Heart Failure Reviews

, Volume 16, Issue 1, pp 13–21 | Cite as

Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities



As more patients survive myocardial infarctions, the incidence of heart failure increases. After an infarction, the human heart undergoes a series of structural changes, which are governed by cellular and molecular mechanisms in a pathological metamorphosis termed “remodeling.” This review will discuss the current developments in our understanding of these molecular and cellular events in remodeling and the various pharmacological, cellular and device therapies used to treat, and potentially retard, this condition. Specifically, this paper will examine the neurohormonal activity of the renin–angiotensin–aldosterone axis and its molecular effects on the heart. The emerging understanding of the extra-cellular matrix and the various active molecules within it, such as the matrix metalloproteinases, elicits new appreciation for their role in cardiac remodeling and as possible future therapeutic targets. Cell therapy with stem cells is another recent therapy with great potential in improving post-infarcted hearts. Lastly, the cellular and molecular effects of left ventricular assist devices on remodeling will be reviewed. Our increasing knowledge of the cellular and molecular mechanisms underlying cardiac remodeling enables us not only to better understand how our more successful therapies, like angiotensin-converting enzyme inhibitors, work, but also to explore new therapies of the future.


Ventricular remodeling Post-infarction Pharmacological therapy Cellular therapy Molecular physiology 



Carvedilol post infarction survival controlled evaluation trial


Metoprolol CR/XL Randomized Intervention trial in congestive heart failure trial


Survival and ventricular enlargement trial


Survival in patients with reduced left ventricular ejection fraction and congestive heart failure-treatment trial


Trandolapril Cardiac Evaluation trial


Valsartan in Acute myocardial infarction trial


Randomized Evaluation Strategies of Left Ventricular Dysfunction


Randomized Aldactone Evaluation study


Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival study


Re-infusion of Enriched Progenitor Cells and Infarct remodeling in Acute Myocardial Infarction trial


Prevention of Myocardial Infarction Early Remodeling


End systolic volume


End diastolic volume


Ejection fraction


  1. 1.
    White HD, Norris RM, Brown MA, Brandt PW et al (1987) Left Ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76(1):44–51PubMedGoogle Scholar
  2. 2.
    Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. JACC 35(3):569–582PubMedGoogle Scholar
  3. 3.
    Whittaker P, Boughner DR et al (1991) Role of collagen in acute myocardial infarction expansion. Circulation 84:2123–2134PubMedGoogle Scholar
  4. 4.
    Hutchins GM, Bulkley BH (1978) Infarct expansion versus extension. Two different complications of acute myocardial infarction. Am J Cardiol 41:1127–1132PubMedCrossRefGoogle Scholar
  5. 5.
    Weisman HF, Bush DE, Mannisi JA et al (1988) Cellular mechanisms of myocardial infarction expansion. Circulation 78:186–201PubMedGoogle Scholar
  6. 6.
    Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260(5 Pt 2):H1406–H1414PubMedGoogle Scholar
  7. 7.
    McKay RG, Pfeffer MA, Pasternak RC et al (1986) Left Ventricular remodeling following a myocardial infarction. A corollary to infarct expansion. Circulation. 74:693–702PubMedGoogle Scholar
  8. 8.
    Olivetti G, Capasso JM, Sonnenblick EH, Anversa P (1990) Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 67(1):23–34PubMedGoogle Scholar
  9. 9.
    Anand IS, Florea VG (2004) Alterations in ventricular structure: role of left ventricular remodeling. In: Mann D (ed) Heart failure. Saunders, Philadelphia, pp 229–245Google Scholar
  10. 10.
    Lehnart SE, Maier LS, Hasenfuss G (2009) Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev 14(4):213–224PubMedCrossRefGoogle Scholar
  11. 11.
    Miyata S, Minobe W, Bristow MR, Leinwand LA (2000) Myosin heavy chain iso-form expression in the failing and non-failing human heart. Circ Res 86:386–390PubMedGoogle Scholar
  12. 12.
    Baldi A, Abbate A, Bussani R, Patti G, Melfi R, Angelini A, Dobrina A, Rossiello R, Silvestri F, Baldi F, Di Sciascio G (2002) Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol 34:165–174PubMedCrossRefGoogle Scholar
  13. 13.
    Dargie HJ (2001) Effect of carvedilol on outcome after myocardial infarction in patients with left ventricular dysfunction: the CAPRICORN randomized trial. Lancet 357(9266):1385–1390PubMedCrossRefGoogle Scholar
  14. 14.
    Doughty RN, Whalley GA, Walsh HA et al (2004) Effects of carvedilol on left ventricular remodeling after acute myocardial infarction: the CAPRICORN Echo Substudy. Circulation 109(2):201–206PubMedCrossRefGoogle Scholar
  15. 15.
    Groenning BA, Nilsson JC, Sondergaard L et al (2000) Anti-remodeling effects on left ventricle during beta-blockade with Metoprolol in treatment of chronic heart failure. JACC 36(7):2072–2080PubMedGoogle Scholar
  16. 16.
    Ahmet I, Morrell C, Lakatta EG, Talan MI (2009) Therapeutic efficacy of a combination of a beta1-adrenoreceptor (AR) blocker and beta2-adrenoreceptor (AR) Agonist in a rat model of post-myocardial infarction dilated heart failure exceeds that of a beta1-adrenoreceptor (AR) Blocker plus ACE Inhibitor. J Pharmacol Exp Ther 331(1):178–185PubMedCrossRefGoogle Scholar
  17. 17.
    Maczewski M, Borys M, Kacprzak P et al (2006) Angiotensin II AT1 receptor density on blood platelets predicts early left ventricular remodeling in non-reperfused acute myocardial infarction in humans. Eur J Heart Fail 8(2):173–178PubMedCrossRefGoogle Scholar
  18. 18.
    Maczewski M, Borys M, Kacprzak P et al (2008) Late ventricular remodeling in non-reperfused acute myocardial infarction in humans is predicted by angiotensin II type 1 receptor density on blood platelets. Int J Card 127:57–63CrossRefGoogle Scholar
  19. 19.
    Pfeffer MA, Braunwald E, Moye LA, Basta L et al (1992) Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial (SAVE). NEJM 327(10):669–677PubMedCrossRefGoogle Scholar
  20. 20.
    Kober L, Torp-Pedersen C, Carlsen JE, Bagger H et al (1995) A Clinical trial of the angiotensin-converting enzyme inhibitor Trandolapril in patients with left ventricular dysfunction after myocardial infarction. NEJM 333(25):1670–1676PubMedCrossRefGoogle Scholar
  21. 21.
    SOLVD Investigators (1991) Effect of Enalapril on survival in patients with reduced left ventricular ejections and congestive heart failure (SOLVD). NEJM 325(5):293–302CrossRefGoogle Scholar
  22. 22.
    Pfeffer MA, McMurray JJV, Velazquez EJ, Rouleau JL et al (2003) Valsartan, Captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction or both. NEJM 349(20):1893–1906PubMedCrossRefGoogle Scholar
  23. 23.
    McKelvie RS, Yusuf S, Pericak D, Avezum A et al (1999) Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. Circulation 100(10):1056–1064PubMedGoogle Scholar
  24. 24.
    Oishi Y, Ozono R et al (2006) AT2 receptor mediates the cardioprotective effects of AT1 receptor antagonist in post-myocardial infarction remodeling. Life Sci 80:82–88PubMedCrossRefGoogle Scholar
  25. 25.
    Yamamoto E, Kataoka K, Dong Y et al (2009) Aliskiren enhances the protective effects of Valsartan against cardiovascular and renal injury in endothelial nitric oxide synthase deficient mice. Hypertension 54:1–6CrossRefGoogle Scholar
  26. 26.
    Mizuno Y, Yoshimura M, Yasue H, Sakamoto T, Ogawa H et al (2001) Aldosterone production is activated in failing ventricle in humans. Circulation 103:72–77PubMedGoogle Scholar
  27. 27.
    Iraqi W, Rossignol P, Angioi M et al (2009) Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the eplerenone post-acute myocardial infarction heart failure efficacy and survival study (EPHESUS) Study. Circulation 119(18):2471–2479PubMedCrossRefGoogle Scholar
  28. 28.
    Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. NEJM 341(10):709–717PubMedCrossRefGoogle Scholar
  29. 29.
    Pitt B, White H, Nicolau J, Martinez F, Gheorghiade M et al (2005) Eplerenone reduces mortality 30 days after randomization following acute myocardial infarction in patients with left ventricular systolic dysfunction and heart failure. JACC 46(3):425–431PubMedGoogle Scholar
  30. 30.
    Weir RA, Mark PB, Petrie CJ, Clements S et al (2009) Left ventricular remodeling after acute myocardial infarction: does eplerenone have an effect? Am. Heart J. 157(6):1088–1096CrossRefGoogle Scholar
  31. 31.
    Chan AK, Sanderson JE, Wang T et al (2007) Aldosterone receptor antagonism induces reverse remodeling when added to angiotensin receptor blockade in chronic heart failure. JACC 50(7):597–599Google Scholar
  32. 32.
    Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378(3–4):151–160PubMedGoogle Scholar
  33. 33.
    Chen K, Chen J, Li D et al (2004) Angiotensin II regulation of collagen type I expression in cardiac fibroblasts: modulation by PPAR-gamma ligand pioglitazone. Hypertension 44:655–661PubMedCrossRefGoogle Scholar
  34. 34.
    Mascareno E, Dhar M, Siddiqui MAQ (1998) Signal transduction and activation of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sci USA 95:5590–5594PubMedCrossRefGoogle Scholar
  35. 35.
    Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: from protection to failure. Pharmacol Therap 120:172–185CrossRefGoogle Scholar
  36. 36.
    Rouet-Benzineb P, Gontero B et al (2000) Angiotensin II induces nuclear factor-Kappa B activation in cultured neonatal rat cardiomyocytes through protein kinase C signaling pathway. J Mol Cell Cardiol 32:1767–1778PubMedCrossRefGoogle Scholar
  37. 37.
    Torre-Amione G, Kapadia S, Lee J et al (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in failing human heart. Circulation 93:704–711PubMedGoogle Scholar
  38. 38.
    Long CS (2001) The role of interleukin-1 in the failing heart. Heart Fail Rev 6:81–94PubMedCrossRefGoogle Scholar
  39. 39.
    Schulz R, Aker S, Belosjorow S, Heusch G (2004) TNF-alpha in ischemia/reperfusion injury and heart failure. Basic Res Cardiol 99:8–11PubMedCrossRefGoogle Scholar
  40. 40.
    Conraads VM, Vrints CJ, Rodrigus IE et al (2010) Depressed expression of MuRF1 and MAFbx in areas remote of recent myocardial infarction: mechanism contributing to myocardial remodeling? Basic Res Cardiol 105:219–226PubMedCrossRefGoogle Scholar
  41. 41.
    Chorianopoulos E, Heger T, Lutz M et al (2010) FGF-inducible 14-kDa protein (fn14) is regulated via the RhoA/ROCK kinase pathway in cardiomyocytes and mediates nuclear factor-kappaB activation by TWEAK. Basic Res Cardiol 105:301–313PubMedCrossRefGoogle Scholar
  42. 42.
    Baud V, Karin M (2001) Signal transduction by tumor necrosis factor-alpha and its relatives. Trends Cell Biol 11:372–377PubMedCrossRefGoogle Scholar
  43. 43.
    Kawamura N, Kubota T, Kawano S et al (2005) Blockade of NF-KB improves cardiac function and survival without affecting inflammation in tumor necrosis factor-alpha induced cardiomyopathy. Cardiovasc Res 66:520–529PubMedCrossRefGoogle Scholar
  44. 44.
    Martin MU, Wesche H (2002) Summary and comparison of the signaling mechanisms of the Toll/Interleukin-1 receptor family. Biochem Biophys Acta 1592:265–280PubMedCrossRefGoogle Scholar
  45. 45.
    Xie Z, Singh M, Singh K (2004) Differential regulation of matrix metalloproteinase-2 and–9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1B. J Biol Chem 279:39513–39519PubMedCrossRefGoogle Scholar
  46. 46.
    Song G, Hennessy M, Zhao YL et al (2006) Adrenoceptor blockade alters plasma gelatinase activity in patients with heart failure and MMP-9 promoter activity in a human cell line (ECV304). Pharmaco Res 54:57–64CrossRefGoogle Scholar
  47. 47.
    Papadopoulos DP, Moyssakis I et al (2005) Clinical significance of matrix metalloproteinases activity in acute myocardial infarction. Eur Cytokine Netw 16:152–160PubMedGoogle Scholar
  48. 48.
    Webb CS, Bonnema DD et al (2006) Specific Temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction: relation to left ventricular remodeling. Circulation 114:1020–1027PubMedCrossRefGoogle Scholar
  49. 49.
    Apple KA, Yarbrough WM, Mukherjee R et al (2006) Selective targeting of matrix metalloproteinase inhibition in post-infarction myocardial remodeling. J Cardiovasc Pharmacol 47:228–235PubMedCrossRefGoogle Scholar
  50. 50.
    Hudson MP, Armstrong PW, Ruzyllo W et al (2006) Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) Trial. JACC 48(1):15–20PubMedGoogle Scholar
  51. 51.
    Schaechinger V, Erbs S, Elaesser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. New Engl J Med 355:1210–1221CrossRefGoogle Scholar
  52. 52.
    Schaechinger V, Erbs S, Elaesser A et al (2006) Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1 year results of the REPAIR-AMI trial. Eur Heart J 27:2775–2783CrossRefGoogle Scholar
  53. 53.
    Dill T, Schachinger V, Rolf A, Mollmann S et al (2009) Intracoronary administration of bone-marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-Segment elevation myocardial infarction: results of the re-infusion of enriched progenitor cells and infarct remodeling in acute myocardial infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am Heart J 157:541–547PubMedCrossRefGoogle Scholar
  54. 54.
    Yousef M, Schannwell CM, Kostering M et al (2009) The BALANCE study. Clinical benefit and lng-term outcome after intracoronary autologous bone-marrow cell transplantation in patients with acute myocardial infarction. JACC 53:2262–2269PubMedGoogle Scholar
  55. 55.
    Li YY, Feng Y, McTiernan CF et al (2001) Down-regulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104:1147–1152PubMedCrossRefGoogle Scholar
  56. 56.
    Ogletree-Hughes ML, Stull LB, Sweet WE et al (2001) Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor down-regulation in the failing human heart. Circulation 104:881–886PubMedCrossRefGoogle Scholar
  57. 57.
    Heerdt PM, Holmes JW, Cai B et al (2000) Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end-stage heart failure. Circulation 102:2713–2719PubMedGoogle Scholar
  58. 58.
    Bartling B, Milting H, Schumann H et al (1999) Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation 100 Suppl(19):II216–II223Google Scholar
  59. 59.
    Baba HA, Stypmann J, Grabellus F et al (2003) Dynamic regulation of MEK/Erks and Akt/GSK-3B in human end-stage heart failure after left ventricular mechanical support: myocardial mechanotransduction-sensitivity as a possible molecular mechanism. Cardiovasc Res 59:390–399PubMedCrossRefGoogle Scholar
  60. 60.
    Grabellus F, Levkau B, Sokoll A et al (2002) Reversible activation of nuclear factor-KB in human end-stage heart failure after left ventricular mechanical support. Cardiovasc Res 53:124–130PubMedCrossRefGoogle Scholar
  61. 61.
    Wohlschlaeger J, Levkau B, Brockhoff G et al (2010) Hemodynamic support by left ventricular Assist devices reduces cardiomyocyte DNA content in the failing human heart. Circulation. 121:989–996PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Cardiology, Department of MedicineHarbor-UCLA Medical CenterTorranceUSA
  2. 2.Heart Institute, Good Samaritan Hospital, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations