Heart Failure Reviews

, Volume 13, Issue 3, pp 339–353 | Cite as

Role of central and peripheral aminopeptidase activities in the control of blood pressure: a working hypothesis

  • Manuel Ramírez
  • Isabel Prieto
  • Francisco Alba
  • Francisco Vives
  • Inmaculada Banegas
  • Marc de Gasparo
Article

Abstract

Although there is a large body of knowledge on protein synthesis, the available data on protein catabolism, although quite substantial, are still inadequate. This is due to the marked differences in the activity of proteolytic enzymes, compounded by different substrate specificities and multiple environmental factors. Understanding enzyme behavior under physiological and pathological conditions requires the identification of specific proteolytic activities, such as aminopeptidases, as able to degrade certain peptidergic hormones or neuropeptides. Another requirement is the isolation, purification and characterization of the enzymes involved. In addition, systematic studies are needed to determine each enzyme’s subcellular location, tissue distribution, and the influence of environmental factors such as diurnal rhythm, age, gender, diet, cholesterol, or steroids. Central and peripheral aminopeptidases may play a role in the control of blood pressure by coordinating the effect of the different peptides of the renin–angiotensin system cascade, acting through the AT1, AT2, and AT4 receptors. Our review of the available data suggests the hypothesis that cholesterol or steroids, particularly testosterone, significantly influence aminopeptidase activities, their substrate availability and consequently their functions. These observations may have relevant clinical implications for a better understanding of the pathophysiology of cardiovascular diseases, and thus for their treatment with aminopeptidase inhibitors.

Keywords

Aminopeptidases Cardiovascular diseases Cholesterol Dietary fat Environmental factors Gender Steroids Testosterone 

Abbreviations

ACE

Angiotensin-converting enzyme

Ang

Angiotensin

ArgAP

Arginyl aminopeptidase

AspAP

Aspartyl aminopeptidase

AVP

Arginine vasopressin

CysAP

Cystinyl aminopeptidase

GFR

Glomerular filtration rate

GluAP

Glutamyl aminopeptidase

HDL

High-density lipoproteins

LDL

Low-density lipoproteins

LeuAP

Leucyl aminopeptidase

MUFA

Monounsaturated fatty acids

PUFA

Polyunsaturated fatty acids

RAS

Renin–angiotensin system

SAFA

Saturated fatty acids

SHR

Spontaneously hypertensive rats

TNF

Tumor necrosis factor

Notes

Acknowledgments

This work was supported by the Junta de Andalucía through grants PAI CVI-221 (Peptides and Peptidases) and CTS 438 (Group for Neurological Diseases Research in Southern Spain). We thank K. Shashok for improving the use of English in the manuscript.

References

  1. 1.
    Banegas I, Prieto I, Vives F et al (2006) Brain aminopeptidases and hypertension. J Renin Angiotensin Aldosterone Syst 7:129–134PubMedGoogle Scholar
  2. 2.
    Barret AJ, Rawlings ND, Woessner JF (eds) (1998) Handbook of proteolytic enzymes. Academic Press, LondonGoogle Scholar
  3. 3.
    Wright JW, Harding JW (1997) Important role for angiotensin III and IV in the brain renin–angiotensin system. Brain Res Brain Res Rev 25:96–124PubMedGoogle Scholar
  4. 4.
    Reaux A, Fournie-Zaluski MC, David C et al (1999) Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci USA 96:13415–13420PubMedGoogle Scholar
  5. 5.
    Min L, Sim MK, Xu XG (2000) Effects of des-aspartate-angiotensin I on angiotensin II-induced incorporation of phenylalanine and thymidine in cultured rat cardiomyocytes and aortic smooth muscle cells. Regul Pept 95:93–97PubMedGoogle Scholar
  6. 6.
    Blair-West JR, Coghlan JP, Denton DA et al (1980) A dose-response comparison of the actions of angiotensin II and angiotensin III in sheep. J Endocrinol 87:409–417PubMedGoogle Scholar
  7. 7.
    Li Q, Feenstra M, Pfaffendorf M, Eijsman L, van Zwieten PA (1997) Comparative vasoconstrictor effects of angiotensin II, III, and IV in human isolate saphenous vein. J Cardiovasc Pharmacol 29:451–456PubMedGoogle Scholar
  8. 8.
    De Gasparo M, Whitebread S, Bottari SP, Levens NR (1994) Heterogeneity of angiotensin receptor subtypes. In: Timmermans PBMWM, Wexler RR (eds) Medicinal Chemistry of the Renin Angiotensin System. Elsevier Science BV, pp 269–294Google Scholar
  9. 9.
    Garcia-Sainz JA, Martinez-Alfaro M, Romero-Avila MT, Gonzalez-Espinosa C (1997) Characterization of the AT1 angiotensin II receptor expressed in guinea pig liver. J Endocrinol 154:133–138PubMedGoogle Scholar
  10. 10.
    Ruiz-Ortega M, Lorenzo O, Egido J (1998) Angiotensin III up-regulates genes involved in kidney damage in mesangial cells and renal interstitial fibroblast. Kidney Int Suppl 68:S41–S45PubMedGoogle Scholar
  11. 11.
    Wright JW, Mizutani S, Murray CE, Amir HZ, Harding JW (1990) Aminopeptidase-induced elevations and reductions in blood pressure in the spontaneously hypertensive rat. J Hypertens 8:969–974PubMedGoogle Scholar
  12. 12.
    Fournie-Zaluski MC, Fassot C, Valentin B et al (2004) Brain renin–angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci USA 101:7775–7780PubMedGoogle Scholar
  13. 13.
    Kokje RJ, Wilson WL, Brown TE et al (2007) Central pressor actions of aminopeptidase-resistant angiotensin II analogs: challenging the angiotensin III hypothesis. Hypertension 49:1328–1335PubMedGoogle Scholar
  14. 14.
    Chai SY, Fernando R, Peck G et al (2004) The angiotensin IV/AT4 receptor. Cell Mol Life Sci 61:2728–2737PubMedGoogle Scholar
  15. 15.
    Coleman JKM, Krebs LT, Hamilton TA et al (1998) Autoradiographic identification of kidney angiotensin IV binding sites and angiotensin-IV-induced renal cortical blood flow changes in rats. Peptides 19:269–277PubMedGoogle Scholar
  16. 16.
    Wright JW, Harding JW (2004) The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning and memory. Prog Neurobiol 72:263–293PubMedGoogle Scholar
  17. 17.
    Ruiz-Ortega M, Esteban V, Egido J (2007) The regulation of the inflammatory response through nuclear factor-kappab pathway by angiotensin IV extends the role of the renin angiotensin system in cardiovascular diseases. Trends Cardiovasc Med 17:19–25PubMedGoogle Scholar
  18. 18.
    Lim BC, Sim MK (1998) Actions of des-Asp angiotensin I on the aortic rings of the normo- and hypertensive rats. Clin Exp Hypertens 20:105–117PubMedGoogle Scholar
  19. 19.
    Sim MK, Yuan HT (1995) Effects of des-Asp-angiotensin I on the contractile action of angiotensin II and angiotensin III. Eur J Pharmacol 278:175–178PubMedGoogle Scholar
  20. 20.
    Sim MK, Min L (1998) Effects of des-Asp-angiotensin I on experimentally-induced cardiac hypertrophy in rats. Int J Cardiol 63:223–227PubMedGoogle Scholar
  21. 21.
    Wen Q, Sim MK, Tang FR (2004) Reduction of infarct size by orally administered des-aspartate-angiotensin I in the ischemic reperfused rat heart. Regul Pept 120:149–153PubMedGoogle Scholar
  22. 22.
    Wright JW, Harding JW (1995) Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regul Pept 59:269–295PubMedGoogle Scholar
  23. 23.
    Ramirez M, Arechaga G, Garcia S et al (1990) Mn2(+)-activated aspartate aminopeptidase activity, subcellular localization in young and adult rat brain. Brain Res 522:165–167PubMedGoogle Scholar
  24. 24.
    Arechaga G, Sanchez B, Alba F et al (1995) Subcellular distribution of soluble and membrane-bound Arg-beta-naphthylamide hydrolyzing activities in the developing and aged rat brain. Cell Mol Biol Res 41:369–375PubMedGoogle Scholar
  25. 25.
    Arechaga G, Sanchez B, Alba F et al (1996) Developmental changes of soluble and membrane-bound aspartate aminopeptidase activities in rat brain. J Physiol Biochem 52:149–154Google Scholar
  26. 26.
    Arechaga G, Martinez JM, Prieto I, Ramirez MJ, Alba F, Ramirez M (1999) Changes in membrane-bound leucine aminopeptidase activity during maturation and ageing of brain. Biochem Mol Biol Int 47:851–856PubMedGoogle Scholar
  27. 27.
    Giaquinto S (1988) Aging and the nervous system. John Wiley & Sons, New York, pp 34–52Google Scholar
  28. 28.
    Marks N, Lajtha A (1970) Developmental changes in peptide-bond hydrolases. In: Lajtha A (ed) Protein metabolism of the nervous system. Plenum, New York, pp 39–74Google Scholar
  29. 29.
    Alba F, Ramirez M, Cantalejo ES, Iribar C (1988) Aminopeptidase activity is asymmetrically distributed in selected zones of rat brain. Life Sci 43:935–939PubMedGoogle Scholar
  30. 30.
    Ramírez M, Sánchez B, Arechaga G, García S, Venzon D, De Gandarias JM (1992) Diurnal rhythm in brain Lysyl/Arginyl aminopeptidase activity, a bilateral study. Neurosci Res Commun 10:141–147Google Scholar
  31. 31.
    Alba F, Arenas JC, Iribar C, Ramirez M (1993) Regional distribution of soluble and membrane-bound aminopeptidase activities in rat brain. Brain Res Bull 31:393–396PubMedGoogle Scholar
  32. 32.
    Alba F, Ramirez M, Iribar C, Cantalejo ES, Osorio C (1986) Asymmetrical distribution of aminopeptidase activity in the cortex of rat brain. Brain Res 368:158–160PubMedGoogle Scholar
  33. 33.
    Ramírez M, Arechaga G, Sánchez B, García S, Venzon D, De Gandarias JM (1991) Diurnal variation of leucyl-aminopeptidase activity in the rat hypothalamus. Horm Metab Res 23:452–453PubMedGoogle Scholar
  34. 34.
    Banegas I, Prieto I, Alba F (2005) Angiotensinase activity is asymmetrically distributed in the amygdala, hippocampus and prefrontal cortex of the rat. Behav Brain Res 156:321–326PubMedGoogle Scholar
  35. 35.
    Ramirez M, Sanchez B, Arechaga G (1992) Daily rhythm of aspartate aminopeptidase activity in the retina, pineal gland and occipital cortex of the rat. Neuroendocrinology 56:926–929PubMedGoogle Scholar
  36. 36.
    Heywood LH (1980) Testosterone levels in the male laboratory rat: variation under experimental conditions. Int J Androl 3:519–529PubMedGoogle Scholar
  37. 37.
    Ramirez M, Prieto I, Vives F, de Gasparo M, Alba F (2004) Neuropeptides, neuropeptidases and brain asymmetry. Curr Protein Pept Sci 5:497–506PubMedGoogle Scholar
  38. 38.
    Song L, Wilk E, Wilk S, Healy DP (1993) Localization of immunoreactive glutamyl aminopeptidase in rat brain. I. Association with cerebral microvessels. Brain Res 606:286–294PubMedGoogle Scholar
  39. 39.
    Zini S, Masdehors P, Lenkei Z et al (1997) Aminopeptidase A: distribution in rat brain nuclei and increased activity in spontaneously hypertensive rats. Neuroscience 78:1187–1193PubMedGoogle Scholar
  40. 40.
    Ramirez M, Arechaga G, Sanchez B et al (1993) Developmental and ageing changes in aminopeptidase activities in selected tissues of the rat. Experientia 49:300–303PubMedGoogle Scholar
  41. 41.
    Vermeulen A, Rubens R, Verdonck L (1972) Testosterone secretion and metabolism in male senescence. J Clin Endocrinol Metab 34:730–735PubMedGoogle Scholar
  42. 42.
    De Gandarias JM, Ramirez M, Zulaica J, Casis L (1989) Aminopeptidase (arylamidase) activity in discrete areas of the rat brain: sex differences. Horm Metab Res 21:285–286PubMedGoogle Scholar
  43. 43.
    Mentzel S, Dijkman H, Van Son J, Koene R, Assmann K (1996) Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice. J Histochem Cytochem 44:445–461PubMedGoogle Scholar
  44. 44.
    Ramirez-Exposito MJ, Martinez JM, Prieto I, Alba F, Ramirez M (2000) Comparative distribution of glutamyl and aspartyl aminopeptidase activities in mouse organs. Horm Metab Res 32:161–163PubMedGoogle Scholar
  45. 45.
    Wilk S, Wilk E, Magnusson RP (1998) Purification, characterization, and cloning of a cytosolic aspartyl aminopeptidase. J Biol Chem 273:15961–15970PubMedGoogle Scholar
  46. 46.
    Millan MA, Aguilera G (1988) Angiotensin II receptors in testes. Endocrinology 122:1984–1990PubMedGoogle Scholar
  47. 47.
    Bouby N, Hus-Citharel A, Marchetti J, Bankir L, Corvol P, Llorens-Cortes C (1997) Expression of type 1 angiotensin II receptor subtypes and Ang II-induced calcium mobilization along the rat nephron. J Am Soc Nephrol 8:1658–1667PubMedGoogle Scholar
  48. 48.
    Song L, Healy DP (1999) Kidney aminopeptidase A and hypertension, Part II. Effects of angiotensin II. Hypertension 33:746–752PubMedGoogle Scholar
  49. 49.
    Martinez JM, Prieto I, Ramirez MJ (1998) Sex differences and age-related changes in human serum aminopeptidase A activity. Clin Chim Acta 274:53–61PubMedGoogle Scholar
  50. 50.
    Williams PT, Fortmann SP, Terry RB et al (1987) Associations of dietary fat, regional adiposity, and blood pressure in men. JAMA 257:3251–3256PubMedGoogle Scholar
  51. 51.
    Terpstra AH, van den Berg P, Jansen H, Beynen AC, van Tol A (2000) Decreasing dietary fat saturation lowers HDL–cholesterol and increases hepatic HDL binding in hamsters. Br J Nutr 83:151–159PubMedGoogle Scholar
  52. 52.
    Lahoz C, Alonso R, Ordovás JM, López-Farré A, de Oya M, Mata P (1997) Effects of dietary fat saturation on eicosanoid production, platelet aggregation and blood pressure. Eur J Clin Invest 27:780–787PubMedGoogle Scholar
  53. 53.
    Martínez JM, Prieto I, Ramírez MJ, Alba F, Ramírez M (1997) Cholesterol and steroids action on aminopeptidases. Bioch Soc Trans 25:113SGoogle Scholar
  54. 54.
    Arechaga G, Martinez JM, Prieto I et al (2001) Serum aminopeptidase A activity of mice is related to dietary fat saturation. J Nutr 131:1177–1179PubMedGoogle Scholar
  55. 55.
    Wilk S, Healy DP (1993) Glutamyl aminopeptidase (aminopeptidase A), the BP-1/6C3 antigen. Adv Neuroimmunol 3:195–207Google Scholar
  56. 56.
    Williams GH (1988) Converting-enzyme inhibitors in the treatment of hypertension. N Engl J Med 319:1517–1525PubMedCrossRefGoogle Scholar
  57. 57.
    Yaqoob P, Sherrington EJ, Jeffery NM et al (1995) Comparison of the effects of a range of dietary lipids upon serum and tissue lipid composition in the rat. Int J Biochem Cell Biol 27:297–310PubMedGoogle Scholar
  58. 58.
    Arechaga G, Prieto I, Segarra AB et al (2002) Dietary fatty acid composition affects aminopeptidase activities in the testes of mice. Int J Androl 25:113–118PubMedGoogle Scholar
  59. 59.
    Sharpe RM (1986) Paracrine control of the testis. Clin Endocrinol Metab 15:185–207PubMedGoogle Scholar
  60. 60.
    Surai PF, Noble RC, Sparks NH, Speake BK (2000) Effect of long-term supplementation with arachidonic or docosahexaenoic acids on sperm production in the broiler chicken. J Reprod Fertil 120:257–264PubMedGoogle Scholar
  61. 61.
    Sebokova E, Garg ML, Wierzbicki A, Thomson AB, Clandinin MT (1990) Alteration of the lipid composition of rat testicular plasma membranes by dietary (n − 3) fatty acids changes the responsiveness of Leydig cells and testosterone synthesis. J Nutr 120:610–618PubMedGoogle Scholar
  62. 62.
    Alba F, Arenas JC Lopez MA (1995) Comparison of soluble and membrane-bound pyroglutamyl peptidase I activities in rat brain tissues in the presence of detergents. Neuropeptides 29:103–107PubMedGoogle Scholar
  63. 63.
    Muriana FJG, Ruiz-Gutierrez V, Vazquez CM (1992) Influence of dietary cholesterol on polyunsaturated fatty acid composition, fluidity and membrane-bound enzymes in liver microsomes of rats fed olive and fish oil. Biochimie 74:551–556PubMedGoogle Scholar
  64. 64.
    Martinez JM, Ramirez MJ, Prieto I, Alba F, Ramirez M (1998) Sex differences and in vitro effects of steroids on serum aminopeptidase activities. Peptides 19:1637–1640PubMedGoogle Scholar
  65. 65.
    O’Mahony OA, Djahanbahkch O, Mahmood T, Puddefoot JR, Vinson GP (2000) Angiotensin II in human seminal fluid. Human Reproduction 15:1345–1349PubMedGoogle Scholar
  66. 66.
    DeLong M, Logan JL, Yong KC, Lien YH (2005) Renin–angiotensin blockade reduces serum free testosterone in middle-aged men on haemodialysis and correlates with erythropoietin resistance. Nephrol Dial Transplant 20:585–590PubMedGoogle Scholar
  67. 67.
    Segarra AB, Prieto I, Banegas I et al (2007) Dietary fat type influence sex steroid levels in serum of male rats. Andrology Update 1:83–91Google Scholar
  68. 68.
    De Gandarias JM, Casis L, Irazusta J, Echevarria E, Ramirez M (1988) Changes of aminopeptidase activity levels in serum and brain during the estrous cycle of the rat. Horm Metab Res 20:776PubMedGoogle Scholar
  69. 69.
    De Gandarias JM, Casis L, Irazusta J, Echevarria E, Arechaga G, Ramirez M (1989) Lys- and Tyr-arylamidase activities in serum and brain during the estrous cycle of the rat. Acta Endocrinol (Copenh) 121:671–673Google Scholar
  70. 70.
    Hurn PD, Macrae IM (2000) Estrogen as a neuroprotectant in stroke. J Cereb Blood Flow Metab 20:631–652PubMedCrossRefGoogle Scholar
  71. 71.
    Smith MC, Freeman ME, Neill JD (1975) The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96:219–226PubMedCrossRefGoogle Scholar
  72. 72.
    Prieto I, Arechaga G, Segarra AB, Alba F, de Gasparo M, Ramirez M (2002) Effects of dehydration on renal aminopeptidase activities in adult male and female rats. Regul Pept 106:27–32PubMedGoogle Scholar
  73. 73.
    Prieto I, Martinez JM, Ramirez MJ et al (2001) Aminopeptidase activities after water deprivation in male and female rats. Regul Pept 101:189–194PubMedGoogle Scholar
  74. 74.
    Sim MK, Lim BC (1997) Determination of aminopeptidase X activity in tissues of normo- and hypertensive rats by capillary electrophoresis. J Chromatogr B Biomed Sci Appl 697:259–262PubMedGoogle Scholar
  75. 75.
    Handa RK, Krebs LT, Harding JW, Handa SE (1998) The angiotensin IV-AT4 receptor system in the rats kidney. Am J Physiol 274:F290–F299PubMedGoogle Scholar
  76. 76.
    Hamilton TA, Handa RK, Harding JW, Wright JW (2001) A role for Ang IV/AT4 system in mediating natriuresis in the rat. Peptides 22:935–944PubMedGoogle Scholar
  77. 77.
    Wang YX, Crofton JT, Miller J (1996) Sex difference in urinary concentrating ability of rats with water deprivation. Am J Physiol 270:R550–555PubMedGoogle Scholar
  78. 78.
    Steiner M, Phillips MI (1988) Renal tubular vasopressin receptors downregulated by dehydration. Am J Physiol 254:C404–410PubMedGoogle Scholar
  79. 79.
    Ruiz-Opazo N (1998) Identification of a novel dual angiotensin II/vasopressin receptor. Nephrologie 19:417–420PubMedGoogle Scholar
  80. 80.
    Swenson KL, Sladex CD (1997) Gonadal steroid modulation of vasopressin secretion in response to osmotic stimulation. Endocrinology 138:2089–2097PubMedGoogle Scholar
  81. 81.
    Sanderink GJ, Artur Y, Schiele F, Gueguen R, Siest G (1988) Alanine aminopeptidase in serum: biological variations and reference limits. Clin Chem 34:1422–1426PubMedGoogle Scholar
  82. 82.
    Pinto E (2007) Blood pressure and ageing. Postgrad Med J 83:109–114PubMedGoogle Scholar
  83. 83.
    Meade TW, Imeson JD, Gordon D, Peart WS (1983) The epidemiology of plasma renin. Clin Sci 64:273–280PubMedGoogle Scholar
  84. 84.
    Duggan J, Kilfeather S, O’Brien E, Malley K, Nussberger J (1992) Effects of ageing and hypertension on plasma angiotensin II and platelet angiotensin II receptor density. Am J Hypertens 5:687–693PubMedGoogle Scholar
  85. 85.
    Jung YS, Lee S, Shin HS (1996) Effects of age on angiotensin II response and antagonistic activity of losartan in rat aorta and liver. Arch Pharmacol Res 19:462–468Google Scholar
  86. 86.
    Prieto I, Arechaga G, Ramirez-Exposito MJ, de Gasparo M, Martinez-Martos JM, Ramirez M (2002) Aminopeptidases in the gonads of male and female rats. Fertil Steril 77:802–804PubMedGoogle Scholar
  87. 87.
    Beynon RJ, Bond JS (1994) Proteolytic enzymes, a practical approach. Oxford University Press, OxfordGoogle Scholar
  88. 88.
    Hooper NM, Lendeckel U (2004) Aminopeptidases in biology and disease. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  89. 89.
    Inguimbert N, Coric P, Dhotel H, Bonnard E et al (2005) Synthesis and in vitro activities of new non-peptidic APA inhibitors. J Pept Res 65:175–188PubMedGoogle Scholar
  90. 90.
    Banegas I, Prieto I, Vives F et al (2004) Plasma aminopeptidase activities in rats after left and right intrastriatal administration of 6-hydroxydopamine. Neuroendocrinology 80:219–224PubMedGoogle Scholar
  91. 91.
    Turner AJ, Matsas R, Kenny AJ (1985) Are there neuropeptide-specific peptidases? Biochem Pharmacol 34:1347–56PubMedGoogle Scholar
  92. 92.
    White JD, Stewart KD, Krause JE, McKelvy JF (1985) Biochemistry of peptide-secreting neurons. Physiol Rev 65:553–606PubMedGoogle Scholar
  93. 93.
    Kannel WB (2000) Incidence and epidemiology of heart failure. Heart Fail Rev 5:167–173PubMedGoogle Scholar
  94. 94.
    Smith SC Jr, Allen J, Blair SN et al (2006) AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update: endorsed by the National Heart, Lung, and Blood Institute. Circulation 113:2363–2372PubMedGoogle Scholar
  95. 95.
    Cho Y, Somer BG, Amatya A (1999) Natriuretic peptides and their therapeutic potential. Heart Dis 1:305–328PubMedGoogle Scholar
  96. 96.
    Malkin CJ, Pugh PJ, Morris PD et al (2004) Testosterone replacement in hypogonadal men with angina improves ischaemic threshold and quality of life. Heart 90:871–876PubMedGoogle Scholar
  97. 97.
    Kapoor D, Goodwin E, Channer KS, Jones TH (2006) Testosterone replacement therapy improves insulin resistance, glycaemia control, visceral adiposity and hypercholesterolaemia in hypogonadal men with type 2 diabetes. Eur J Endocrinol 154:899–906PubMedGoogle Scholar
  98. 98.
    Ottenweller JE, Tapp WN, Creighton D, Natelson BH (1988) Aging, stress and chronic disease interact to suppress plasma testosterone in Syrian hamsters. J Gerontol 43:M175–180PubMedGoogle Scholar
  99. 99.
    Alexandersen P, Haarbo J, Byrjalsen I, Lawaetz H, Christiansen C (1999) Natural androgens inhibit male atherosclerosis. A study in castrated, cholesterol-fed rabbits. Circ Res 84:813–819PubMedGoogle Scholar
  100. 100.
    Sheuer J, Malhotra A, Schaible TF, Capasso J (1987) Effects of gonadectomy and hormonal replacement on rat hearts. Circ Res 61:12–19Google Scholar
  101. 101.
    Anker SD, Chua TP, Ponikowski P et al (1997) Hormonal changes and catabolic/anabolic imbalance in chronic heart failure and their importance for cardiac cachexia. Circulation 96:526–534PubMedGoogle Scholar
  102. 102.
    English KM, Steeds R, Jones TH, Channer KS (1997) Testosterone and coronary heart disease: is there a link? Q J Med 90:787–791Google Scholar
  103. 103.
    Smeets L, Legros JJ (2004) The heart and androgens. Ann Endocrinol (Paris) 65:163–170Google Scholar
  104. 104.
    Jones RD, Hugh Jones T, Channer KS (2004) The influence of testosterone upon vascular reactivity. Eur J Endocrinol 151:29–37PubMedGoogle Scholar
  105. 105.
    Malkin CJ, Pugh PJ, Jones RD, Kapoor D, Channer KS, Jones TH (2004) The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. J Clin Endocrinol Metab 89:3313–3318PubMedGoogle Scholar
  106. 106.
    Haddad RM, Kennedy CC, Caples SM et al (2007) Testosterone and cardiovascular risk in men: a systematic review and meta-analysis of randomized placebo-controlled trials. Mayo Clin Proc 82:29–39PubMedGoogle Scholar
  107. 107.
    Wright JW, Amir HZ, Murray CE (1991) Use of aminopeptidase M as a hypotensive agent in spontaneously hypertensive rats. Brain Res Bull 27:545–551PubMedGoogle Scholar
  108. 108.
    Ramirez M, Prieto I, Martinez JM, Vargas F, Alba F (1997) Renal aminopeptidase activities in animal models of hypertension. Regul Pept 72:155–159PubMedGoogle Scholar
  109. 109.
    Prieto I, Martinez JM, Hermoso F et al (2001) Effect of valsartan on angiotensin II- and vasopressin-degrading activities in the kidney of normotensive and hypertensive rats. Horm Metab Res 33:559–563PubMedGoogle Scholar
  110. 110.
    Prieto I, Hermoso F, de Gasparo et al (2003) M Angiotensinase activities in the kidney of renovascular hypertensive rats. Peptides 24:755–760PubMedGoogle Scholar
  111. 111.
    Prieto I, Hermoso F, de Gasparo M et al (2003) Aminopeptidase activity in renovascular hypertension. Med Sci Monit 9:BR31–BR36PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Manuel Ramírez
    • 1
  • Isabel Prieto
    • 1
  • Francisco Alba
    • 2
  • Francisco Vives
    • 2
  • Inmaculada Banegas
    • 1
  • Marc de Gasparo
    • 3
  1. 1.Unit of Physiology, Department of Health SciencesUniversity of JaénJaenSpain
  2. 2.Institute of Neurosciences of GranadaUniversity of GranadaGranadaSpain
  3. 3.MG Consulting Co.RossemaisonSwitzerland

Personalised recommendations