Heart Failure Reviews

, Volume 13, Issue 2, pp 245–269 | Cite as

The clinical and research applications of aerobic capacity and ventilatory efficiency in heart failure: an evidence-based review

Article

Abstract

A hallmark symptom of heart failure (HF) is exercise intolerance, typically evidenced by excessive shortness of breath, and/or fatigue with exertion. In recent years, the physiologic response to progressive exercise using direct measures of ventilation and gas exchange, commonly termed the cardiopulmonary exercise test (CPX), has evolved into an important clinical tool in the management of patients with HF. There is currently debate regarding the optimal CPX response to apply when stratifying risk for mortality, hospitalization, or other outcomes in patients with HF. Early studies in this area focused on the application of peak VO2 in predicting outcomes in patients considered for transplantation. More recently, the focus of these studies has shifted to an emphasis on ventilatory inefficiency, in lieu of or in combination with peak VO2, in estimating risk. The most widely studied index of ventilatory inefficiency has been the minute ventilation/carbon dioxide production (VE/VCO2) slope. A growing body of studies over the last decade has demonstrated that among patients with HF, the VE/VCO2 slope more powerfully predicts mortality, hospitalization, or both, than peak VO2. A number of investigations have also simultaneously examined the diagnostic importance of peak VO2 and the VE/VCO2 slope as well as their respective response to various interventions. This review examines the body of evidence which has used aerobic capacity and ventilatory efficiency as prognostic and diagnostic markers as well as endpoints in interventional trials. Based on this evidence, recommendations for future clinical and research applications of these CPX variables are provided.

Keywords

Ventilatory expired gas Exercise test Prognosis Diagnosis Intervention 

References

  1. 1.
    Ansari M, Massie BM (2003) Heart failure: how big is the problem? Who are the patients? What does the future hold? Am Heart J 146:1–4PubMedCrossRefGoogle Scholar
  2. 2.
    Arena R, Myers J, Guazzi M (2007) Ventilatory abnormalities during exercise in heart failure: a mini review. Curr Resp Med Rev 3:179–187Google Scholar
  3. 3.
    Myers J (2005) Applications of cardiopulmonary exercise testing in the management of cardiovascular and pulmonary disease. Int J Sports Med 26(Suppl 1):S49–S55PubMedCrossRefGoogle Scholar
  4. 4.
    Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83:778–786PubMedGoogle Scholar
  5. 5.
    Wada O, Asanoi H, Miyagi K, Ishizaka S, Kameyama T, Seto H, Sasayama S (1993) Importance of abnormal lung perfusion in excessive exercise ventilation in chronic heart failure. Am Heart J 125:790–798PubMedCrossRefGoogle Scholar
  6. 6.
    Uren NG, Davies SW, Agnew JE, Irwin AG, Jordan SL, Hilson AJ, Lipkin DP (1993) Reduction of mismatch of global ventilation and perfusion on exercise is related to exercise capacity in chronic heart failure. Br Heart J 70:241–246PubMedCrossRefGoogle Scholar
  7. 7.
    Ponikowski P, Francis DP, Piepoli MF, Davies LC, Chua TP, Davos CH, Florea V, Banasiak W, Poole-Wilson PA, Coats AJ, Anker SD (2001) Enhanced ventilatory response to exercise in patients with chronic heart failure and preserved exercise tolerance: marker of abnormal cardiorespiratory reflex control and predictor of poor prognosis. Circulation 103:967–972PubMedGoogle Scholar
  8. 8.
    Chua TP, Clark AI, Amadi AA, Coats AJS (1996) Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol 27:650–657PubMedCrossRefGoogle Scholar
  9. 9.
    Piepoli M, Clark AL, Volterrani M (1996) Contribution of muscle affarents to the hemodynamic, autonomic, and ventilatory responses to exercise in patients with chronic heart failure. Circulation 93:940–952PubMedGoogle Scholar
  10. 10.
    Davies LC, Wensel R, Georgiadou P, Cicoira M, Coats AJ, Piepoli MF, Francis DP (2006) Enhanced prognostic value from cardiopulmonary exercise testing in chronic heart failure by non-linear analysis: oxygen uptake efficiency slope. Eur Heart J 27:684–690PubMedCrossRefGoogle Scholar
  11. 11.
    Corra U, Giordano A, Bosimini E, Mezzani A, Piepoli M, Coats AJ, Giannuzzi P (2002) Oscillatory ventilation during exercise in patients with chronic heart failure: clinical correlates and prognostic implications. Chest 121:1572–1580PubMedCrossRefGoogle Scholar
  12. 12.
    Corra U, Pistono M, Mezzani A, Braghiroli A, Giordano A, Lanfranchi P, Bosimini E, Gnemmi M, Giannuzzi P (2006) Sleep and exertional periodic breathing in chronic heart failure: prognostic importance and interdependence. Circulation 113:44–50PubMedCrossRefGoogle Scholar
  13. 13.
    Guazzi M, Arena R, Ascione A, Piepoli M, Guazzi MD (2007) Exercise oscillatory breathing and increased ventilation to carbon dioxide production slope in heart failure: an unfavorable combination with high prognostic value. Am Heart J 153:859–867PubMedCrossRefGoogle Scholar
  14. 14.
    MacGowan GA, Janosko K, Cecchetti A, Murali S (1997) Exercise-related ventilatory abnormalities and survival in congestive heart failure. Am J Cardiol 79:1264–1266PubMedCrossRefGoogle Scholar
  15. 15.
    Chua TP, Ponikowski P, Harrington D, Anker SD, Webb-Peploe K, Clark AL, Poole-Wilson PA, Coats AJ (1997) Clinical correlates and prognostic significance of the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol 29:1585–1590PubMedCrossRefGoogle Scholar
  16. 16.
    Robbins M, Francis G, Pashkow FJ, Snader CE, Hoercher K, Young JB, Lauer MS (1999) Ventilatory and heart rate responses to exercise: better predictors of heart failure mortality than peak oxygen consumption. Circulation 100:2411–2417PubMedGoogle Scholar
  17. 17.
    Kleber FX, Vietzke G, Wernecke KD, Bauer U, Opitz C, Wensel R, Sperfeld A, Glaser S (2000) Impairment of ventilatory efficiency in heart failure: prognostic impact. Circulation 101:2803–2809PubMedGoogle Scholar
  18. 18.
    Francis DP, Shamim W, Davies LC, Piepoli MF, Ponikowski P, Anker SD, Coats AJ (2000) Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO(2)slope and peak VO(2). Eur Heart J 21:154–161PubMedCrossRefGoogle Scholar
  19. 19.
    Cicoira M, Davos CH, Florea V, Shamim W, Doehner W, Coats AJ, Anker SD (2001) Chronic heart failure in the very elderly: clinical status, survival, and prognostic factors in 188 patients more than 70 years old. Am Heart J 142:174–180PubMedCrossRefGoogle Scholar
  20. 20.
    Cohen-Solal A, Tabet JY, Logeart D, Bourgoin P, Tokmakova M, Dahan M (2002) A non-invasively determined surrogate of cardiac power (’circulatory power’) at peak exercise is a powerful prognostic factor in chronic heart failure. Eur Heart J 23:806–814PubMedCrossRefGoogle Scholar
  21. 21.
    Scharf C, Merz T, Kiowski W, Oechslin E, Schalcher C, Brunner-La Rocca HP (2002) Noninvasive assessment of cardiac pumping capacity during exercise predicts prognosis in patients with congestive heart failure. Chest 122:1333–1339PubMedCrossRefGoogle Scholar
  22. 22.
    Corra U, Mezzani A, Bosimini E, Scapellato F, Imparato A, Giannuzzi P (2002) Ventilatory response to exercise improves risk stratification in patients with chronic heart failure and intermediate functional capacity. Am Heart J 143:418–426PubMedCrossRefGoogle Scholar
  23. 23.
    Mejhert M, Linder-Klingsell E, Edner M, Kahan T, Persson H (2002) Ventilatory variables are strong prognostic markers in elderly patients with heart failure. Heart 88:239–243PubMedCrossRefGoogle Scholar
  24. 24.
    Gitt AK, Wasserman K, Kilkowski C, Kleemann T, Kilkowski A, Bangert M, Schneider S, Schwarz A, Senges J (2002) Exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. Circulation 106:3079–3084PubMedCrossRefGoogle Scholar
  25. 25.
    Tabet JY, Beauvais F, Thabut G, Tartiere JM, Logeart D, Cohen-Solal A (2003) A critical appraisal of the prognostic value of the VE/VCO2 slope in chronic heart failure. J Cardiovasc Risk 10:267–272Google Scholar
  26. 26.
    Arena R, Myers J, Aslam SS, Varughese EB, Peberdy MA (2004) Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison. Am Heart J 147:354–360PubMedCrossRefGoogle Scholar
  27. 27.
    Corra U, Mezzani A, Bosimini E, Scapellato F, Temporelli PL, Eleuteri E, Giannuzzi P (2004) Limited predictive value of cardiopulmonary exercise indices in patients with moderate chronic heart failure treated with carvedilol. Am Heart J 147:553–560PubMedCrossRefGoogle Scholar
  28. 28.
    Guazzi M, Myers J, Arena R (2005) Cardiopulmonary exercise testing in the clinical and prognostic assessment of diastolic heart failure. J Am Coll Cardiol 46:1883–1890PubMedCrossRefGoogle Scholar
  29. 29.
    Guazzi M, Reina G, Tumminello G, Guazzi MD (2005) Exercise ventilation inefficiency and cardiovascular mortality in heart failure: the critical independent prognostic value of the arterial CO2 partial pressure. Eur Heart J 26:472–480PubMedCrossRefGoogle Scholar
  30. 30.
    Arena R, Myers J, Abella J, Peberdy MA (2005) Influence of heart failure etiology on the prognostic value of peak oxygen consumption and minute ventilation/carbon dioxide production slope. Chest 128:2812–2817PubMedCrossRefGoogle Scholar
  31. 31.
    Guazzi M, Arena R, Myers J (2006) Comparison of the prognostic value of cardiopulmonary exercise testing between male and female patients with heart failure. Int J Cardiol 113:395–400PubMedCrossRefGoogle Scholar
  32. 32.
    Tsurugaya H, Adachi H, Kurabayashi M, Ohshima S, Taniguchi K (2006) Prognostic impact of ventilatory efficiency in heart disease patients with preserved exercise tolerance. Circ J 70:1332–1336PubMedCrossRefGoogle Scholar
  33. 33.
    Tabet JY, Metra M, Thabut G, Logeart D, Cohen-Solal A (2006) Prognostic value of cardiopulmonary exercise variables in chronic heart failure patients with or without beta-blocker therapy. Am J Cardiol 98:500–503PubMedCrossRefGoogle Scholar
  34. 34.
    Bard RL, Gillespie BW, Clarke NS, Egan TG, Nicklas JM (2006) Determining the best ventilatory efficiency measure to predict mortality in patients with heart failure. J Heart Lung Transpl 25:589–595CrossRefGoogle Scholar
  35. 35.
    Nanas SN, Nanas JN, Sakellariou DC, Dimopoulos SK, Drakos SG, Kapsimalakou SG, Mpatziou CA, Papazachou OG, Dalianis AS, Nastasiou-Nana MI, Roussos C (2006) VE/VCO2 slope is associated with abnormal resting haemodynamics and is a predictor of long-term survival in chronic heart failure. Eur J Heart Fail 8:420–427PubMedCrossRefGoogle Scholar
  36. 36.
    Dimopoulos K, Okonko DO, Diller GP, Broberg CS, Salukhe TV, Babu-Narayan SV, Li W, Uebing A, Bayne S, Wensel R, Piepoli MF, Poole-Wilson PA, Francis DP, Gatzoulis MA (2006) Abnormal ventilatory response to exercise in adults with congenital heart disease relates to cyanosis and predicts survival. Circulation 113:2796–2802PubMedCrossRefGoogle Scholar
  37. 37.
    Arena RA, Guazzi M, Myers J, Abella J (2007) The prognostic value of ventilatory efficiency with beta-blocker therapy in heart failure. Med Sci Sports Exerc 39:213–219PubMedCrossRefGoogle Scholar
  38. 38.
    Arena R, Myers J, Abella J, Peberdy MA, Bensimhon D, Chase P, Guazzi M (2007) Development of a ventilatory classification system in patients with heart failure. Circulation 115:2410–2417PubMedCrossRefGoogle Scholar
  39. 39.
    Hunt SA (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing committee to update the 2001 guidelines for the evaluation and management of heart failure). J Am Coll Cardiol 46:e1–e82PubMedCrossRefGoogle Scholar
  40. 40.
    Agostoni P, Guazzi M, Bussotti M, De Vita S, Palermo P (2002) Carvedilol reduces the inappropriate increase of ventilation during exercise in heart failure patients. Chest 122:2062–2067PubMedCrossRefGoogle Scholar
  41. 41.
    Agostoni P, Contini M, Magini A, Apostolo A, Cattadori G, Bussotti M, Veglia F, Andreini D, Palermo P (2006) Carvedilol reduces exercise-induced hyperventilation: A benefit in normoxia and a problem with hypoxia. Eur J Heart Fail 8:729–735PubMedCrossRefGoogle Scholar
  42. 42.
    Wolk R, Johnson BD, Somers VK, Allison TG, Squires RW, Gau GT, Olson LJ (2005) Effects of [beta]-blocker therapy on ventilatory responses to exercise in patients with heart failure. J Cardiac Fail 11:333–339CrossRefGoogle Scholar
  43. 43.
    Arena R, Myers J, Aslam S, Varughese EB, Peberdy MA (2003) Technical considerations related to the minute ventialtion/carbon dioxide output slope in patients with heart failure. Chest 124:720–727PubMedCrossRefGoogle Scholar
  44. 44.
    Ingle L, Goode K, Carroll S, Sloan R, Boyes C, Cleland JGF, Clark AL (2007) Prognostic value of the VE/VCO2 slope calculated from different time intervals in patients with suspected heart failure. Int J Cardiol 118:350–355PubMedCrossRefGoogle Scholar
  45. 45.
    Auricchio A, Stellbrink C, Sack S, Block M, Vogt J, Bakker P, Huth C, Schondube F, Wolfhard U, Bocker D (2002) Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J Am Coll Cardiol 39:2026–2033PubMedCrossRefGoogle Scholar
  46. 46.
    Varma C, Sharma S, Firoozi S, McKenna WJ, Daubert JC (2003) Atriobiventricular pacing improves exercise capacity in patients with heart failure and intraventricular conduction delay. J Am Coll Cardiol 41:582–588PubMedCrossRefGoogle Scholar
  47. 47.
    Lindenfeld J, Feldman AM, Saxon L, Boehmer J, Carson P, Ghali JK, Anand I, Singh S, Steinberg JS, Jaski B, DeMarco T, Mann D, Yong P, Galle E, Ecklund F, Bristow M (2007) Effects of cardiac resynchronization therapy with or without a defibrillator on survival and hospitalizations in patients with new york heart association class IV heart failure. Circulation 115:204–212PubMedCrossRefGoogle Scholar
  48. 48.
    Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, Meverden RA, Roger VL (2006) Systolic and diastolic heart failure in the community. JAMA 296:2209–2216PubMedCrossRefGoogle Scholar
  49. 49.
    Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ (2003) Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289:194–202PubMedCrossRefGoogle Scholar
  50. 50.
    Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 105:1387–1393PubMedCrossRefGoogle Scholar
  51. 51.
    Ahmed A, Perry GJ, Fleg JL, Love TE, Goff J, Kitzman DW (2006) Outcomes in ambulatory chronic systolic and diastolic heart failure: a propensity score analysis. Am Heart J 152:956–966PubMedCrossRefGoogle Scholar
  52. 52.
    Moore B, Brubaker PH, Stewart KP, Kitzman DW (2007) VE/VCO2 slope in older heart failure patients with normal versus reduced ejection fraction compared with age-matched healthy controls. J Cardiac Fail 13:259–262CrossRefGoogle Scholar
  53. 53.
    American Heart Association (2007) 2007 Heart and stroke statistical update. Dallas, Texas. Ref Type: PamphletGoogle Scholar
  54. 54.
    Elmariah S, Goldberg LR, Allen MT, Kao A (2006) Effects of gender on peak oxygen consumption and the timing of cardiac transplantation. J Am Coll Cardiol 47:2237–2242PubMedCrossRefGoogle Scholar
  55. 55.
    Richards DR, Mehra MR, Ventura HO, Lavie CJ, Smart FW, Stapleton DD, Milani RV (1997) Usefulness of peak oxygen consumption in predicting outcome of heart failure in women versus men. Am J Cardiol 80:1236–1238PubMedCrossRefGoogle Scholar
  56. 56.
    Green P, Lund LH, Mancini D (2007) Comparison of peak exercise oxygen consumption and the heart failure survival score for predicting prognosis in women versus men. Am J Cardiol 99:399–403PubMedCrossRefGoogle Scholar
  57. 57.
    Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni A, Burton P, Sullivan MD, Pitt B, Poole-Wilson PA, Mann DL, Packer M (2006) The Seattle heart failure model: prediction of survival in heart failure. Circulation 113:1424–1433PubMedCrossRefGoogle Scholar
  58. 58.
    Koelling TM, Joseph S, Aaronson KD (2004) Heart failure survival score continues to predict clinical outcomes in patients with heart failure receiving [beta]-blockers. J Heart Lung Transpl 23:1414–1422CrossRefGoogle Scholar
  59. 59.
    Witte KKA, Clark AL (2005) Cycle exercise causes a lower ventilatory response to exercise in chronic heart failure. Heart 91:225–226PubMedCrossRefGoogle Scholar
  60. 60.
    Arena R, Guazzi M, Myers J, Peberdy MA (2005) Prognostic characteristics of cardiopulmonary exercise testing in heart failure: comparing american and european models. Eur J Cardiovasc Prev Rehabil 12:562–567Google Scholar
  61. 61.
    O’Neill JO, Young JB, Pothier CE, Lauer MS (2005) Peak oxygen consumption as a predictor of death in patients with heart failure receiving {beta}-blockers. Circulation 111:2313–2318PubMedCrossRefGoogle Scholar
  62. 62.
    Sullivan MJ, Higginbotham MB, Cobb FR (1988) Increased exercise ventilation in patients with chronic heart failure: intact ventilatory control despite hemodynamic and pulmonary abnormalities. Circulation 77:552–559PubMedGoogle Scholar
  63. 63.
    Reindl I, Wernecke KD, Opitz C, Wensel R, Konig D, Dengler T, Schimke I, Kleber FX (1998) Impaired ventilatory efficiency in chronic heart failure: possible role of pulmonary vasoconstriction. Am Heart J 136:778–785PubMedCrossRefGoogle Scholar
  64. 64.
    Myers J, Dziekan G, Goebbels U, Dubach P (1999) Influence of high-intensity exercise training on the ventilatory response to exercise in patients with reduced ventricular function. Med Sci Sports Exerc 31:929–937PubMedCrossRefGoogle Scholar
  65. 65.
    De Feo S, Franceschini L, Brighetti G, Cicoira M, Zanolla L, Rossi A, Golia G, Zardini P (2005) Ischemic etiology of heart failure identifies patients with more severely impaired exercise capacity. Int J Cardiol 104:292–297PubMedCrossRefGoogle Scholar
  66. 66.
    Kruger S, Graf J, Kunz D, Stickel T, Hanrath P, Janssens U (2002) Brain natriuretic peptide levels predict functional capacity in patients with chronic heart failure. J Am Coll Cardiol 40:718–722PubMedCrossRefGoogle Scholar
  67. 67.
    Passino C, Poletti R, Bramanti F, Prontera C, Clerico A, Emdin M (2006) Neuro-hormonal activation predicts ventilatory response to exercise and functional capacity in patients with heart failure. Eur J Heart Fail 8:46–53PubMedCrossRefGoogle Scholar
  68. 68.
    Scardovi AB, De MR, Coletta C, Aspromonte N, Perna S, Infusino T, D’Errigo P, Rosato S, Greggi M, Di GT, Ricci R, Ceci V (2006) Brain natriuretic peptide is a reliable indicator of ventilatory abnormalities during cardiopulmonary exercise test in heart failure patients. Med Sci Monit 12:CR191–CR195PubMedGoogle Scholar
  69. 69.
    Ponikowski P, Chua TP, Piepoli M, Banasiak W, Anker SD, Szelemej R, Molenda W, Wrabec K, Capucci A, Coats AJS (1998) Ventilatory response to exercise correlates with impaired heart rate variability in patients with chronic congestive heart failure. Am J Cardiol 82:338–344PubMedCrossRefGoogle Scholar
  70. 70.
    Arzt M, Harth M, Luchner A, Muders F, Holmer SR, Blumberg FC, Riegger GAJ, Pfeifer M (2003) Enhanced ventilatory response to exercise in patients with chronic heart failure and central sleep apnea. Circulation 107:1998–2003PubMedCrossRefGoogle Scholar
  71. 71.
    Guazzi M, Reina G, Tumminello G, Guazzi MD (2005) Alveolar–capillary membrane conductance is the best pulmonary function correlate of exercise ventilation efficiency in heart failure patients. Eur J Heart Fail 7:1017–1022PubMedCrossRefGoogle Scholar
  72. 72.
    de Jonge N, Kirkels H, Lahpor JR, Klopping C, Hulzebos EJ, de la Riviere AB, Robles de Medina EO (2001) Exercise performance in patients with end-stage heart failure after implantation of a left ventricular assist device and after heart transplantation: an outlook for permanent assisting? J Am Coll Cardiol 37:1794–1799PubMedCrossRefGoogle Scholar
  73. 73.
    Abraham WT, Young JB, Leon AR, Adler S, Bank AJ, Hall SA, Lieberman R, Liem LB, O’Connell JB, Schroeder JS, Wheelan KR, on behalf of the Multicenter InSync ICD II Study Group (2004) Effects of cardiac resynchronization on disease progression in patients with left ventricular systolic dysfunction, an indication for an implantable cardioverter-defibrillator, and mildly symptomatic chronic heart failure. Circulation 110:2864–2868Google Scholar
  74. 74.
    Wasserman K, Sun XG, Hansen JE (2007) Effect of biventricular pacing on the exercise pathophysiology of heart failure. Chest 132(1):250–261PubMedCrossRefGoogle Scholar
  75. 75.
    Guazzi M, Marenzi G, Alimento M, Contini M, Agostoni P (1997) Improvement of alveolar–capillary membrane diffusing capacity with enalapril in chronic heart failure and counteracting effect of aspirin. Circulation 95:1930–1936PubMedGoogle Scholar
  76. 76.
    McConnell TR, Menapace FJ Jr, Hartley LH, Pfeffer MA (1998) Captopril reduces the VE/VCO2 ratio in myocardial infarction patients with low ejection fraction. Chest 114:1289–1294PubMedCrossRefGoogle Scholar
  77. 77.
    Guazzi M, Palermo P, Pontone G, Susini F, Agostoni P (1999) Synergistic efficacy of enalapril and losartan on exercise performance and oxygen consumption at peak exercise in congestive heart failure. Am J Cardiol 84:1038–1043PubMedCrossRefGoogle Scholar
  78. 78.
    Guazzi M, Tumminello G, Matturri M, Guazzi MD (2003) Insulin ameliorates exercise ventilatory efficiency and oxygen uptake in patients with heart failure-type 2 diabetes comorbidity. J Am Coll Cardiol 42:1044–1050PubMedCrossRefGoogle Scholar
  79. 79.
    Kinugawa T, Kato M, Ogino K, Osaki S, Igawa O, Hisatome I, Shigemasa C (2004) Effects of angiotensin II type 1 receptor antagonist, losartan, on ventilatory response to exercise and neurohormonal profiles in patients with chronic heart failure. Jpn J Physiol 54:15–21PubMedCrossRefGoogle Scholar
  80. 80.
    Lewis GD, Lachmann J, Camuso J, Lepore JJ, Shin J, Martinovic ME, Systrom DM, Bloch KD, Semigran MJ (2007) Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation 115:59–66PubMedCrossRefGoogle Scholar
  81. 81.
    Coats AJ, Adamopoulos S, Radaelli A, McCance A, Meyer TE, Bernardi L, Solda PL, Davey P, Ormerod O, Forfar C, et al (1992) Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85:2119–2131PubMedGoogle Scholar
  82. 82.
    Kiilavuori K, Sovijarvi A, Naveri H, Ikonen T, Leinonen H (1996) Effect of physical training on exercise capacity and gas exchange in patients with chronic heart failure. Chest 110:985–991PubMedCrossRefGoogle Scholar
  83. 83.
    Guazzi M, Reina G, Tumminello G, Guazzi MD (2004) Improvement of alveolar–capillary membrane diffusing capacity with exercise training in chronic heart failure. J Appl Physiol 97:1866–1873PubMedCrossRefGoogle Scholar
  84. 84.
    Van Laethem C, Van De Veire N, Backer GD, Bihija S, Seghers T, Cambier D, Vanderheyden M, Sutter JD (2007) Response of the oxygen uptake efficiency slope to exercise training in patients with chronic heart failure. Eur J Heart Fail 9:625–629PubMedCrossRefGoogle Scholar
  85. 85.
    Dall’Ago P, Chiappa GR, Guths H, Stein R, Ribeiro JP (2006) Inspiratory muscle training in patients with heart failure and inspiratory muscle weakness: a randomized trial. J Am Coll Cardiol 47:757–763PubMedCrossRefGoogle Scholar
  86. 86.
    Arzt M, Schulz M, Wensel R, Montalvan S, Blumberg FC, Riegger GAJ, Pfeifer M (2005) Nocturnal continuous positive airway pressure improves ventilatory efficiency during exercise in patients with chronic heart failure. Chest 127:794–802PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PhysiologyVirginia Commonwealth UniversityRichmondUSA
  2. 2.Department of Physical TherapyVirginia Commonwealth UniversityRichmondUSA
  3. 3.VA Palo Alto Health Care System, Cardiology DivisionStanford UniversityPalo AltoUSA
  4. 4.Cardiopulmonary Laboratory, Cardiology DivisionUniversity of Milano, San Paolo HospitalMilanoItaly

Personalised recommendations