
  10. 10.
    Moncayo A, Ortiz Yanine MI (2006) An update on Chagas disease (human American trypanosomiasis. Ann Trop Med Parasitol 100:663–677PubMedCrossRefGoogle Scholar
  11. 11.
    Dias JC, Prata A, Correia D (2008) Problems and perspectives for Chagas disease control: in search of realistic analysis. Rev Soc Bras Med Trop 41:193–196PubMedGoogle Scholar
  12. 12.
    Salvatella R (2007, July 6) Achievments in controlling Chagas disease in Latin America. In: Conference Geneva (WHO)Google Scholar
  13. 13.
    Dias JC (2001) Epidemiology of Chagas’ disease. In: Wendel S, Brener Z, Camargo ME, Rassi A (eds) Chagas’ disease (American trypanosomiasis): its impact on transfusion and clinical medicine. Sociedade Brasileira de Hematologia e Hemoterapia, Sao Paulo, pp 49–80Google Scholar
  14. 14.
    Bern C, Montgomery SP (2009) An estimate of the burden of Chagas disease in the United States. Clin Infect Dis 49:e52–e54PubMedCrossRefGoogle Scholar
  15. 15.
    Guerri-Guttenberg RA, Grana DR, Ambrosio G, Milei J (2008) Chagas cardiomyopathy: Europe is not spared!. Eur Heart J 29:2587–2591PubMedCrossRefGoogle Scholar
  16. 16.
    Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115:14–21PubMedCrossRefGoogle Scholar
  17. 17.
    Schmunis GA (1999) Risk of Chagas disease through transfusions in the Americans. Medicina (B Aires) 59:125–134Google Scholar
  18. 18.
    Dias JCP, Schofield CJ (1999) The evolution of Chagas disease (American trypanosomiasis) control after 90 years since Carlos Chagas discovery. Men Inst Oswaldo Cruz 94(suppl 1):103–121CrossRefGoogle Scholar
  19. 19.
    Centers for Disease Control, Prevention (CDC) (2007) Blood donor screening for Chagas disease-United States, 2006–2007. MMWR Morb Mortal Wkly Rep 56:141–143Google Scholar
  20. 20.
    Piron M, Verges M, Munoz J, Casamitjana N, Sanz S, Maymó RM, Hernández JM, Puig L, Portús M, Gascón J, Sauleda S (2008) Seroprevalence of Trypanosoma cruzi infection in at-risk blood donors in Catalonia (Spain). Transfusion 48:1862–1868PubMedCrossRefGoogle Scholar
  21. 21.
    Guerri-Guttenberg RA, Ciannameo A, Di Girolamo C, Milei JJ (2009) Chagas disease: an emerging public health problem in Italy? Infez Med 17:5–13PubMedGoogle Scholar
  22. 22.
    Société de pathologie exotique (2010) Chagas disease. American trypanosomiasis. Recommendation for non-endemic zones. Med Trop (Mars) 70:131–132Google Scholar
  23. 23.
    Azogue E (1993) Women and congenital Chagas’ disease in Santa Cruz, Bolivia: epidemiological and sociocultural aspects. Soc Sci Med 37:503–511PubMedCrossRefGoogle Scholar
  24. 24.
    Riera C, Guarro A, Kassab HE, Jorba JM, Castro M, Angrill R, Gállego M, Fisa R, Martin C, Lobato A, Portús M (2006) Congenital transmission of Trypanosoma cruzi in Europe (Spain): a case report. Am J Trop Med Hyg 75:1078–1081PubMedGoogle Scholar
  25. 25.
    Macedo AM, Machado CR, Oliveira RP, Pena SD (2004) Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of Chagas disease. Mem Inst Oswaldo Cruz 99:1–12PubMedCrossRefGoogle Scholar
  26. 26.
    Manoel-Caetano Fda S, Silva AE (2007) Implications of genetic variability of Trypanosoma cruzi for the pathogenesis of Chagas disease. Cad Saude Publica 23:2263–2274PubMedCrossRefGoogle Scholar
  27. 27.
    Torrico F, Castro M (2002) Enfermedad de Chagas. In: Medicina tropical, CD-Rom, ITGPRESS; ISBN 90-76070-237Google Scholar
  28. 28.
    Ochs DE, Hnilica VS, Moser DR, Smith JK, Kirchhoff LV (1996) Postmortem diagnosis of autochthonous acute chagasic myocarditis by polymerase chain reaction amplification of a species-specific DNA sequence of Trypanosoma cruzi. Am J Trop Med Hyg 54:526–529PubMedGoogle Scholar
  29. 29.
    Gironés N, Cuervo H, Fresno M (2005) Trypanosoma cruzi-induced molecular mimicry and Chagas’ disease. Curr Top Microbiol Immunol 296:89–123PubMedCrossRefGoogle Scholar
  30. 30.
    Kumar S, Tarleton RL (1998) The relative contribution of antibody production and CD8 + T cell function to immune control of Trypanosoma cruzi. Parasite Immunol 20:207–216PubMedCrossRefGoogle Scholar
  31. 31.
    Aliberti JC, Cardoso MA, Martins GA, Gazzinelli RT, Vieira LQ, Silva JS (1996) Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophage in response to live trypomastigotes. Infect Immun 64:1961–1967PubMedGoogle Scholar
  32. 32.
    Fresno M, Kopf M, Rivas L (1997) Cytokines and infectious diseases. Immunol Today 18:56–58PubMedCrossRefGoogle Scholar
  33. 33.
    Gazzinelli RT, Oswald IP, Hieny S, James SL, Sher A (1992) The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukibn-10 and transforming growth factor-beta. Eur J Immunol 22:2501–2506PubMedCrossRefGoogle Scholar
  34. 34.
    Munoz-Fernandez MA, Fernandez MA, Fresno M (1992) Synergism between tumor necrosis factor–alpha and interferon-gamma on macrophage activation for the killing of intracellular Trypanosoma cruzi through a nitric oxide-dependent mechanism. Eur J Immunol 22:301–307PubMedCrossRefGoogle Scholar
  35. 35.
    Silva JS, Morrissey PJ, Grabstein KH, Mohler KM, Anderson D, Reed SG (1992) Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. J Exp Med 175:169–174PubMedCrossRefGoogle Scholar
  36. 36.
    Torrico F, Heremans H, Rivera MT, van Marck E, Billiau A, Carlier Y (1991) Endogenous IFN-gamma is required for resistance to acute Trypanosoma cruzi infection in mice. J Immunol 146:3626–3632PubMedGoogle Scholar
  37. 37.
    Holscher C, Kohler G, Muller U (1998) Defective nitric oxide effector functions lead to extreme susceptibility of Trypanosoma cruzi-infected mice deficient in gamma interferon receptor or inducible nitric oxide synthase. Infect Immun 66:1208–1215PubMedGoogle Scholar
  38. 38.
    Castanos-Velez E, Maerlan S, Osorio LM, Aberg F, Biberfeld P, Orn A, Rottenberg ME (1998) Trypanosoma cruzi infection in tumor necrosis factor receptor p55-deficient mice. Infect Immun 66:2960–2968PubMedGoogle Scholar
  39. 39.
    Martin D, Tarleton R (2004) Generation, specificity, and function of CD8 + T cells in Trypanosoma cruzi infection. Immunol Rev 201:304–317PubMedCrossRefGoogle Scholar
  40. 40.
    Avila HA, Sigman DS, Cohen LM, Millikan RC, Simpson L (1991) Polymerase chain reaction amplification of Trypanosoma cruzi kinetoplast minicircle DNA isolated from whole blood lysates: diagnosis of chronic Chagas’ disease. Mol Biochem Parasitol 48:211–221PubMedCrossRefGoogle Scholar
  41. 41.
    Kirchhoff LV, Votava JR, Ochs DE, Moser DR (1996) Comparison of PCR and microscopic methods for detecting Trypanosoma cruzi. J Clin Microbiol 34:1171–1175PubMedGoogle Scholar
  42. 42.
    Karp CL, Auwaerter PG (2007) Coinfection with HIV and Tropical Infectious Diseases. I. Protozoal Pathogens. Clin Infect Dis 45:1208–1213PubMedCrossRefGoogle Scholar
  43. 43.
    Mady C, de Moraes AV, Galiano N, Décourt LV (1982) Hemodynamic study of the indeterminate form of Chagas’ disease. Arq Bras Cardiol 38:271–275PubMedGoogle Scholar
  44. 44.
    Sicca RE, Gonzalez Cappa SM, Sanz OP, Mirkin G (1995) Peripheral nervous system involvement in human and experimental chronic American trypanosomiasis. Bull Soc Pathol Exot 88:156–163Google Scholar
  45. 45.
    Lopes ER (1999) Sudden death in patients with Chagas disease. Mem Inst Oswaldo Cruz 94(Suppl 1):321–324PubMedCrossRefGoogle Scholar
  46. 46.
    Andrade LO, Machado CR, Chiari E, Pena SD, Macedo AM (2002) Trypanosoma cruzi: role of host genetic background in the differential tissue distribution of parasite clonal populations. Exp Parasitol 100:269–275PubMedCrossRefGoogle Scholar
  47. 47.
    Tibayrenc M (2007) Human genetic diversity and the epidemiology of parasitic and other transmissible diseases. Adv Parasitol 64:377–462PubMedCrossRefGoogle Scholar
  48. 48.
    Layrisse Z, Fernandez MT, Montagnani S, Matos M, Balbas O, Herrera F, Colorado IA, Catalioti F, Acquatella H (2000) HLA-C*03 is a risk factor for cardiomyopathy in Chagas disease. Human Immunol 61:925–929CrossRefGoogle Scholar
  49. 49.
    Garcia Borras S, Racca L, Cotorruelo C, Biondi C, Beloscar J, Racca A (2009) Distribution of HLA-DRB1 alleles in Argentinien patients with Chagas’ disease cardiomyopathy. Immunol Invest 38:268–275PubMedCrossRefGoogle Scholar
  50. 50.
    Fae KC, Drigo SA, Cunha-Neto E, Ianni B, Mady C, Kalil J, Goldberg AC (2000) HLA and ß-myosin heavy chain do not influence susceptibility to Chagas’ disease cardiomyopathy. Microbes Infect 2:745–751PubMedCrossRefGoogle Scholar
  51. 51.
    Yacoub S, Birks EJ, Slavik Z, Henein M (2003) Early detection of myocardial dysfunction in Chagas disease using novel echocardiographic indices. Trans R Soc Trop Med Hyg 97:528–534PubMedCrossRefGoogle Scholar
  52. 52.
    Dubner S, Schapachnik E, Riera AR, Valero E (2008) Chagas disease: state-of-the-art of diagnosis and management. Cardiol J 15:493–504PubMedGoogle Scholar
  53. 53.
    Bern C, Montgomery SP, Herwaldt BL, Rassi A Jr, Marin-Neto JA, Dantas RO, Maguire JH, Acquatella H, Morillo C, Kirchhoff LV, Gilman RH, Reyes PA, Salvatella R, Moore AC (2007) Evaluation and treatment of Chags disease in the United States: a systematic review. JAMA 298:2171–2181PubMedCrossRefGoogle Scholar
  54. 54.
    Viotti RJ, Vigliano C, Laucella S, Lococo B, Petti M, Bertocchi G, Ruiz Vera B, Armenti H (2004) Value of echocardiography for diagnosis and prognosis of chronic Chagas disease cardiomyopathy without heart failure. Heart 90:655–660PubMedCrossRefGoogle Scholar
  55. 55.
    Acuatella H (2007) Echocardiography in Chagas heart disease. Circulation 115:1124–1131CrossRefGoogle Scholar
  56. 56.
    Shehata ML, Turkbey EB, Vogel-Claussen J, Bluemke DA (2008) Role of cardiac magnetic resonance imaging in assessment of nonischemic cardiomyopathies. Top Magn Reson Imaging 19:43–57PubMedCrossRefGoogle Scholar
  57. 57.
    Tanowitz HB, Machado FS, Jelicks LA, Shirani J, de Carvalho AC, Spray DC, Factor SM, Kirchhoff LV, Weiss LM (2009) Perspectives on Trypanosoma cruzi-induced heart disease (Chagas disease). Prog Cardiovasc Dis 51:524–539PubMedCrossRefGoogle Scholar
  58. 58.
    Braga MS, Lauria-Pires L, Argañaraz ER, Nascimento RJ, Teixeira AR (2000) Persistent infections in chronic Chagas’ disease patients treated with anti-Trypanosoma cruzi nitroderivatives. Rev Inst Med Trop Sao Paulo 42:157–161PubMedCrossRefGoogle Scholar
  59. 59.
    Lauria-Pires L, Braga MS, Vexenat AC, Nitz N, Simões-Barbosa A, Tinoco DL, Teixeira AR (2000) Progressive chronic Chagas heart disease ten years after treatment with anti-Trypanosoma cruzi nitroderivatives. Am J Trop Med Hyg 63:111–118PubMedGoogle Scholar
  60. 60.
    Hernández-Becerril N, Nava A, Reyes PA, Monteón VM (2001) IgG subclases reactivity to Trypanosoma cruzi in chronic chagasic patients. Arch Cardiol Mex 71:199–205PubMedGoogle Scholar
  61. 61.
    Tafuri WL, Maria TA, Lopes ER, Chapadeiro E (1973) Electron microscopy of the myocardium in human trypanosomiasis cruzi. Rev Inst Med Trop Sao Paulo 15:347–370PubMedGoogle Scholar
  62. 62.
    Rossi MA (2001) Connective tissue skeleton in the normal left ventricle and in hypertensive left ventricular hypertrophy and chronic chagasic myocarditis. Med Sci Monit 7:820–832PubMedGoogle Scholar
  63. 63.
    Oliveira JS (1985) A natural human model of intrinsic heart nervous system denervation: Chagas’ cardiopathy. Am Heart J 110:1092–1098PubMedCrossRefGoogle Scholar
  64. 64.
    Py M, Pedrosa R, Silveira J, Medeiros A, Andre C (2009) Neurological manifestations in Chagas disease without cardiac dysfunction: correlation between dysfunction of the parasympathetic nervous system and white matter lesions in the brain. J Neuroimaging 19:332–336PubMedCrossRefGoogle Scholar
  65. 65.
    Gallerano RH, Marr JJ, Sosa RR (1990) Therapeutic efficacy of allopurinol in patients with chronic Chagas’ disease. Am J Trop Med Hyg 43:159–166PubMedGoogle Scholar
  66. 66.
    Wallukat G, Nissen E, Morwinski R, Müller J (2000) Autoantibodies against the beta- and muscarinic receptors in cardiomyopathy. Herz 25:261–266PubMedCrossRefGoogle Scholar
  67. 67.
    Wallukat G, Munoz Saravia GS, Haberland A, Bartel S, Araujo R, Valda G, Duchen D, Diaz Ramirez I, Borges AC, Schimke I (2010) Distinct patterns of autoantibodies against G-protein-coupled receptors in Chagas’ cardiomyopathy and megacolon. Their potential impact for early risk assessment in asymptomatic Chagas’ patients. J Am Coll Cardiol 55:463–468PubMedCrossRefGoogle Scholar
  68. 68.
    Felix SB, Staudt A, Dorffel WV, Stangl V, Merkel K, Pohl M, Döcke WD, Morgera S, Neumayer HH, Wernecke KD, Wallukat G, Stangl K (2000) Hemodynamic effects of immunoadsorption and subsequent immunoglobulin substitution in dilated cardiomyopathy: three-month results from a randomized study. J Am Coll Cardiol 35:1590–1598PubMedCrossRefGoogle Scholar
  69. 69.
    Müller J, Wallukat G, Dandel M, Bieda H, Brandes K, Spiegelsberger S, Nissen E, Kunze R, Hetzer R (2000) Immunoglobulin adsorption in patients with idiopathic dilated cardiomyopathy. Circulation 101:385–391PubMedGoogle Scholar
  70. 70.
    Labovsky V, Smulski CR, Gómez K; Levy G, Levin MJ (2007) Anti-beta 1-adrenergic receptor autoantibodies in patients with chronic Chagas heart disease. Clin Exp Immunol 148:440–449PubMedCrossRefGoogle Scholar
  71. 71.
    Trimpert C, Herda LR, Eckerle LG, Pohle S, Müller C, Landsberger M, Felix SB, Staudt A (2010) Immunoadsorption in dilated cardiomyopathy: long-term reduction of cardiodepressant antibodies. Eur J Clin Invest 40:685–691PubMedCrossRefGoogle Scholar
  72. 72.
    EP 2197900 (2010, Aug 5) 1-Adrenozeptor-Antikörper inhibierende, mutierte, doppeltcyklisierte RezeptorpeptideGoogle Scholar
  73. 73.
    Haberland A, Wallukat G, Dahmen C, Kage A, Schimke I (2010) JACC (submitted)Google Scholar
  74. 74.
    Engman DM, Leon JS (2002) Pathogenesis of Chagas heart disease: role of autoimmunity. Acta Trop 81:123–132PubMedCrossRefGoogle Scholar
  75. 75.
    Cunha-Neto E, Bilate AM, Hyland KV, Fonseca SG, Kalil J, Engman DM (2006) Induction of cardiac autoimmunity in Chagas heart disease: a case for molecular mimicry. Autoimmunity 39:41–54PubMedCrossRefGoogle Scholar
  76. 76.
    Reis DD, Gazzinelli RT, Gazzinelli G, Colley DG (1993) Antibodies to Trypanosoma cruzi express idiotypic patterns that can differentiate between patients with asymptomatic or severe Chagas’ disease. J Immunol 150:1611–1618PubMedGoogle Scholar
  77. 77.
    Wallukat G, Nissen E, Müller J, Brinckmann R, Schimke I, Kunze R (2002) The pathophysiological role of autoantibodies directed to G-protein coupled receptors and therapeutic strategies of antibody removal. In: Brinckmann R, Kunze R (eds) G-protein coupled receptors and autoantibodies. Pabst Science Publishers, Legerich, pp 7–47Google Scholar
  78. 78.
    Elies R, Ferrari I, Wallukat G, Lebesgue D, Chiale P, Elizari M, Rosenbaum M, Hoebeke J, Levin MJ (1996) Structural and functional analysis of the B cell epitopes recognized by anti-receptor autoantibodies in patients with Chagas’ disease. J Immunol 157:4203–4211PubMedGoogle Scholar
  79. 79.
    Masuda MO, Levin M, De Oliveira SF, Dos Santos Costa PC, Bergami PL, Dos Santos Almeida NA, Pedrosa RC, Ferrari I, Hoebeke J, Campos de Carvalho AC (1998) Functionally active cardiac antibodies in chronic Chagas’ disease are specifically blocked by Trypanosoma cruzi antigens. FASEB J 12:1551–1558PubMedGoogle Scholar
  80. 80.
    Gouldson PR, Higgs C, Smith RE, Dean MK, Gkoutos GV, Reynolds CA (2000) Dimerization and domain swapping in G-protein-coupled receptors: a computational study. Neuropsychopharmacology 23:S60–S77PubMedCrossRefGoogle Scholar
  81. 81.
    Levin MJ, Hoebeke J (2008) Cross-talk between anti-beta1-adrenoceptor antibodies in dilated cardiomyopathy and Chagas’ heart disease. Autoimmunity 41:429–433PubMedCrossRefGoogle Scholar
  82. 82.
    Jahns R, Boivin V, Hein L, Triebel S, Angermann CE, Ertl G, Lohse MJ (2004) Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest 113:1419–1429PubMedGoogle Scholar
  83. 83.
    Jahns R, Boivin V, Lohse MJ (2006) Beta 1-adrenergic receptor-directed autoimmunity as a cause of dilated cardiomyopathy in rats. Int J Cardiol 112:7–14PubMedCrossRefGoogle Scholar
  84. 84.
    Elies R, Fu LX, Eftekhari P, Wallukat G, Schulze W, Granier C, Hjalmarson A, Hoebeke J (1998) Immunochemical and functional characterization of an agonist-like monoclonal antibody against the M2 acetylcholine receptor. Eur J Biochem 251:659–666PubMedCrossRefGoogle Scholar
  85. 85.
    Christ T, Wettwer E, Dobrev D, Adolph E, Knaut M, Wallukat G, Ravens U (2001) Autoantibodies against the beta1 adrenoceptor from patients with dilated cardiomyopathy prolong action potential duration and enhance contractility in isolated cardiomyocytes. J Mol Cell Cardiol 33:1515–1525PubMedCrossRefGoogle Scholar
  86. 86.
    Chiale PA, Ferrari I, Mahler E, Vallazza MA, Elizari MV, Rosenbaum MB, Levin MJ (2000) Differential profile and biochemical effects of antiautonomic membrane receptor antibodies in ventricular arrhythmias and sinus node dysfunction. Circulation 103:1765–1771Google Scholar
  87. 87.
    Sterin-Borda L, Perez Leiros C, Wald M, Cremaschi G, Borda E (1988) Antibodies to beta 1 beta 2 adrenoreceptors in Chagas’ disease. Clin Exp Immunol 74:349–354PubMedGoogle Scholar
  88. 88.
    Jahns R, Boivin V, Krapf T, Wallukat G, Boege F, Lohse MJ (2000) Modulation of beta1-adrenoceptor activity by domain-specific antibodies and heart failure-associated autoantibodies. J Am Coll Cardiol 36:1280–1287PubMedCrossRefGoogle Scholar
  89. 89.
    Magnusson Y, Wallukat G, Waagstein F, Hjalmarson A, Hoebeke J (1994) Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of autoantibodies against the beta 1-adrenoceptor with positive chronotropic effect. Circulation 89:2760–2767PubMedGoogle Scholar
  90. 90.
    Krause EG, Bartel S, Beyerdorfer I, Wallukat G (1996) Activation of cyclic AMP-dependent protein kinase in cardiomyocytes by anti-beta 1-adrenoceptor autoantibodies from patients with idiopathic dilated cardiomyopathy. Blood Press Suppl 3:37–40PubMedGoogle Scholar
  91. 91.
    Ford CE, Skiba NP, Bae H, Daaka Y, Reuveny E, Shekter LR, Rosal R, Weng G, Yang CS, Iyengar R, Miller RJ, Jan LY, Lefkowitz RJ, Hamm HE (1998) Molecular basis for interactions of G protein betagamma subunits with effectors. Science 280:1271–1274PubMedCrossRefGoogle Scholar
  92. 92.
    Goin JC, Leiros CP, Borda E, Sterin-Borda L (1997) Interaction of human chagasic IgG with the second extracellular loop of the human heart muscarinic acetylcholine receptor: functional and pathological implications. FASEB J 11:77–83PubMedGoogle Scholar
  93. 93.
    Goin JC, Sterin-Borda L, Bilder CR, Varrica LM, Iantorno G, Ríos MC, Borda E (1999) Functional implications of circulatin muscarinic cholinergic receptor autoantibodies in Chagasic patients with achalasia. Gastroenterology 117:798–805PubMedCrossRefGoogle Scholar
  94. 94.
    Sterin-Borda L, Goin JC, Bilder CR, Iantorno G, Hernando AC, Borda E (2001) Interaction of human chagasic IgG with human colon muscarínico acetylcholine receptor: molecular and functional evidence. Gut 49:699–705PubMedCrossRefGoogle Scholar
  95. 95.
    Leiros CP, Sterin-Borda L, Borda ES, Goin JC, Hosey MM (1997) Desensitization and sequestration of human m2 muscarinic acetylcholine receptors by autoantibodies from patients with Chagas’ disease. J Biol Chem 272:12989–12993PubMedCrossRefGoogle Scholar
  96. 96.
    Pinto AY, Valente SA, Valente Vda C, Ferreira Junior AG, Coura JR (2008) Acute phase of Chagas disease in the Brazilian Amazon region: study of 233 cases from Pará, Amapá and Maranhão observed between 1988 and 2005. Rev Soc Bras Med Trop 41:602–614PubMedCrossRefGoogle Scholar
  97. 97.
    Diaz C, Nussenzweig V, Gonzalez A (1992) An improved polymerase chain reaction assay to detect Trypanosoma cruzi in blood. Am J Trop Med Hyg 46:616–623PubMedGoogle Scholar
  98. 98.
    Vago AR, Macedo AM, Adad SJ, Reis DD, Corrêa-Oliveira R (1996) PCR detection of Trypanosoma cruzi DNA in oesophageal tissues of patients with chronic digestive Chagas’ disease. Lancet 348:891–892PubMedCrossRefGoogle Scholar
  99. 99.
    Otani MM, Vinelli E, Kirchhoff LV, del Pozo A, Sands A, Vercauteren G, Sabino EC (2009) WHO comparative evaluation of serologic assays for Chagas disease. Transfusion 49:1076–1082PubMedCrossRefGoogle Scholar
  100. 100.
    Campbell DA, Westenberger SJ, Sturm NR (2004) The determinants of Chagas disease: connecting parasite and host genetics. Curr Mol Med 4:549–562PubMedCrossRefGoogle Scholar
  101. 101.
    Munoz Saravia SG, Haberland A, Bartel S, Araujo R, Valda G, Duchen D, Diaz Ramirez I, Borges AC, Wallukat G, Schimke I (2010) Distinct patterns of autoantibodies against G-protein coupled receptors in Chagas’ cardiomyopathy and megacolon: their potential impact for early risk assessment in asymptomatic Chagas’ patients. J Am Coll Cardiol 56:526–527PubMedCrossRefGoogle Scholar
  102. 102.
    Goin JC, Borda E, Auger R, Storino R, Sterni-Borda L (1999) Cardiac M(2) muscarinic cholinoceptor activation by human chagasic autoantibodies: association with bradycardia. Heart 82:273–278PubMedGoogle Scholar
  103. 103.
    Wallukat G, Wollenberger A (1987) Effects of the serum gamma globulin fraction of patients with allergic asthma and dilated cardiomyopathy on chromotropic beta adrenoceptor function in cultured neonatal rat heart myocytes. Biomed Biochim Acta 46:S634–S639PubMedGoogle Scholar
  104. 104.
    Wallukat G, Podlowski S, Nissen E, Morwinski R, Csonka C, Tosaki A, Blasig IE (2003) Functional and structural characterization of anti-beta1-adrenoceptor autoantibodies of spontaneously hypertensive rats. Mol Cell Biochem 251:67–75PubMedCrossRefGoogle Scholar
  105. 105.
    Nikolaev VO, Boivin V, Störk S, Angermann CE, Ertl G, Lohse MJ, Jahns R (2007) A novel fluorescence method for the rapid detection of functional beta1-adrenergic receptor autoantibodies in heart failure. J Am Coll Cardiol 50:423–431PubMedCrossRefGoogle Scholar
  106. 106.
    Jahns R, Boivin V, Siegmund C, Inselmann G, Lohse MJ, Boege F (1999) Autoantibodies activating human beta1-adrenergic receptors are associated with reduced cardiac function in chronic heart failure. Circulation 99:649–654PubMedGoogle Scholar
  107. 107.
    Limas CJ, Goldenberg IF, Limas C (1992) Assessment of immune modulation of beta-adrenergic pathways in human dilated cardiomyopathy: influence of methodologic factors. Am Heart J 123:967–970PubMedCrossRefGoogle Scholar
  108. 108.
    Del Corsso C, de Carvalho AC, Martino HF, Varanda WA (2004) Sera from patients with idiopathic dilated cardiomyopathy decrease ICa in cardiomyocytes isolated from rabbits. Am J Physiol Heart Circ Physiol 287:H1928–H1936PubMedCrossRefGoogle Scholar
  109. 109.
    Cervetta L, Moretti E, Basso B (2002) Experimental Chagas’ disease: the protection induced by immunization with Trypanosoma rangeli is associated with down-regulation of IL-6, TNF-α and IL-10 synthesis. Acta Parasitol 47:73–78Google Scholar
  110. 110.
    Pakianathan DR, Kuhn RE (1992) Interleukin-2 receptors in experimental Chagas’ disease. Infect Immun 60:3904–3908PubMedGoogle Scholar
  111. 111.
    Medrano-Mercado N, Luz MR, Torrico F, Tapia G, Van Leuven F, Araujo-Jorge TC (1996) Acute-phase proteins and serologic profiles of chagasic children from an endemic area in Bolivia. Am J Trop Med Hyg 54:154–161PubMedGoogle Scholar
  112. 112.
    Medrano NM, Luz MR, Cabello PH, Tapia GT, Van Leuven F, Araújo-Jorge TC (1996) Acute Chagas’ disease: plasma levels of alpha-2-macroglobulin and C-reactive protein in children under 13 years in a high endemic area of Bolivia. J Trop Pediatr 42:68–74PubMedCrossRefGoogle Scholar
  113. 113.
    Pascale JM, Sousa CE, Orn A (1991) Evaluation of interleukin-2 soluble receptor in patients with tripanosomiasis Americana in Panama. Rev Med Panama 16:184–188PubMedGoogle Scholar
  114. 114.
    Pascale JM, Sousa OE, Orn A (1992) Determination of soluble interleukin-2 receptor in patients with American trypanosomiasis in Panama. Rev Med Panama 17:12–16PubMedGoogle Scholar
  115. 115.
    Moretti E, Basso B, Cervetta L, Brigada A, Barbieri G (2002) Patterns of cytokines and soluble cellular receptors in the sera of children with acute Chagas’ disease. Clin Diagn Lab Immunol 9:1324–1327PubMedGoogle Scholar
  116. 116.
    Ramasawmy R, Cunha-Neto E, Faé KC, Müller NG, Cavalcanti VL, Drigo SA, Ianni B, Mady C, Kalil J, Goldberg AC (2006) BAT1, a putative anti-inflammatory gene, is associated with chronic Chagas cardiomyopathy. J Infect Dis 193:1394–1399PubMedCrossRefGoogle Scholar
  117. 117.
    López L, Arai K, Giménez E, Jiménez M, Pascuzo C, Rodríguez-Bonfante C, Bonfante-Cabarcas R (2006) C-reactive protein and interleukin-6 serum levels increase as Chagas disease progresses towards cardiac failure. Rev Esp Cardiol 59:50–56PubMedCrossRefGoogle Scholar
  118. 118.
    Munoz Saravia SG, Haberland A, Bartel S, Araujo R, Valda G, Duchen D, Diaz Ramirez I, Borges AC, Wallukat G, Schimke I (2010) Cardiac troponin T measured with a highly sensitive assay for diagnosis and monitoring of heart injury in chronic Chagas’ disease. Arch Pathol Lab Med (in press)Google Scholar
  119. 119.
    Cetron MS, Basilio FP, Moraes AP, Sousa AQ, Paes JN, Kahn SJ, Wener MH, Van Voorhis WC (1993) Humoral and cellular immune response of adults from northeastern Brazil with chronic Trypanosoma cruzi infection: depressed cellular immune response to T. cruzi antigen among Chagas’ disease patients with symptomatic versus indeterminate infection. Am J Trop Med Hyg 49:370–382PubMedGoogle Scholar
  120. 120.
    Mocelin AO, Issa VS, Bacal F, Guimarães GV, Cunha E, Bocchi EA (2005) The influence of aetiology on inflammatory and neurohumoral activation in patients with severe heart failure: a prospective study comparing Chagas’ heart disease and idiopathic dilated cardiomyopathy. Eur J Heart Fail 7:869–873PubMedCrossRefGoogle Scholar
  121. 121.
    Ferreira RC, Ianni BM, Abel LC, Buck P, Mady C, Kalil J, Cunha-Neto E (2003) Increased plasma levels of tumor necrosis factor-alpha in asymptomatic/”indeterminate” and Chagas disease cardiomyopathy patients. Mem Inst Oswaldo Cruz 98:407–411PubMedCrossRefGoogle Scholar
  122. 122.
    Pérez-Fuentes R, López-Colombo A, Ordóñez-Toquero G, Gomez-Albino I, Ramos J, Torres-Rasgado E, Salgado-Rosas H, Romero-Díaz M, Pulido-Pérez P, Sánchez-Guillén MC (2007) Correlation of the serum concentrations of tumour necrosis factor and nitric oxide with disease severity in chronic Chagas disease (American trypanosomiasis). Ann Trop Med Parasitol 101:123–132PubMedCrossRefGoogle Scholar
  123. 123.
    Talvani A, Rocha MO, Barcelos LS, Gomes YM, Ribeiro AL, Teixeira MM (2004) Elevated concentrations of CCL2 and tumor necrosis factor-alpha in chagasic cardiomyopathy. Clin Infect Dis 38:943–950PubMedCrossRefGoogle Scholar
  124. 124.
    Rodrigues DB, Correia D, Marra MD, Giraldo LE, Lages-Silva E, Silva-Vergara ML, Barata CH (2005) Rodrigues Junior V (2005) Cytokine serum levels in patients infected by human immunodeficiency virus with and without Trypanosoma cruzi coinfection. Rev Soc Bras Med Trop 38:483–487PubMedGoogle Scholar
  125. 125.
    Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623PubMedCrossRefGoogle Scholar
  126. 126.
    Giustarini D, Dalle-Donne I, Tsikas D, Rossi R, Giustarini D (2009) Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 46:241–281PubMedCrossRefGoogle Scholar
  127. 127.
    Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115:500–508PubMedGoogle Scholar
  128. 128.
    de Oliveira TB, Pedrosa RC, Filho DW (2007) Oxidative stress in chronic cardiopathy associated with Chagas’ disease. Int J Cardiol 116:357–363PubMedCrossRefGoogle Scholar
  129. 129.
    Gupta S, Wen JJ, Garg NJ (2009) Oxidative stress in Chagas disease. Interdiscip Perspect Infect Dis 190354 [Epub 2009, Jun 14]Google Scholar
  130. 130.
    Maçao LB, Wilhelm Filho D, Pedrosa RC, Pereira A, Backes P, Torres MA, Fröde TS (2007) Antioxidant therapy attenuates oxidative stress in chronic cardiopathy associated with Chagas’ disease. Int J Cardiol 123:43–49PubMedCrossRefGoogle Scholar
  131. 131.
    Villalta F, Kierszenbaum F (1983) Role of polymorphonuclear cells in Chagas’ disease. I. Uptake and mechanisms of destruction of intracellular (amastigote) forms of Trypanosoma cruzi by human neutrophils. J Immunol 131:1504–1510PubMedGoogle Scholar
  132. 132.
    Smith JA (1994) Neutrophils, host defense, and inflammation: a double-edged sword. J Leukoc Biol 56:672–686PubMedGoogle Scholar
  133. 133.
    Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109:33–44PubMedCrossRefGoogle Scholar
  134. 134.
    Wen JJ, Dhiman M, Whorton EB, Garg NJ (2008) Tissue-specific oxidative imbalance and mitochondrial dysfunction during Trypanosoma cruzi infection in mice. Microbes Infect 10:1201–1209PubMedCrossRefGoogle Scholar
  135. 135.
    Báez AL, Lo Presti MS, Rivarola HW, Pons P, Fretes R, Paglini-Oliva P (2008) Trypanosoma cruzi: cardiac mitochondrial alterations produced by different strains in the acute phase of the infection. Exp Parasitol 120:397–402PubMedCrossRefGoogle Scholar
  136. 136.
    Wen JJ, Bhatia V, Popov VL, Garg NJ (2006) Phenyl-alpha-tert-butyl nitrone reverses mitochondrial decay in acute Chagas’ disease. Am J Pathol 169:1953–1964PubMedCrossRefGoogle Scholar
  137. 137.
    Palhares PE, Marcondes NS, Fontana Júnior P, Schaeffer GM, Bastos OM (1987) Correlation between tissue damage and malondialdehydemia in mice infected with Trypanosoma cruzi. Braz J Med Biol Res 20:795–798PubMedGoogle Scholar
  138. 138.
    Palhares PE, Marcondes NS, Fontana Júnior P, Schaeffer GM, Bastos OM (1987) Malondialdehydemia and parasitemia during acute phase of experimental Chagas’ disease in mice. Braz J Med Biol Res 20:799–801PubMedGoogle Scholar
  139. 139.
    Palhares PE, Fontana Júnior P, Schaffer GM, Marcondes NS, Vergara M (1988) Tissue damage markers in experimental Chagas’ disease. Braz J Med Biol Res 21:957–959PubMedGoogle Scholar
  140. 140.
    Wen JJ, Vyatkina G, Garg N (2004) Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Free Radic Biol Med 37:1821–1833PubMedCrossRefGoogle Scholar
  141. 141.
    Michowitz Y, Kisil S, Guzner-Gur H, Rubinstein A, Wexler D, Sheps D, Keren G, George J (2008) Usefulness of serum myeloperoxidase in prediction of mortality in patients with severe heart failure. Isr Med Assoc J 10:884–888PubMedGoogle Scholar
  142. 142.
    Dhiman M, Estrada-Franco JG, Pando JM, Ramirez-Aguilar FJ, Spratt H, Vazquez-Corzo S, Perez-Molina G, Gallegos-Sandoval R, Moreno R, Garg NJ (2009) Increased myeloperoxidase activity and protein nitration are indicators of inflammation in patients with Chagas’ disease. Clin Vaccine Immunol 16:660–666PubMedCrossRefGoogle Scholar
  143. 143.
    Wen JJ, Yachelini PC, Sembaj A, Manzur RE, Garg NJ (2006) Increased oxidative stress is correlated with mitochondrial dysfunction in chagasic patients. Free Radic Biol Med 41:270–276PubMedCrossRefGoogle Scholar
  144. 144.
    Pérez-Fuentes R, Guégan JF, Barnabé C, López-Colombo A, Salgado-Rosas H, Torres-Rasgado E, Briones B, Romero-Díaz M, Ramos-Jiménez J, Sánchez-Guillén Mdel C (2003) Severity of chronic Chagas disease is associated with cytokine/antioxidant imbalance in chronically infected individuals. Int J Parasitol 33:293–299PubMedCrossRefGoogle Scholar
  145. 145.
    Pérez-Fuentes R, Torres-Rasgado E, Salgado-Rosas H, Zamora-Ginez I, Sánchez-Guillén MC (2008) The anti-oxidant defence response in individuals with the indeterminate form of Chagas disease (American trypanosomiasis). Ann Trop Med Parasitol 102:189–197PubMedCrossRefGoogle Scholar
  146. 146.
    Rivera MT, de Souza AP, Moreno AH, Xavier SS, Gomes JA, Rocha MO, Correa-Oliveira R, Nève J, Vanderpas J, Araújo-Jorge TC (2002) Progressive Chagas’ cardiomyopathy is associated with low selenium levels. Am J Trop Med Hyg 66:706–712PubMedGoogle Scholar
  147. 147.
    Maisel A, Mueller C, Adams K et al (2008) State of the art: using natriuretic peptide levels in clinical practice. Eur J Heart Fail 10:824–839PubMedCrossRefGoogle Scholar
  148. 148.
    Ribeiro AL, dos Reis AM, Barros MV, de Sousa MR, Rocha AL, Perez AA, Pereira JB, Machado FS, Rocha MO (2002) Brain natriuretic peptide and left ventricular dysfunction in Chagas’ disease. Lancet 360:461–462PubMedCrossRefGoogle Scholar
  149. 149.
    Talvani A, Rocha MO, Cogan J, Maewal P, de Lemos J, Ribeiro AL, Teixeira MM (2004) Brain natriuretic peptide and left ventricular dysfunction in chagasic cardiomyopathy. Mem Inst Oswaldo Cruz 99:645–649PubMedCrossRefGoogle Scholar
  150. 150.
    Talvani A, Rocha MO, Cogan J, Maewal P, de Lemos J, Ribeiro AL, Teixeira MM (2005) Brain natriuretic peptide measurement in Chagas heart disease: marker of ventricular dysfunction and arrhythmia. Int J Cardiol 100:503–504PubMedCrossRefGoogle Scholar
  151. 151.
    Melo RB, Parente GB, Victor EG (2005) Measurement of human brain natriuretic peptide in patients with Chagaws disease. Arq Bras Cardiol 84:137–140PubMedCrossRefGoogle Scholar
  152. 152.
    Vilas-Boas F, Feitosa GS, Soares MB, Pinho-Filho JA, Nascimento T, Barojas MM, Andrade MV, Ribeiro-Dos-Santos R, Bocchi E (2008) Invasive and noninvasive correlations of B-type natriuretic peptide in patients with heart failure due to Chagas cardiomyopathy. Congest Heart Fail 14:121–126PubMedCrossRefGoogle Scholar
  153. 153.
    Marques DS, Canesin MF, Barutta Júnior F, Fuganti CJ, Barretto AC (2006) Evaluation of asymptomatic patients with chronic Chagas disease through ambulatory electrocardiogram, echocardiogram and B-Type natriuretic peptide analyses. Arq Bras Cardiol 87:336–343PubMedCrossRefGoogle Scholar
  154. 154.
    Heringer-Walther S, Moreira MC, Wessel N, Saliba JL, Silvia-Barra J, Pena JL, Becker S, Siems WE, Schultheiss HP, Walther T (2005) Brain natriuretic peptide predicts survival in Chagas’ disease more effectively than atrial natriuretic peptide. Heart 91:385–387PubMedCrossRefGoogle Scholar
  155. 155.
    Moreira Mda C, Heringer-Walther S, Wessel N, Moreira Ventura T, Wang Y, Schultheiss HP, Walther T (2008) Prognostic value of natriuretic peptides in Chagas’ disease: a 3-year follow-up investigation. Cardiology 110:217–225PubMedCrossRefGoogle Scholar
  156. 156.
    Ribeiro AL, Teixeira MM, Reis AM, Talvani A, Perez AA, Barros MV, Rocha MO (2006) Brain natriuretic peptide based strategy to detect left ventricular dysfunction in Chagas disease: a comparison with the conventional approach. Int J Cardiol 109:34–40PubMedCrossRefGoogle Scholar
  157. 157.
    Sousa L, Botoni FA, Britto RR, Rocha MO, Teixeira AL Jr, Teixeira MM, Reis AM, Oliveira BM, Ribeiro AL (2008) Six-minute walk test in Chagas cardiomyopathy. Int J Cardiol 125:139–141PubMedCrossRefGoogle Scholar
  158. 158.
    Lima MM, Nunes MC, Rocha MO, Beloti FR, Alencar MC, Ribeiro AL (2010) Left ventricular diastolic function and exercise capacity in patients with chagas cardiomyopathy. Echocardiography 27:519–524PubMedCrossRefGoogle Scholar
  159. 159.
    Oliveira BM, Botoni FA, Ribeiro AL, Pinto AS, Reis AM, Nunes Mdo C, Rocha MO (2009) Correlation between BNP levels and Doppler echocardiographic parameters of left ventricle filling pressure in patients with Chagasic cardiomyopathy. Echocardiography 26:521–527PubMedCrossRefGoogle Scholar
  160. 160.
    Fernandes F, Dantas S, Ianni BM, Ramires FJ, Buck P, Salemi VM, Lopes HF, Mady C (2007) Leptin levels in different forms of Chagas’ disease. Braz J Med Biol Res 40:1631–1636PubMedCrossRefGoogle Scholar
  161. 161.
    Barbosa MM, Nunes Mdo C, Ribeiro AL, Barral MM, Rocha MO (2007) N-terminal proBNP levels in patients with Chagas disease: a marker of systolic and diastolic dysfunction of the left ventricle. Eur J Echocardiogr 8:204–212PubMedCrossRefGoogle Scholar
  162. 162.
    Mady C, Fernandes F, Arteaga E, Ramires FJ, Buck Pde C, Salemi VM, Ianni BM, Nastari L, Dias RR (2008) Serum NT pro-BNP: relation to systolic and diastolic function in cardiomyopathies and pericardiopathies. ArQ Bras Cardiol 91:46–50PubMedCrossRefGoogle Scholar
  163. 163.
    Scirica BM, Morrow DA (2004) Troponins in acute coronary syndromes. Prog Cardiovasc Dis 47:177–188PubMedCrossRefGoogle Scholar
  164. 164.
    Mingels A, Jacobs L, Michielsen E, Swaanenburg J, Wodzig W, van Dieijen-Visser M (2009) Reference population and marathon runner sera assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and I assays. Clin Chem 55:101–108PubMedCrossRefGoogle Scholar
  165. 165.
    Jaffe AS (2001) Elevation in cardiac troponin measurements: false false-positives. Cardiovasc Toxicol 1:87–92PubMedCrossRefGoogle Scholar
  166. 166.
    Jeremias A, Gibson CM (2005) Narrative review: alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Ann Intern Med 142:786–791PubMedGoogle Scholar
  167. 167.
    Schulz O, Kirpal K, Stein J, Bensch R, Berghöfer G, Schimke I, Jaffe AS (2006) Importance of low concentrations of cardiac troponins. Clin Chem 52:1614–1615PubMedCrossRefGoogle Scholar
  168. 168.
    Saravia SG, Knebel F, Schroeckh S, Ziebig R, Lun A, Weimann A, Haberland A, Borges AC, Schimke I (2010) Cardiac troponin T release and inflammation demonstrated in marathon runners. Clin Lab 56:51–58PubMedGoogle Scholar
  169. 169.
    Basquiera AL, Capra R, Omelianiuk M, Amuchástegui M, Madoery RJ, Salomone OA (2003) Serum troponin T in patients with chronic Chagas disease. Rev Esp Cardiol 56:742–744PubMedCrossRefGoogle Scholar
  170. 170.
    Arias R, Bastos C, Mota G, Sodré F, Moreira A, Tavares A, Lima JC (2003) Troponin in Chagas disease. Braz J Infect Dis 7:358–359PubMedCrossRefGoogle Scholar
  171. 171.
    Machado MN, Suzuki FA, Mouco OC, Hernandes ME, Lemos MA, Maia LN (2005) Positive troponin T in a chagasic patient with sustained ventricular tachycardia and no obstructive lesions on cine coronary angiography. Arq Bras Cardiol 84:182–184PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Silvia Gilka Muñoz-Saravia
    • 1
    • 2
  • Annekathrin Haberland
    • 2
  • Gerd Wallukat
    • 2
  • Ingolf Schimke
    • 2
  1. 1.Santa Barbara Hospital SucreSucreBolivia
  2. 2.Charité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations