Heart Failure Reviews

, 13:311 | Cite as

Aminopeptidase A inhibitors as centrally acting antihypertensive agents

  • Laurence Bodineau
  • Alain Frugière
  • Yannick Marc
  • Cédric Claperon
  • Catherine Llorens-Cortes
Article

Abstract

Among the main bioactive peptides of the brain renin–angiotensin system, angiotensin (Ang) II and AngIII exhibit the same affinity for the type 1 and type 2 Ang receptors. Both peptides, injected intracerebroventricularly, cause similar increase in blood pressure (BP). Because AngII is converted in vivo to AngIII, the identity of the true effector is unknown. This review summarized recent insights into the predominant role of brain AngIII in the central control of BP underlining the fact that brain aminopeptidase A (APA), the enzyme forming central AngIII, could constitute a putative central therapeutic target for the treatment of hypertension. This led to the development of potent, systematically active APA inhibitors, such as RB150, as a prototype of a new class of centrally acting antihypertensive agents for the treatment of certain forms of hypertension.

Keywords

Angiotensin III Aminopeptidase A inhibitor Arterial blood pressure Brain renin–angiotensin system Hypertension Zinc metalloproteases 

References

  1. 1.
    Smith DH (2002) Treatment of hypertension with an angiotensin II-receptor antagonist compared with an angiotensin-converting enzyme inhibitor: a review of clinical studies of telmisartan and enalapril. Clin Ther 24:1484–1501PubMedCrossRefGoogle Scholar
  2. 2.
    Levine CB, Fahrbach KR, Frame D, Connelly JE, Estok RP, Stone LR, Ludensky V (2003) Effect of amlodipine on systolic blood pressure. Clin Ther 25:35–57PubMedCrossRefGoogle Scholar
  3. 3.
    Corvol P, Plouin PF (2002) Angiotensin II receptor blockers: current status and future prospects. Drugs 62(Spec No 1):53–64PubMedCrossRefGoogle Scholar
  4. 4.
    Israili ZH, Hall WD (1992) Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy. A review of the literature and pathophysiology. Ann Intern Med 117:234–242PubMedGoogle Scholar
  5. 5.
    Owen HG, Brecher ME (1994) Atypical reactions associated with use of angiotensin-converting enzyme inhibitors and apheresis. Transfusion 34:891–894PubMedCrossRefGoogle Scholar
  6. 6.
    Fried MR, Eastlund T, Christie B, Mullin GT, Key NS (1996) Hypotensive reactions to white cell-reduced plasma in a patient undergoing angiotensin-converting enzyme inhibitor therapy. Transfusion 36:900–903PubMedCrossRefGoogle Scholar
  7. 7.
    Holm EA, Randlov A, Strandgaard S (1996) Brief report: acute renal failure after losartan treatment in a patient with bilateral renal artery stenosis. Blood Press 5:360–362PubMedCrossRefGoogle Scholar
  8. 8.
    Saine DR, Ahrens ER (1996) Renal impairment associated with losartan. Ann Intern Med 124:775PubMedGoogle Scholar
  9. 9.
    Johansen TL, Kjaer A (2001) Reversible renal impairment induced by treatment with the angiotensin II receptor antagonist candesartan in a patient with bilateral renal artery stenosis. BMC Nephrol 2:1PubMedCrossRefGoogle Scholar
  10. 10.
    Saunders EJ, Saunders JA (1990) Drug therapy in pregnancy: the lessons of diethylstilbestrol, thalidomide, and bendectin. Health Care Women Int 11:423–432PubMedCrossRefGoogle Scholar
  11. 11.
    Radevski I, Skudicky D, Candy G, Sathekge S, Strugo V, Sareli P (1999) Antihypertensive monotherapy with nisoldipine CC is superior to enalapril in black patients with severe hypertension. Am J Hypertens 12:194–203PubMedCrossRefGoogle Scholar
  12. 12.
    Oparil S, Chen YF, Berecek KH, Calhoun DA, Wyss JM (1995) The role of central nervous system in hypertension. In: Laragh LH, Brenner BM (eds) Hypertension: pathology. diagnosis and management. Raven Press, pp 713–740Google Scholar
  13. 13.
    Esler M (1995) Sympathetic nervous system: contribution to human hypertension and related cardiovascular diseases. J Cardiovasc Pharmacol 26(Suppl 2):S24–S28PubMedGoogle Scholar
  14. 14.
    Lohmeier TE (2001) The sympathetic nervous system and long-term blood pressure regulation. Am J Hypertens 14:147S–154SPubMedCrossRefGoogle Scholar
  15. 15.
    Veerasingham SJ, Raizada MK (2003) Brain renin–angiotensin system dysfunction in hypertension: recent advances and perspectives. Br J Pharmacol 139:191–202PubMedCrossRefGoogle Scholar
  16. 16.
    Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346PubMedCrossRefGoogle Scholar
  17. 17.
    Ganten D, Hermann K, Bayer C, Unger T, Lang RE (1983) Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science 221:869–871PubMedCrossRefGoogle Scholar
  18. 18.
    Reaux A, Nadia de MN, Zini S, Cadel S, Fournie-Zaluski MC, Roques BP, Corvol P, Llorens-Cortes C (1999) PC18, a specific aminopeptidase N inhibitor, induces vasopressin release by increasing the half-life of brain angiotensin III. Neuroendocrinology 69:370–376PubMedCrossRefGoogle Scholar
  19. 19.
    Basso N, Ruiz P, Mangiarua E, Taquini AC (1981) Renin-like activity in the rat brain during the development of DOC-salt hypertension. Hypertension 3:II-7Google Scholar
  20. 20.
    Davisson RL, Yang G, Beltz TG, Cassell MD, Johnson AK, Sigmund CD (1998) The brain renin–angiotensin system contributes to the hypertension in mice containing both the human renin and human angiotensinogen transgenes. Circ Res 83:1047–1058PubMedGoogle Scholar
  21. 21.
    Morimoto S, Cassell MD, Beltz TG, Johnson AK, Davisson RL, Sigmund CD (2001) Elevated blood pressure in transgenic mice with brain-specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter. Circ Res 89:365–372PubMedCrossRefGoogle Scholar
  22. 22.
    Allen AM, Paxinos G, Song KF, Mendelhson FAO (1992) Localization of angiotensin receptor binding sites in the rat brain. In: Björklund A, Hökfelt T, Kuhar MJ (eds) Handbook of chemical neuroanatomy: neuropeptide receptors in the CNS, vol 11. Elsevier, New York, pp 1–37Google Scholar
  23. 23.
    Saavedra JM (1992) Brain and pituitary angiotensin. Endocr Rev 13:329–380PubMedCrossRefGoogle Scholar
  24. 24.
    Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C (1997) Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol 18:383–439PubMedCrossRefGoogle Scholar
  25. 25.
    Phillips MI (1987) Functions of angiotensin in the central nervous system. Annu Rev Physiol 49:413–435PubMedCrossRefGoogle Scholar
  26. 26.
    Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236PubMedCrossRefGoogle Scholar
  27. 27.
    Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543–24546PubMedGoogle Scholar
  28. 28.
    Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ (1993) Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268:24539–24542PubMedGoogle Scholar
  29. 29.
    Wright JW, Harding JW (1994) Brain angiotensin receptor subtypes in the control of physiological and behavioral responses. Neurosci Biobehav Rev 18:21–53PubMedCrossRefGoogle Scholar
  30. 30.
    Caputo FA, Rowland NE, Fregly MJ (1992) Angiotensin-related intakes of water and NaCl in Fischer 344 and Sprague-Dawley rats. Am J Physiol 262:R382–R388PubMedGoogle Scholar
  31. 31.
    Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW, Wright JW (2005) Roles of brain angiotensins II and III in thirst and sodium appetite. Brain Res 1060:108–117PubMedCrossRefGoogle Scholar
  32. 32.
    Reaux A, Fournie-Zaluski MC, David C, Zini S, Roques BP, Corvol P, Llorens-Cortes C (1999) Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci USA 96:13415–13420PubMedCrossRefGoogle Scholar
  33. 33.
    Fournie-Zaluski MC, Fassot C, Valentin B, Djordjijevic D, Reaux-Le GA, Corvol P, Roques BP, Llorens-Cortes C (2004) Brain renin–angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci USA 101:7775–7780PubMedCrossRefGoogle Scholar
  34. 34.
    Malfroy B, Kado-Fong H, Gros C, Giros B, Schwartz JC, Hellmiss R (1989) Molecular cloning and amino acid sequence of rat kidney aminopeptidase M: a member of a super family of zinc-metallohydrolases. Biochem Biophys Res Commun 161:236–241PubMedCrossRefGoogle Scholar
  35. 35.
    Wu Q, Lahti JM, Air GM, Burrows PD, Cooper MD (1990) Molecular cloning of the murine BP-1/6C3 antigen: a member of the zinc-dependent metallopeptidase family. Proc Natl Acad Sci USA 87:993–997PubMedCrossRefGoogle Scholar
  36. 36.
    Vazeux G, Wang J, Corvol P, Llorens-Cortes C (1996) Identification of glutamate residues essential for catalytic activity and zinc coordination in aminopeptidase A. J Biol Chem 271:9069–9074PubMedCrossRefGoogle Scholar
  37. 37.
    Khairallah PA, Bumpus FM, Page IH, Smeby RR (1963) Angiotensinase with a high degree of specificity in plasma and red cells. Science 140:672–674PubMedCrossRefGoogle Scholar
  38. 38.
    Kugler P (1982) On angiotensin-degrading aminopeptidases in the rat kidney. Adv Anat Embryol Cell Biol 76:1–86PubMedGoogle Scholar
  39. 39.
    Bausback HH, Churchill L, Ward PE (1988) Angiotensin metabolism by cerebral microvascular aminopeptidase A. Biochem Pharmacol 37:155–160PubMedCrossRefGoogle Scholar
  40. 40.
    Ahmad S, Ward PE (1990) Role of aminopeptidase activity in the regulation of the pressor activity of circulating angiotensins. J Pharmacol Exp Ther 252:643–650PubMedGoogle Scholar
  41. 41.
    Iturrioz X, Rozenfeld R, Michaud A, Corvol P, Llorens-Cortes C (2001) Study of asparagine 353 in aminopeptidase A: characterization of a novel motif (GXMEN) implicated in exopeptidase specificity of monozinc aminopeptidases. Biochemistry 40:14440–14448PubMedCrossRefGoogle Scholar
  42. 42.
    Wilk S, Healy DP (1993) Glutamyl aminopeptidase (aminopeptidase A), the BP-1/6C3 antigen. Adv Neuroimmunol 3:195–207CrossRefGoogle Scholar
  43. 43.
    Nagatsu I, Nagatsu T, Yamamoto T, Glenner GG, Mehl JW (1970) Purification of aminopeptidase A in human serum and degradation of angiotensin II by the purified enzyme. Biochim Biophys Acta 198:255–270PubMedGoogle Scholar
  44. 44.
    Ward PE, Benter IF, Dick L, Wilk S (1990) Metabolism of vasoactive peptides by plasma and purified renal aminopeptidase M. Biochem Pharmacol 40:1725–1732PubMedCrossRefGoogle Scholar
  45. 45.
    Palmieri FE, Bausback HH, Ward PE (1989) Metabolism of vasoactive peptides by vascular endothelium and smooth muscle aminopeptidase M. Biochem Pharmacol 38:173–180PubMedCrossRefGoogle Scholar
  46. 46.
    Hersh LB, Aboukhair N, Watson S (1987) Immunohistochemical localization of aminopeptidase M in rat brain and periphery: relationship of enzyme localization and enkephalin metabolism. Peptides 8:523–532PubMedCrossRefGoogle Scholar
  47. 47.
    Healy DP, Wilk S (1993) Localization of immunoreactive glutamyl aminopeptidase in rat brain. II. Distribution and correlation with angiotensin II. Brain Res 606:295–303PubMedCrossRefGoogle Scholar
  48. 48.
    Troyanovskaya M, Jayaraman G, Song L, Healy DP (2000) Aminopeptidase-A. I. CDNA cloning and expression and localization in rat tissues. Am J Physiol Regul Integr Comp Physiol 278:R413–R424PubMedGoogle Scholar
  49. 49.
    Zini S, Masdehors P, Lenkei Z, Fournie-Zaluski MC, Roques BP, Corvol P, Llorens-Cortes C (1997) Aminopeptidase A: distribution in rat brain nuclei and increased activity in spontaneously hypertensive rats. Neuroscience 78:1187–1193PubMedCrossRefGoogle Scholar
  50. 50.
    Lind RW, Ganten D (1990) Angiotensin. Handbook of chemical neuroanatomy, vol 9, part II. Elsevier, pp 165–286Google Scholar
  51. 51.
    Harding JW, Yoshida MS, Dilts RP, Woods TM, Wright JW (1986) Cerebroventricular and intravascular metabolism of [125I]angiotensins in rat. J Neurochem 46:1292–1297PubMedCrossRefGoogle Scholar
  52. 52.
    Abhold RH, Sullivan MJ, Wright JW, Harding JW (1987) Binding, degradation and pressor activity of angiotensins II and III after aminopeptidase inhibition with amastatin and bestatin. J Pharmacol Exp Ther 242:957–962PubMedGoogle Scholar
  53. 53.
    Harding JW, Felix D (1987) The effects of the aminopeptidase inhibitors amastatin and bestatin on angiotensin-evoked neuronal activity in rat brain. Brain Res 424:299–304PubMedCrossRefGoogle Scholar
  54. 54.
    Dewey AL, Wright JW, Hanesworth JM, Harding JW (1988) Effects of aminopeptidase inhibition on the half-lives of [125I]angiotensins in the cerebroventricles of the rat. Brain Res 448:369–372PubMedCrossRefGoogle Scholar
  55. 55.
    Tieku S, Hooper NM (1992) Inhibition of aminopeptidases N, A and W. A re-evaluation of the actions of bestatin and inhibitors of angiotensin converting enzyme. Biochem Pharmacol 44:1725–1730PubMedCrossRefGoogle Scholar
  56. 56.
    Checler F (1993) Neuropetide-degrading peptidases. In: Parvez SH, Naoi M, Nagatsu T, Parvez S (eds) Methods in neurotransmitter and neuropeptide research. Elsevier, Amsterdam, pp 375–418Google Scholar
  57. 57.
    Chauvel EN, Coric P, Llorens-Cortes C, Wilk S, Roques BP, Fournie-Zaluski MC (1994) Investigation of the active site of aminopeptidase A using a series of new thiol-containing inhibitors. J Med Chem 37:1339–1346PubMedCrossRefGoogle Scholar
  58. 58.
    Fournie-Zaluski MC, Coric P, Turcaud S, Lucas E, Noble F, Maldonado R, Roques BP (1992) “Mixed inhibitor-prodrug” as a new approach toward systemically active inhibitors of enkephalin-degrading enzymes. J Med Chem 35:2473–2481PubMedCrossRefGoogle Scholar
  59. 59.
    Hopsu V, Makinen EO (1966) Two methods for the demonstration of noradrenaline-containing adrenal medullary cells. J Histochem Cytochem 14:434–435PubMedGoogle Scholar
  60. 60.
    Cadel S, Pierotti AR, Foulon T, Creminon C, Barre N, Segretain D, Cohen P (1995) Aminopeptidase-B in the rat testes: isolation, functional properties and cellular localization in the seminiferous tubules. Mol Cell Endocrinol 110:149–160PubMedCrossRefGoogle Scholar
  61. 61.
    Zini S, Fournie-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C (1996) Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci USA 93:11968–11973PubMedCrossRefGoogle Scholar
  62. 62.
    Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, Saavedra JM, Reis DJ (1984) Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4:474–494PubMedGoogle Scholar
  63. 63.
    Brown DL, Guyenet PG (1985) Electrophysiological study of cardiovascular neurons in the rostral ventrolateral medulla in rats. Circ Res 56:359–369PubMedGoogle Scholar
  64. 64.
    Wright JW, Morseth SL, Abhold RH, Harding JW (1985) Pressor action and dipsogenicity induced by angiotensin II and III in rats. Am J Physiol 249:R514–R521PubMedGoogle Scholar
  65. 65.
    Wright JW, Jensen LL, Cushing LL, Harding JW (1989) Leucine aminopeptidase M-induced reductions in blood pressure in spontaneously hypertensive rats. Hypertension 13:910–915PubMedGoogle Scholar
  66. 66.
    Felix D, Schlegel W (1978) Angiotensin receptive neurones in the subfornical organ. Structure–activity relations. Brain Res 149:107–116PubMedCrossRefGoogle Scholar
  67. 67.
    Harding JW, Jensen LL, Hanesworth JM, Roberts KA, Page TA, Wright JW (1992) Release of angiotensins in paraventricular nucleus of rat in response to physiological and chemical stimuli. Am J Physiol 262:F17–F23PubMedGoogle Scholar
  68. 68.
    Wright JW, Roberts KA, Cook VI, Murray CE, Sardinia MF, Harding JW (1990) Intracerebroventricularly infused [d-Arg1]angiotensin III, is superior to [d-Asp1]angiotensin II, as a pressor agent in rats. Brain Res 514:5–10PubMedCrossRefGoogle Scholar
  69. 69.
    Batt CM, Klein EW, Harding JW, Wright JW (1988) Pressor responses to amastatin, bestatin and Plummer’s inhibitors are suppressed by pretreatment with the angiotensin receptor antagonist sarthran. Brain Res Bull 21:731–735PubMedCrossRefGoogle Scholar
  70. 70.
    Morton JJ, Casals-Stenzel J, Lever AF, Millar JA, Riegger AJ, Tree M (1979) Inhibitors of the renin–angiotensin system in experimental hypertension, with a note on the measurement of angiotensin I, II and III during infusion of converting-enzyme inhibitor. Br J Clin Pharmacol 7(Suppl 2):233S–241SPubMedGoogle Scholar
  71. 71.
    Nishimura M, Ohtsuka K, Sakamoto M, Nanbu A, Takahashi H, Yoshimura M (1998) Roles of brain angiotensin II and C-type natriuretic peptide in deoxycorticosterone acetate-salt hypertension in rats. J Hypertens 16:1175–1185PubMedGoogle Scholar
  72. 72.
    Masuyama Y, Tsuda K, Kuchii M, Nishio I (1986) Peripheral neural mechanism of hypertension in rat models—peripheral sympathetic neurotransmission in hypertension. J Hypertens 4(Suppl 3):S189–S192Google Scholar
  73. 73.
    Song L, Wilk S, Healy DP (1997) Aminopeptidase A antiserum inhibits intracerebroventricular angiotensin II-induced dipsogenic and pressor responses. Brain Res 744:1–6PubMedCrossRefGoogle Scholar
  74. 74.
    Wright JW, Tamura-Myers E, Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW (2003) Conversion of brain angiotensin II to angiotensin III is critical for pressor response in rats. Am J Physiol Regul Integr Comp Physiol 284:R725–R733PubMedGoogle Scholar
  75. 75.
    Kokje RJ, Wilson WL, Brown TE, Karamyan VT, Wright JW, Speth RC (2007) Central pressor actions of aminopeptidase-resistant angiotensin II analogs: challenging the angiotensin III hypothesis. Hypertension 49:1328–1335PubMedCrossRefGoogle Scholar
  76. 76.
    Reaux A, Fournie-Zaluski MC, Llorens-Cortes C (2001) Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metab 12:157–162PubMedCrossRefGoogle Scholar
  77. 77.
    Bakris G, Bursztyn M, Gavras I, Bresnahan M, Gavras H (1997) Role of vasopressin in essential hypertension: racial differences. J Hypertens 15:545–550PubMedCrossRefGoogle Scholar
  78. 78.
    Albiston AL, Mustafa T, McDowall SG, Mendelsohn FA, Lee J, Chai SY (2003) AT4 receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement. Trends Endocrinol Metab 14:72–77PubMedCrossRefGoogle Scholar
  79. 79.
    Wright JW, Harding JW (2004) The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol 72:263–293PubMedCrossRefGoogle Scholar
  80. 80.
    Ferrario CM (2006) Angiotensin-converting enzyme 2 and angiotensin-(1–7): an evolving story in cardiovascular regulation. Hypertension 47:515–521PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Laurence Bodineau
    • 1
    • 2
    • 3
  • Alain Frugière
    • 1
    • 2
    • 3
  • Yannick Marc
    • 1
    • 2
    • 3
  • Cédric Claperon
    • 1
    • 2
    • 3
  • Catherine Llorens-Cortes
    • 1
    • 2
    • 3
  1. 1.U 691InsermParis Cedex 05France
  2. 2.U 691Collège de FranceParis Cedex 05France
  3. 3.U 691Université Pierre et Marie Curie-Paris 6Paris Cedex 05France

Personalised recommendations