Heart Failure Reviews

, Volume 13, Issue 4, pp 439–452 | Cite as

Pleiotropic effects of cardiac drugs on healing post-MI. The good, bad, and ugly

Article

Abstract

Healing after myocardial infarction (MI) is a well-orchestrated time-dependent process that involves inflammation, tissue repair with extracellular collagen matrix (ECCM) deposition and scar formation, and remodeling of myocardial structure, matrix, vasculature, and function. Rapid early ECCM degradation followed by slow ECCM replacement and maturation during post-MI healing results in a prolonged window of enhanced vulnerability to adverse remodeling. Decreased ECCM results in adverse ventricular remodeling, dysfunction, and rupture. Inflammation, a critical factor in normal healing, if impaired results in adverse remodeling and rupture. Several therapeutic drugs prescribed after MI exert pleiotropic effects that suppress ECCM and inflammation during healing and may have good, bad, or ugly consequences. This article reviews the potential impact of pleiotropic effects of some prototypic cardiac drugs such as renin-angiotensin-aldosterone system (RAAS) inhibitors, statins, and thrombolytics during healing post-ST-segment-elevation MI (STEMI), with special focus on inflammation, ECCM and remodeling, and implications in the elderly.

Keywords

STEMI Healing Inflammation Extracellular collagen matrix Prototypic drugs Remodeling Aging 

References

  1. 1.
    Jugdutt BI (2003) Ventricular remodeling post-infarction and the extracellular collagen matrix. When is enough enough? Circulation 108:1395–1403PubMedGoogle Scholar
  2. 2.
    Ertl G, Frantz S (2005) Healing after myocardial infarction. Cardiovasc Res 66:22–32PubMedGoogle Scholar
  3. 3.
    Jugdutt BI, Amy RW (1986) Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7:91–102PubMedGoogle Scholar
  4. 4.
    Jugdutt BI (1993) Prevention of ventricular remodelling post myocardial infarction: Timing and duration of therapy. Can J Cardiol 9:103–114PubMedGoogle Scholar
  5. 5.
    Jugdutt BI (2003) Remodeling of the myocardium and potential targets in the collagen degradation and synthesis pathways. Curr Drug Targets Cardiovasc Haematol Disord 3:1–30PubMedGoogle Scholar
  6. 6.
    DeWood MA, Spores J, Notske R, Mouser LT, Burroughs R, Golden MS, Lang HT (1980) Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med 303:897–902PubMedGoogle Scholar
  7. 7.
    Reimer KA, Lowe JE, Rasmussen MM, Jennings RB (1977) The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 56:786–794PubMedGoogle Scholar
  8. 8.
    de Feyter PJ, van den Brand M, Serruys PW, Wijns W (1985) Early angiography after myocardial infarction: what have we learned? Am Heart J 109:194–199PubMedGoogle Scholar
  9. 9.
    DeWood MA, Stifter WF, Simpson CS, Spores J, Eugster GS, Judge TP, Hinnen ML (1986) Coronary arteriographic findings soon after non-Q-wave myocardial infarction. N Engl J Med 315:417–423PubMedGoogle Scholar
  10. 10.
    Early effects of tissue-type plasminogen activator added to conventional therapy on the culprit coronary lesion in patients presenting with ischemic cardiac pain at rest (1993) Results of the Thrombolysis in Myocardial Ischemia (TIMI IIIA) Trial. Circulation 87:38–52Google Scholar
  11. 11.
    Boersma E, Mercado N, Poldermans D, Gardien M, Vos J, Simoons ML (2003) Acute myocardial infarction. Lancet 361:847–858PubMedGoogle Scholar
  12. 12.
    Jugdutt BI (1990) Identification of patients prone to infarct expansion by the degree of regional shape distortion on an early two-dimensional echocardiogram after myocardial infarction. Clin Cardiol 13:28–40PubMedGoogle Scholar
  13. 13.
    Jugdutt BI, Tang SB, Khan MI, Basualdo CA (1992) Functional impact of remodeling during healing after non-Q wave versus Q wave anterior myocardial infarction in the dog. J Am Coll Cardiol 20:722–731PubMedGoogle Scholar
  14. 14.
    Jugdutt BI, Khan MI (1992) Impact of increased infarct transmurality on remodeling and function during healing after anterior myocardial infarction in the dog. Can J Physiol Pharmacol 70:949–958PubMedGoogle Scholar
  15. 15.
    Jugdutt BI (1996) Prevention of ventricular remodeling after myocardial infarction and in congestive heart failure. Heart Failure Rev 1:115–129Google Scholar
  16. 16.
    Jugdutt BI, Manyari DE, Humen DP (1998) Detection of viability of dysfunctional myocardium in coronary heart disease. II. Echocardiography. Heart Failure Rev 2:207–233Google Scholar
  17. 17.
    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 3:31–47Google Scholar
  18. 18.
    Bolognese L, Neskovic AN, Parodi G, Cerisano G, Buonamici P, Santoro GM, Antoniucci D (2002) Left ventricular remodeling after primary coronary angioplasty: patterns of left ventricular dilation and long-term prognostic implications. Circulation 106:2351–2357PubMedGoogle Scholar
  19. 19.
    Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292PubMedGoogle Scholar
  20. 20.
    Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142PubMedGoogle Scholar
  21. 21.
    Creemers E, Cleutjens J, Smits J, Heymans S, Moons L, Collen D et al (2000) Disruption of the plasminogen gene in mice abolishes wound healing after myocardial infarction. Am J Pathol 156:1865–1873PubMedGoogle Scholar
  22. 22.
    Birdsall HH, Green DM, Trial J, Youker KA, Burns AR, MacKay CR et al (1997) Complement C5a, TGF-beta 1, and MCP-1, in sequence, induce migration of monocytes into ischemic canine myocardium within the first 1–5 h after reperfusion. Circulation 95:684–692PubMedGoogle Scholar
  23. 23.
    Vinten-Johansen J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61:481–497PubMedGoogle Scholar
  24. 24.
    Kloner RA, Ellis SG, Lange R, Braunwald E (1983) Studies of experimental coronary artery reperfusion: Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 68:I8–I15PubMedGoogle Scholar
  25. 25.
    Ambrosio G, Weisman HF, Mannisi JA, Becker LC (1989) Progressive impairment of regional myocardial perfusion after initial restoration of postischemic blood flow. Circulation 80:1846–1861PubMedGoogle Scholar
  26. 26.
    Boyle MP, Weisman HF (1993) Limitation of infarct expansion and ventricular remodeling by late reperfusion. Study of time course and mechanism in a rat model. Circulation 88:2872–2883PubMedGoogle Scholar
  27. 27.
    Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M et al (2004) ACC/AHA Guidelines for the management of patients with ST-elevation myocardial infarction-Executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). Circulation 110:588–636PubMedGoogle Scholar
  28. 28.
    Jugdutt BI, Joljart MJ, Khan MI (1996) Rate of collagen deposition during healing after myocardial infarction in the rat and dog models: mechanistic insights into ventricular remodeling. Circulation 94:94–101PubMedGoogle Scholar
  29. 29.
    Mallory GK, White PD, Salcedo-Salgar J (1939) The speed of healing of myocardial infarction: a study of the pathologic anatomy in seventy-two cases. Am Heart J 18:647–671Google Scholar
  30. 30.
    Fishbein MC, Maclean D, Maroko PR (1978) The histopathologic evolution of myocardial infarction. Chest 73:843–849PubMedGoogle Scholar
  31. 31.
    Dewald O, Ren G, Duerr GD, Zoerlein M, Klemm C, Gersch C, Tincey S, Michael LH, Entman ML, Frangogiannis NG (2004) Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol 164:665–77PubMedGoogle Scholar
  32. 32.
    Gould KE, Taffet GE, Michael LH, Christie RM, Konkol DL, Pocius JS et al (2002) Heart failure and greater infarct expansion in middle-aged mice: a relevant model of postinfarction heart failure. Am J Physiol Heart Circ Physiol 282:H615–H621PubMedGoogle Scholar
  33. 33.
    Bolli R, Shinmura K, Tang XL, Kodani E, Xuan YT, Guo Y, Dawn B (2002) Discovery of a new function of cyclooxygenase (COX)-2: COX-2 is a cardioprotective protein that alleviates ischemia/reperfusion injury and mediates the late phase of reconditioning. Cardiovasc Res 55:506–519PubMedGoogle Scholar
  34. 34.
    Camitta MGW, Gabel SA, Chulada P, Bradbury A, Langenbach R, Zeldin DC, Murphy E (2001) Cyclooxygenase-1 and -2 knockout mice demonstrate increased cardiac ischemia/ reperfusion injury but are protected by acute preconditioning. Circulation 104:2453–2458PubMedGoogle Scholar
  35. 35.
    Timmers L, Sluijter JPG, Verlaan CWJ, Steendijk P, Cramer MJ, Emons M et al (2007) Cyclooxegenase-2 inhibition increases mortality, enhances left ventricular remodeling, and impairs systolic function after myocardial infarction in the pig. Circulation 115:326–332PubMedGoogle Scholar
  36. 36.
    Jugdutt BI, Idikio H, Uwiera R (2007) Therapeutic drugs during healing after myocardial infarction modify infarct collagens and ventricular distensibility at elevated pressures. Mol Cell Biochem 304:79–91PubMedGoogle Scholar
  37. 37.
    Alexander KP, Newby LK, Armstrong PW, Cannon CP, Gibler WB, Rich MW et al (2007) American heart association council on clinical cardiology; society of geriatric cardiology. Acute coronary care in the elderly, Part II. ST-segment-elevation myocardial infarction. A scientific statement for healthcare professionals from the American Heart Association Council for Clinical Cardiology. Circulation 115:2570–2589PubMedGoogle Scholar
  38. 38.
    Bueno H, Martínez-Sellés M, Pérez-David E, López-Palop R (2005) Effect of thrombolytic therapy on the risk of cardiac rupture and mortality in older patients with first acute myocardial infarction. Eur Heart J 26:1705–1711PubMedGoogle Scholar
  39. 39.
    Wei GC, Sirois MG, Qu R, Liu P, Rouleau JL (2002) Subacute and chronic effects of quinapril on cardiac cytokine expression, remodeling, and function after myocardial infarction in the rat. J Cardiovasc Pharmacol 39:842–850PubMedGoogle Scholar
  40. 40.
    Fraccarollo D, Bauersachs J, Kellner M, Galuppo P, Ertl G (2002) Cardioprotection by long-term ET(A) receptor blockade and ACE inhibition in rats with congestive heart failure: mono-versus combination therapy. Cardiovasc Res 54:85–94PubMedGoogle Scholar
  41. 41.
    Yu CM, Tipoe GL, Wing-Hon Lai K, Lau CP (2001) Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol 38:1207–1215PubMedGoogle Scholar
  42. 42.
    Toko H, Zou Y, Minamino T, Masaya M, Harada M, Nagai T et al (2004) Angiotensin II type 1a receptor is involved in cell infiltration, cytokine production, and neovascularization in infarcted myocardium. Arterioscler Thromb Vasc Biol 24:664–670PubMedGoogle Scholar
  43. 43.
    Smits JF, van Krimpen C, Schoemaker RG, Cleutjens JP, Daemen MJ (1992) Angiotensin II receptor blockade after myocardial infarction in rats: effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20:772–778PubMedGoogle Scholar
  44. 44.
    Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN et al (1994) Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273–2282PubMedGoogle Scholar
  45. 45.
    Rocha R, Rudolph AE, Frierdich GE, Nachowiak DA, Kekec BK, Blomme EA et al (2002) Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol 283:H1802–H1810PubMedGoogle Scholar
  46. 46.
    Rocha R, Martin-Berger CL, Yang P, Scherrer R, Delyani J, McMahon E (2002) Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 143:4828–4836PubMedGoogle Scholar
  47. 47.
    Modena MG, Aveta P, Menozzi A, Rossi R (2001) Aldosterone inhibition limits collagen synthesis and progressive left ventricular enlargement after anterior myocardial infarction. Am Heart J 141:41–44PubMedGoogle Scholar
  48. 48.
    Tiefenbacher CP, Kapitza J, Dietz V, Lee CH, Niroomand F (2003) Reduction of myocardial infarct size by fluvastatin. Am J Physiol Heart Circ Physiol 285:H59–H64PubMedGoogle Scholar
  49. 49.
    Rosenson RS, Tangney CC, Casey LC (1999) Inhibition of proinflammatory cytokine production by pravastatin. Lancet 353:983–984PubMedGoogle Scholar
  50. 50.
    Hayashidani S, Tsutsui H, Shiomi T, Suematsu N, Kinugawa S, Ide T et al (2002) Fluvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation 105:868–873PubMedGoogle Scholar
  51. 51.
    Bauersachs J, Galuppo P, Fraccarollo D, Christ M, Ertl G (2001) Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation 104:982–985PubMedGoogle Scholar
  52. 52.
    Prabhu SD, Chandrasekar B, Murray DR, Freeman GL (2000) Beta-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 101:2103–2109PubMedGoogle Scholar
  53. 53.
    Wei S, Chow LT, Sanderson JE (2000) Effect of carvedilol in comparison with metoprolol on myocardial collagen postinfarction. J Am Coll Cardiol 36:276–281PubMedGoogle Scholar
  54. 54.
    Smith EF 3rd, Griswold DE, Hillegass LM, Slivjak MJ, Davis PA, DiMartino MJ (1992) Cardioprotective effects of the vasodilator/beta-adrenoceptor blocker, carvedilol, in two models of myocardial infarction in the rat. Pharmacology 44:297–305PubMedGoogle Scholar
  55. 55.
    Smith EF 3rd, Egan JW, Griswold DE (1989) Effect of propranolol on ischemic myocardial damage and left ventricular hypertrophy following permanent coronary artery occlusion or occlusion followed by reperfusion. Pharmacology 38:298–309PubMedGoogle Scholar
  56. 56.
    Podesser BK, Siwik DA, Eberli FR, Sam F, Ngoy S, Lambert J et al (2001) ET(A)-receptor blockade prevents matrix metalloproteinase activation late postmyocardial infarction in the rat. Am J Physiol Heart Circ Physiol 280:H984–H991PubMedGoogle Scholar
  57. 57.
    Fraccarollo D, Galuppo P, Bauersachs J, Ertl G (2002) Collagen accumulation after myocardial infarction: effects of ETA receptor blockade and implications for early remodeling. Cardiovasc Res 54:559–567PubMedGoogle Scholar
  58. 58.
    Sawicki G, Menon V, Jugdutt BI (2004) Improved balance between TIMP-3 and MMP-9 after regional myocardial ischemia-reperfusion during AT1 receptor blockade. J Cardiac Failure 10:442–449Google Scholar
  59. 59.
    Murakami T, Kusachi S, Murakami M, Sano I, Uesugi T, Hirami R et al (1998) Time-dependent changes of serum carboxy-terminal peptide of type I procollagen and carboxy-terminal telopeptide of type I collagen concentrations in patients with acute myocardial infarction after successful reperfusion: correlation with left ventricular volume indices. Clin Chem 44:2453–2461PubMedGoogle Scholar
  60. 60.
    Jugdutt BI (1997) Effect of reperfusion on ventricular mass, topography and function during healing of anterior infarction. Am J Physiol Heart and Circ Physiol 272:H1205–1211Google Scholar
  61. 61.
    Connelly CM, Vogel WM, Wiegner AW, Osmers EL, Bing OH, Kloner RA et al (1985) Effects of reperfusion after coronary artery occlusion on post-infarction scar tissue. Circ Res 57:562–577PubMedGoogle Scholar
  62. 62.
    Gruppo Italiano per lo Studio della Sopravvivenza nell’ Infarcto Miocardico (1994) GISSI-3: effects of lisinopril, transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet 343:1115–1122Google Scholar
  63. 63.
    ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group (1995) ISIS-4: a randomized factorial trial assessing early oral captopril, oral mononitrate, intravenous magnesium sulphate in 58,050 patients with suspected myocardial infarction. Lancet 345:669–685Google Scholar
  64. 64.
    Pfeffer MA, Braunwald E, Moyé LA, Basta L, Brown EJ Jr, Cuddy TE et al (1992) on behalf of the SAVE Investigators. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 327:669–677PubMedGoogle Scholar
  65. 65.
    The SOLVD investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fraction and congestive heart failure. N Eng J Med 325:293–302Google Scholar
  66. 66.
    The SOLVD investigators (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327:685–691Google Scholar
  67. 67.
    Ball SG (1993) The acute infarction ramipril efficacy (AIRE) study investigators. Effect of ramipril on mortality and morbidity of acute myocardial infarction with clinical evidence of heart failure. Lancet 342:821–828Google Scholar
  68. 68.
    The CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 316:1429–1435Google Scholar
  69. 69.
    Køber L, Torp-Pedersen C, Carlsen JE, Bagger H, Eliasen P, Lyngborg K et al (1995) A clinical trial of the angiotensin-converting- enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med 333:1670–1676PubMedGoogle Scholar
  70. 70.
    Chinese Cardiac Study Collaborative Group (1995) Oral captopril versus placebo among 13,634 patients with suspected acute myocardial infarction: interim report from the Chinese Cardiac Study (CCS-1). Lancet 345:686–687Google Scholar
  71. 71.
    Ambrosioni E, Borghi C, Magnani B, for The Survival of Myocardial Infarction Long-Term Evaluation (SMILE) Study Investigators (1995) The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. N Engl J Med 332:80–85PubMedGoogle Scholar
  72. 72.
    The GISSI-3 trial (1996) Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico. Six-month effects of early treatment with lisinopril and transdermal glyceryl trinitrate singly and together withdrawn 6 weeks after acute myocardial infarction. J Am Coll Cardiol 27:337–344Google Scholar
  73. 73.
    St. John Sutton M, Pfeffer MA, Plappert T, Rouleau JL, Moyé LA, Dagenais GR et al (1994) Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction: the protective effects of captopril. Circulation 89:68–75PubMedGoogle Scholar
  74. 74.
    Konstam MA, Kronenberg MW, Rousseau MF, Udelson JE, Melin J, Stewart D et al (1993) Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (Studies of Left Ventricular Dysfunction) Investigators. Circulation 88:2277–2283PubMedGoogle Scholar
  75. 75.
    Greenberg B, Quinones MA, Koilpillai C, Limacher M, Shindler D, Benedict C, Shelton B (1995) Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction. Results of the SOLVD echocardiography substudy. Circulation 91:2573–2581PubMedGoogle Scholar
  76. 76.
    Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E (1988) Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 319:80–86PubMedGoogle Scholar
  77. 77.
    Jugdutt BI, Humen DP (1998) Limitation of left ventricular hypertrophy and dysfunction by ACE inhibition after anterior Q-wave myocardial infarction. Cardiology 89:283–290PubMedGoogle Scholar
  78. 78.
    Pfeffer MA, Greaves SC, Arnold JM, Glynn RJ, LaMotte FS, Lee RT et al (1997) Early versus delayed angiotensin-converting enzyme inhibition therapy in acute myocardial infarction. The healing and early afterload reducing therapy trial. Circulation 95:2643–2651PubMedGoogle Scholar
  79. 79.
    Swedberg K, Held P, Kjekshus J, Rasmussen K, Rydén L, Wedel H, for the CONSENSUS II Study Group (1992) Effects of early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the co-operative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 327:678–684Google Scholar
  80. 80.
    Sigurdsson A, Swedberg K (1994) Left ventricular remodelling, neurohormonal activation and early treatment with enalapril (CONSENSUS II) following myocardial infarction. Eur Heart J 15(Suppl B):14–19PubMedGoogle Scholar
  81. 81.
    van Krimpen C, Schoemaker RG, Cleutjens JPM, Smits JF, Struyker-Boudier HA, Bosman FT, Daemen MJ (1991) Angiotensin I converting enzyme inhibitors and cardiac remodeling. Basic Res Cardiol 86(Suppl 1):149–155PubMedGoogle Scholar
  82. 82.
    Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE (1995) Effect of enalapril on ventricular remodeling and function during healing after anterior myocardial infarction in the dog. Circulation 91:802–812PubMedGoogle Scholar
  83. 83.
    Jugdutt BI, Lucas A, Khan MI (1997) Effect of ACE inhibition on infarct collagen deposition and remodeling during healing after transmural canine myocardial infarction. Can J Cardiol 13:657–668PubMedGoogle Scholar
  84. 84.
    Jugdutt BI, Idikio H, Uwiera R (2007) Angiotensin receptor blockade and ACE inhibition limit adverse collagen remodeling in infarct zone and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction. Mol Cell Biochem 303:27–38PubMedGoogle Scholar
  85. 85.
    Ferrario CM, Trask AJ, Jessup JA (2005) Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1–7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol 289:H2281–H2290PubMedGoogle Scholar
  86. 86.
    Peng H, Carretero OA, Vuljaj N, Liao TD, Motivala A, Peterson EL, Rhaleb NE (2005) Angiotensin-converting enzyme inhibitors: a new mechanism of action. Circulation 112:2436–2445PubMedGoogle Scholar
  87. 87.
    Pitt B, Segal R, Martinez FA, Meurers G, Cowley AJ, Thomas I et al (1997) Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 349:747–752PubMedGoogle Scholar
  88. 88.
    McKelvie RS, Yusuf S, Pericak D, Avezum A, Burns RJ, Probstfield J (1999) Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 100:1056–1064PubMedGoogle Scholar
  89. 89.
    Pitt B, Poole-Wilson PA, Segal R, Martinez FA, Dickstein K, Camm AJ et al (2000) Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial-the Losartan Heart Failure Survival Study ELITE II. Lancet 355:1582–1587PubMedGoogle Scholar
  90. 90.
    Cohn JN, Tognoni G (2001) Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345:1667–1675PubMedGoogle Scholar
  91. 91.
    Dickstein K, Kjekshus J (2002) OPTIMAAL Steering Committee of the OPTIMAAL Study Group. Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: the OPTIMAAL randomised trial. Optimal Trial in Myocardial Infarction with Angiotensin II Antagonist Losartan. Lancet 360:752–760PubMedGoogle Scholar
  92. 92.
    Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, Michelson EL et al (2003) for the CHARM investigators and committees. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 362:759–766PubMedGoogle Scholar
  93. 93.
    McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held P, Michelson EL et al (2003) for the CHARM investigators and committees. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet 362:767–771PubMedGoogle Scholar
  94. 94.
    Granger CB, McMurray JJ, Yusuf S, Held P, Michelson EL, Olofsson B et al (2003) for the CHARM investigators and committees. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: the CHARM-Alternative trial. Lancet 362:772–776PubMedGoogle Scholar
  95. 95.
    Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ et al (2003) for the CHARM investigators and committees. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 362:777–781PubMedGoogle Scholar
  96. 96.
    Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau JL, Køber L, Maggioni AP et al (2003) for the valsartan in acute myocardial infarction trial investigators. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 349:1893–1906PubMedGoogle Scholar
  97. 97.
    Wong M, Staszewsky L, Latini R, Barlera S, Volpi A, Chiang YT et al (2002) for the Val-HeFT Heart Failure Trial Investigators. Valsartan benefits left ventricular structure and function in heart failure: Val-HeFT echocardiographic study. J Am Coll Cardiol 40:970–975PubMedGoogle Scholar
  98. 98.
    Wong M, Johnson G, Shabetai R, Hughes V, Bhat G, Lopez B, Cohn JN (1993) Echocardiographic variables as prognostic indicators and therapeutic monitors in chronic congestive heart failure. Veterans Affairs cooperative studies V-HeFT I and II. V-HeFT VA Cooperative Studies Group. Circulation 87(6 Suppl):VI65–VI70PubMedGoogle Scholar
  99. 99.
    Wong M, Staszewsky L, Latini R, Barlera S, Glazer R, Aknay N et al (2004) Severity of left ventricular remodeling defines outcomes and response to therapy in heart failure: valsartan heart failure trial (Val-HeFT) echocardiographic data. J Am Coll Cardiol 43:2022–2027PubMedGoogle Scholar
  100. 100.
    Solomon SD, Skali H, Anavekar NS, Bourgoun M, Barvik S, Ghali JK et al (2005) Changes in ventricular size and function in patients treated with valsartan, captopril, or both after myocardial infarction. Circulation 111:3411–3419PubMedGoogle Scholar
  101. 101.
    Campbell DJ, Krum H, Esler MD (2005) Losartan increases bradykinin levels in hypertensive humans. Circulation 111:315–320PubMedGoogle Scholar
  102. 102.
    Seyedi N, Xu X, Nasjletti A, Hintze TH (1995) Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 26:164–170PubMedGoogle Scholar
  103. 103.
    Jugdutt BI, Balghith M (2001) Enhanced regional AT2-receptor and PKCε expression during cardioprotection induced by AT1-receptor blockade after reperfused myocardial infarction. J Renin Angiotensin Aldosterone Syst 2:134–140PubMedGoogle Scholar
  104. 104.
    Jugdutt BI, Xu Y, Balghith M, Moudgil R, Menon V (2000) Cardioprotection induced by AT1R blockade after reperfused myocardial infarction: Association with regional increase in AT2R, IP3R and PKCε proteins and cGMP. J Cardiovasc Pharmacol Therapeut 5:301–311Google Scholar
  105. 105.
    Xu Y, Menon V, Jugdutt BI (2000) Cardioprotection after angiotensin II type 1 blockade involves angiotensin II type 2 receptor expression and activation of protein kinase C-ε in acutely reperfused myocardial infarction in the dog. Effect of UP269-6 and losartan on AT1 and AT2 receptor expression and IP3 receptor and PKCε proteins. J Renin Angiotensin Aldosterone Syst 1:184–195PubMedGoogle Scholar
  106. 106.
    Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized aldactone evaluation study investigators. N Engl J Med 341:709–717PubMedGoogle Scholar
  107. 107.
    Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B et al (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348:1309–1321PubMedGoogle Scholar
  108. 108.
    Pitt B, White H, Nicolau J, Martinez F, Gheorghiade M, Aschermann M et al (2005) for the EPHESUS Investigators. Eplerenone reduces mortality 30 days after randomization following acute myocardial infarction in patients with left ventricular systolic dysfunction and heart failure. J Am Coll Cardiol 46:425–431PubMedGoogle Scholar
  109. 109.
    Zannad F, Alla F, Dousset B, Perez A, Pitt B (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102:2700–2706PubMedGoogle Scholar
  110. 110.
    Habibi J, Whaley-Connell A, Qazi MA, Hayden MR, Cooper SA, Tramontano A et al (2007) Rosuvastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, decreases cardiac oxidative stress and remodeling in Ren2 transgenic rats. Endocrinology 148:2181–2188PubMedGoogle Scholar
  111. 111.
    Bulhak A, Roy J, Hedin U, Sjoquist PO, Pernow J (2007) Cardioprotective effect of rosuvastatin in vivo is dependent on inhibition of geranylgeranyl pyrophosphate and altered RhoA membrane translocation. Am J Physiol Heart Cir Physiol 292:H3158–H3163Google Scholar
  112. 112.
    Yusuf S, Peto R, Lewis J, Collins R, Sleight P (1985) Beta blockade during and after myocardial infarction: an overview of the randomized trials. Prog Cardiovasc Dis 27:335–371PubMedGoogle Scholar
  113. 113.
    ISIS-1 (First International Study of Infarct Survival) Collaborative Group (1986) A randomized trial of intravenous atenolol among 16,027 cases of suspected myocardial infarction. Lancet 2:57–66Google Scholar
  114. 114.
    The MIAMI Trial Research Group (1985) Metoprolol in Acute Myocardial Infarction (MIAMI). A randomized placebo-controlled international trial. Eur Heart J 6:199–226Google Scholar
  115. 115.
    Jugdutt BI, Warnica JW (1987) Improved left ventricular function with metoprolol in acute myocardial infarction (Abstract). Circulation 76:IV–128Google Scholar
  116. 116.
    The TIMI Study Group (1989) Comparison of invasive and conservative strategies after treatment with intravenous tissue plasminogen activator in acute myocardial infarction: Results of the Thrombolysis in Myocardial Infarction (TIMI) Phase II trial. N Engl J Med 320:618–627Google Scholar
  117. 117.
    Buhler FR, Laragh JH, Baer L, Vaughan ED Jr, Brunner HR (1972) Propranolol inhibition of renin secretion. A specific approach to diagnosis and treatment of renin-dependent hypertensive diseases. N Engl J Med 287:1209–1214PubMedGoogle Scholar
  118. 118.
    Campbell DJ, Aggarwal A, Esler M, Kaye D (2001) β-blockers, angiotensin II, and ACE inhibitors in patients with heart failure. Lancet 358:1609–1610PubMedGoogle Scholar
  119. 119.
    Sharpe N (1999) Benefit of beta-blockers for heart failure: proven in 1999. Lancet 353:1988–1989PubMedGoogle Scholar
  120. 120.
    Modesti PA, Vanni S, Paniccia R, Bandinelli B, Bertolozzi I, Polidori G et al (1999) Characterization of endothelin-1 receptor subtypes in isolated human cardiomyocytes. J Cardiovasc Pharmacol 34:333–339PubMedGoogle Scholar
  121. 121.
    Katwa L, Gurada E, Weber K (1993) Endothelin receptors in cultured adult rat cardiac fibroblasts. Cardiovasc Res 27:2125–2129PubMedGoogle Scholar
  122. 122.
    Guarda E, Katwa LC, Myers PR, Tyagi SC, Weber KT (1993) Effects of endothelins on collagen turnover in cardiac fibroblasts. Cardiovasc Res 27:2130–2134PubMedGoogle Scholar
  123. 123.
    Brunner F, du-Toit EF, Opie LH (1992) Endothelin release during ischemia and reperfusion of isolated perfused rat hearts. J Mol Cell Cardiol 24:1291–1305PubMedGoogle Scholar
  124. 124.
    Zaugg CE, Zhu P, Simper D, Lüscher TF, Allegrini PR, Buser PT (1993) Differential effects of endothelin-1 on normal and postischemic reperfused myocardium. J Cardiovasc Pharmacol 22:S367–S370PubMedCrossRefGoogle Scholar
  125. 125.
    Hu K, Gaudron P, Schmidt TJ, Hoffmann KD, Ertl G (1998) Aggravation of left ventricular remodeling by a novel specific endothelin ET(A) antagonist EMD94246 in rats with experimental myocardial infarction. J Cardiovasc Pharmacol 32:505–508PubMedGoogle Scholar
  126. 126.
    Nguyen QT, Cernacek P, Sirois MG, Calderone A, Lapointe N, Stewart DJ, Rouleau JL (2001) Long-term effects of nonselective endothelin A and B receptor antagonism in postinfarction rat: importance of timing. Circulation 104:2075–2081PubMedGoogle Scholar
  127. 127.
    Anand I, McMurray J, Cohn JN, Konstam MA, Notter T, Quitzau K et al (2004) EARTH investigators. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the Endothelin A Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet 364:347–354PubMedGoogle Scholar
  128. 128.
    Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 76:949–956Google Scholar
  129. 129.
    Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292PubMedGoogle Scholar
  130. 130.
    Fujiwara H, Ashraf M, Sato S, Millard RW (1982) Transmural cellular damage and blood flow distribution in early ischemia in pig heart. Circ Res 51:683–693PubMedGoogle Scholar
  131. 131.
    Sato S, Ashraf M, Millard RW, Fujiwara H, Schwartz A (1983) Connective tissue changes in early ischemia of porcine myocardium: an ultrastructural study. J Mol Cell Cardiol 15:261–275PubMedGoogle Scholar
  132. 132.
    Zhao MJ, Zhang H, Robinson TF, Factor SM, Sonnenblick EH, Eng C (1987) Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional (“stunned”) but viable myocardium. J Am Coll Cardiol 10:1322–1334PubMedGoogle Scholar
  133. 133.
    Takahashi S, Barry AC, Factor SM (1990) Collagen degradation in ischaemic rat hearts. Biochem J 265:233–241PubMedGoogle Scholar
  134. 134.
    Charney RH, Takahashi S, Zhao M, Sonnenblick EH, Eng C (1992) Collagen loss in the stunned myocardium. Circulation 85:1483–1490PubMedGoogle Scholar
  135. 135.
    Honan MB, Harrell FE Jr, Reimer KA, Califf RM, Mark DB, Pryor DB, Hlatky MA (1990) Cardiac rupture, mortality and the timing of thrombolytic therapy: a meta-analysis. J Am Coll Cardiol 16:359–367PubMedGoogle Scholar
  136. 136.
    LATE Study Group (1993) Late Assessment of Thrombolytic Efficacy (LATE) study with alteplase 6–24 h after onset of acute myocardial infarction. Lancet 342:759–766Google Scholar
  137. 137.
    Jugdutt BI (2007) Cyclooxygenase inhibition and ventricular remodeling after acute myocardial infarction. Circulation 115:288–291PubMedGoogle Scholar
  138. 138.
    Jugdutt BI, Hutchins GM, Bulkley BH, Pitt B, Becker LC (1979) Effect of indomethacin on collateral blood flow and infarct size in the conscious dog. Circulation 59:734–743PubMedGoogle Scholar
  139. 139.
    Jugdutt BI, Basualdo CA (1989) Myocardial infarct expansion during indomethacin and ibuprofen therapy for symptomatic post-infarction pericarditis: Effect of other pharmacologic agents during early remodelling. Can J Cardiol 5:211–221PubMedGoogle Scholar
  140. 140.
    Antman EM, Bennett JS, Daugherty A, Furberg C, Roberts H, Taubert KA, American Heart Association (2007) Use of nonsteroidal antiinflammatory drugs: an update for clinicians: a scientific statement from the American Heart Association. Circulation 115:1634–642PubMedGoogle Scholar
  141. 141.
    Latini R, Maggioni AP, Flather M, Sleight P, Tognoni G (1995) ACE inhibitor use in patients with myocardial infarction. Summary of evidence from clinical trials. Circulation 92:3132–3137PubMedGoogle Scholar
  142. 142.
    Pfeffer JM, Pfeffer MA, Braunwald E (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84–95PubMedGoogle Scholar
  143. 143.
    Pfeffer MA, Pfeffer JM, Steinberg C, Finn P (1985) Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 72:406–412PubMedGoogle Scholar
  144. 144.
    Schoemaker RG, Debets JJ, Struyker-Boudier HA, Smits JF (1991) Delayed but not immediate captopril therapy improves cardiac function in conscious rats, following myocardial infarction. J Mol Cell Cardiol 23:187–197PubMedGoogle Scholar
  145. 145.
    Pouleur HG, Konstam MA, Udelson JE, Rousseau MF (1993) Changes in ventricular volume, wall thickness and wall stress during progression of left ventricular dysfunction. The SOLVD Investigators. J Am Coll Cardiol 22(Suppl A):43A–48APubMedCrossRefGoogle Scholar
  146. 146.
    St John Sutton M, Pfeffer MA, Moye L, Plappert T, Rouleau JL, Lamas G et al (1997) Cardiovascular death and left ventricular remodeling 2 years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation 96:3294–3299PubMedGoogle Scholar
  147. 147.
    Maggioni AP, Maseri A, Fresco C, Franzosi MG, Mauri F, Santoro E, Tognoni G (1993) Age-related increase in mortality among patients with first myocardial infarctions treated with thrombolysis. The investigators of the gruppo Italiano per lo Studio della supravvivenza nell’Infarcto Miocardico (GISSI-2). N Engl J Med 329:1442–1448PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Division of Cardiology, Department of Medicine and Cardiovascular Research Group, Faculty of MedicineUniversity of AlbertaEdmontonCanada
  2. 2.Division of Cardiology, 2C2 Walter MacKenzie Health Sciences CentreUniversity of AlbertaEdmontonCanada

Personalised recommendations