Heart Failure Reviews

, Volume 13, Issue 3, pp 321–337

Involvement of insulin-regulated aminopeptidase in the effects of the renin–angiotensin fragment angiotensin IV: a review

  • Bart Stragier
  • Dimitri De Bundel
  • Sophie Sarre
  • Ilse Smolders
  • Georges Vauquelin
  • Alain Dupont
  • Yvette Michotte
  • Patrick Vanderheyden
Article

Abstract

For decades, angiotensin (Ang) II was considered as the end product and the only bioactive peptide of the renin–angiotensin system (RAS). However, later studies revealed biological activity for other Ang fragments. Amongst those, Ang IV has drawn a lot of attention since it exerts a wide range of central and peripheral effects including the ability to enhance learning and memory recall, anticonvulsant and anti-epileptogenic properties, protection against cerebral ischemia, activity at the vascular level and an involvement in atherogenesis. Some of these effects are AT1 receptor dependent but others most likely result from the binding of Ang IV to insulin-regulated aminopeptidase (IRAP) although the exact mechanism(s) of action that mediate the Ang IV-induced effects following this binding are until now not fully known. Nevertheless, three hypotheses have been put forward: since Ang IV is an inhibitor of the catalytic activity of IRAP, its in vivo effects might result from a build-up of IRAP’s neuropeptide substrates. Second, IRAP is co-localized with the glucose transporter GLUT4 in several tissue types and therefore, Ang IV might interact with the uptake of glucose. A final and more intriguing hypothesis ascribes a receptor function to IRAP and hence an agonist role to Ang IV. Taken together, it is clear that further work is required to clarify the mechanism of action of Ang IV. On the other hand, a wide range of studies have made it clear that IRAP might become an important target for drug development against different pathologies such as Alzheimer’s disease, epilepsy and ischemia.

Keywords

Angiotensin IV Insulin-regulated aminopeptidase Memory Epilepsy 

References

  1. 1.
    Robertson JIS (1993) Renin angiotensin: a historical review. In: Robertson JS, Nicholls M (eds) The renin-angiotensin system. Gower Medical Publishing, LondonGoogle Scholar
  2. 2.
    Saavedra JM (1999) Emerging features of brain angiotensin receptors. Regul Pept 85:31–45PubMedGoogle Scholar
  3. 3.
    Allen AM, Zhuo J, Menselsohn FAO (2000) The physiological role of AT1 receptors. Am J Hypertens 13:31S–38SPubMedGoogle Scholar
  4. 4.
    de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472PubMedGoogle Scholar
  5. 5.
    Carey RM, Wang ZQ, Siragy HM (2000) Update: role of the angiotensin type-2 (AT(2)) receptor in blood pressure regulation. Curr Hypertens Rep 2:198–201PubMedGoogle Scholar
  6. 6.
    Ardaillou R (1997) Active fragments of angiotensin II: enzymatic pathways of synthesis and biological effects. Curr Opin Nephrol Hypertens 6:28–34PubMedGoogle Scholar
  7. 7.
    Ardaillou R, Chansel D (1998) Angiotensin II fragments: effects and pathways of synthesis. In: Ulfendahl HR, Aurell M (eds) Wenner-Gren intnl series, vol 74, chapter 4. Portland Press Ltd., LondonGoogle Scholar
  8. 8.
    Chansel D, Ardaillou R (1998) Active metabolites derived from angiotensin II. Nephrology 19:427–432Google Scholar
  9. 9.
    Santos RAS, Campagnole-Santos MJ, Andrade SP (2000) Angiotensin-(1–7): an update. Regul Pept 28:45–62Google Scholar
  10. 10.
    Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243PubMedGoogle Scholar
  11. 11.
    Mustafa T, Lee J, Chai S, Albiston AL, McDowall SG, Mendelsohn FAO (2001a) Bioactive angiotensin peptides: focus on angiotensin IV. J Renin Angiotensin Aldosterone Syst 2:205–210PubMedGoogle Scholar
  12. 12.
    Stragier B, Sarre S, Vanderheyden PML, Vauquelin G, Fournie-Zalouski MC, Ebinger G, Michotte Y (2004) Metabolism of angiotensin II is required for its in vivo effect on dopamine release in the striatum of the rat. J Neurochem 90:1251–1257PubMedGoogle Scholar
  13. 13.
    Stragier B, Hristova I, Sarre S, Ebinger G, Michotte Y (2005) In vivo characterization of the angiotensin-(1–7)-induced dopamine and gamma-aminobutyric acid release in the striatum of the rat. Eur J Neurosci 22:658–664PubMedGoogle Scholar
  14. 14.
    Stragier B, Clinckers R, Meurs A, De Bundel D, Sarre S, Ebinger G, Michotte Y, Smolders I (2006) Involvement of the somatostatin-2 receptor in the anti-convulsant effect of angiotensin IV against pilocarpine-induced limbic seizures in rats. J Neurochem 98:100–113Google Scholar
  15. 15.
    Hollenberg NK, Fisher NDL, Price DA (1998) Pathways for angiotensin II generation in intact human tissue. Evidence from comparative pharmacological interruption of the renin system. Hypertension 32:387–392PubMedGoogle Scholar
  16. 16.
    Fisher-Ferraro C, Nahmod VE, Goldstein DJ, Finkielman S (1971) Angiotensin and renin in the rat and dog brain. J Exp Med 133:353–361Google Scholar
  17. 17.
    Ardaillou R, Chansel D (1997) Synthesis and effects of active fragments of angiotensin II. Kidney Int 52:1458–1468PubMedGoogle Scholar
  18. 18.
    Ganten D, Speck G (1978) The brain renin–angiotensin system: a model for the synthesis of peptides in the brain. Biochem Pharmacol 27:2379–2389PubMedGoogle Scholar
  19. 19.
    Phillips MI, Weyhenmeyer JA, Felix D, Ganten D (1979) Evidence for an endogenous brain renin–angiotensin system. Fed Proc 38:2260–2266PubMedGoogle Scholar
  20. 20.
    Phillips MI (1987) Functions of angiotensin in the central nervous system. Ann Rev Physiol 49:413–435Google Scholar
  21. 21.
    Phillips MI, Speakman EA, Kimura B (1993) Levels of angiotensin and molecular biology of the tissue renin angiotensin systems. Regul Pept 43:1–20PubMedGoogle Scholar
  22. 22.
    Ganten D, Hermann K, Bayer C, Unger T, Lang RE (1983) Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science Washington DC 221:869–871Google Scholar
  23. 23.
    Ganong WF (1984) The brain renin–angiotensin system. Ann Rev Physiol 46:17–31Google Scholar
  24. 24.
    Moffett RB (1987) Purification of multiple forms of plasma angiotensinogen: molecular weight and charge heterogeneity. Biochim Biophys Acta 912:1–8PubMedGoogle Scholar
  25. 25.
    Printz MP (1988) Regulation of the brain angiotensin system: a thesis of multicellular involvement. Clin Exp Hypertens 10:17–35Google Scholar
  26. 26.
    Lynch KR, Hawelu-Johnson CL, Guyenet PG (1987) Localization of brain angiotensinogen mRNA by hybridization histochemistry. Brain Res 388:149–158PubMedGoogle Scholar
  27. 27.
    Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR (1988) Astrocytes synthesize angiotensinogen in brain. Science 242:1444–1446PubMedGoogle Scholar
  28. 28.
    Kumar A, Rassoli A, Raizada MK (1988) Angiotensinogen gene expression in neuronal and glial cells in primary cultures of rat brain. J Neurosci Res 19:287–290PubMedGoogle Scholar
  29. 29.
    Yang G, Gray TS, Sigmund CD, Cassell MD (1999) The angiotensinogen gene is expressed in both astrocytes and neurons in murine central nervous system. Brain Res 817:123–131PubMedGoogle Scholar
  30. 30.
    Ganong WF (1993) Blood, pituitary and brain renin–angiotensin systems and regulation of secretion of anterior pituitary gland. Front Neuroendocrinol 14:233–249PubMedGoogle Scholar
  31. 31.
    Makrides S, Mulinari R, Zannis V, Gavras H (1988) Regulation of renin gene expression in hypertensive rats. Hypertension 12:405–410PubMedGoogle Scholar
  32. 32.
    Paul M, Wagner D, Mezger R, Ganten D, Lang R, Suzuki F, Murakami K, Burbach J, Ludwig G (1988) Quantification of renin mRNA in various mouse tissues by a novel solution hybridization assay. J Hypertens 6:247–252PubMedGoogle Scholar
  33. 33.
    Samani N, Swales J, Brammar W (1988) Expression of the renin gene in extra-renal tissues of the rat. Biochem J 253:907–910PubMedGoogle Scholar
  34. 34.
    Suzuki F, Ludwig G, Hellmann W, Paul M, Lindpainter K, Murakami K, Ganten D (1988) Renin gene expression in rat tissues: a new quantitative assay method for rat renin mRNA using synthetic cRNA. Clin Exp Hypertens A10:345–359Google Scholar
  35. 35.
    Miller C, Carter A, Brooks J, Lovell Badge R, Brammar W (1989) Differential extra-renal expression of the mouse renin genes. Nucleic Acids Res 17:3117–3128PubMedGoogle Scholar
  36. 36.
    Tada M, Fukamizu A, Seo M, Takahashi S, Murakami K (1989) Renin expression in the kidney and brain is reciprocally controlled by captopril. Biochem Biophys Res Commun 159:1065–1071PubMedGoogle Scholar
  37. 37.
    Iwai N, Inagami R (1992) Quantitative analysis of renin gene expression in extrarenal tissues by polymerase chain reaction method. J Hypertens 10:717–724PubMedGoogle Scholar
  38. 38.
    Okura T, Kitami Y, Wakamiya R, Marumoto K, Iwata T, Hiwada K (1992) Renal and extra-renal renin gene expression in spontaneously hypertensive rats. Blood Press 3:6–11Google Scholar
  39. 39.
    Baltatu O, Lippoldt A, Hansson A, Ganten D, Bader M (1998) Local renin–angiotensin system in the pineal gland. Mol Brain Res 54:237–242PubMedGoogle Scholar
  40. 40.
    Schiller P, Demassieux S, Boucher R (1976) Substrate specificity of tonin from rat submaxillary gland. Circ Res 39:629–632PubMedGoogle Scholar
  41. 41.
    Klickstein LB, Kämpfer CE, Wintroub WU (1982) The granulocyte–angiotensin system. Angiotensin I-converting activity of cathepsin. G J Biol Chem 257:15042–15046Google Scholar
  42. 42.
    Urata H, Kinoshita A, Perez D, Misono K, Bumpus F, Graham R, Husain A (1991) Cloning of the gene and cDNA for human heart chymase. J Biol Chem 266:17173–17179PubMedGoogle Scholar
  43. 43.
    Baltatu O, Nishimura H, Hoffmann S, Stoltenburg G, Haulica I, Lippoldt A, Ganten D, Urata H (1997) High levels of human chymase expression in the pineal and pituitary glands. Brain Res 752:269–278PubMedGoogle Scholar
  44. 44.
    Zini S, Fournié-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C (1996) Identification of metabolic pathways of brain angiotensin II and III using aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci 93:11968–11973PubMedGoogle Scholar
  45. 45.
    Wright JW, Harding JW (1997) Important role for angiotensin III and IV in the brain renin–angiotensin system. Brain Res Rev 25:96–124PubMedGoogle Scholar
  46. 46.
    Lanckmans K, Sarre S, Smolders I, Michotte Y (2007a) Use of a structural analogue versus a stable isotope labeled internal standard for the quantification of angiotensin IV in rat brain dialysates using nano-liquid. Rapid Comm Mass Spectrom 21:1187–1195Google Scholar
  47. 47.
    Lanckmans K, Stragier B, Sarre S, Smolders I, Michotte Y (2007b) Nano LC-MS/MS for the monitoring of angiotensin IV in rat brain microdialysates: limitations and possibilities. J Sep Sci 30:2217–2224PubMedGoogle Scholar
  48. 48.
    Wang JM, Llona I, De Potter WP (1994) Receptor-mediated internalization of angiotensin II in bovine adrenal medullary chromaffin cells in primary culture. Regul Pept 53:77–86PubMedGoogle Scholar
  49. 49.
    Gaborik Z, Szaszak M, Szidonya L, Balla B, Paku S, Catt KJ, Clark AJ, Hunyady L (2001) Beta-arrestin- and dynamin-dependent endocytosis of the AT1 angiotensin receptor. Mol Pharmacol 59:239–247PubMedGoogle Scholar
  50. 50.
    Gaborik Z, Jagadeesh G, Zhang M, Spat A, Catt KJ, Hunyady L (2003) The role of a conserved region of the second intracellular loop in AT1 angiotensin receptor activation and signaling. Endocrinology 144:2220–2228PubMedGoogle Scholar
  51. 51.
    Szaszak M, Gaborik Z, Turu G, McPherson PS, Clark AJ, Catt KJ, Hunyady L (2002) Role of the proline-rich domain of dynamin-2 and its interactions with Src homology 3 domains during endocytosis of the AT1 angiotensin receptor. J Biol Chem 277:21650–21656PubMedGoogle Scholar
  52. 52.
    Wang JM, Baudhuin P, Courtoy PJ, De Potter W (1995) Conversion of angiotensin II into active fragments by an endosomal pathway in bovine adrenal medullary cells in primary culture. Endocrinology 136:5274–5282PubMedGoogle Scholar
  53. 53.
    Dale LB, Seachrist JL, Babwah AV, Ferguson SS (2004) Regulation of angiotensin II type 1A receptor intracellular retention, degradation, and recycling by Rab5, Rab7, and Rab11 GTPases. J Biol Chem 279:13110–13118PubMedGoogle Scholar
  54. 54.
    Song L, Ye M, Troyanovskaya M, Wilk E, Wilk S, Healy DP (1994) Rat kidney glutamyl aminopeptidase (aminopeptidase A): molecular identity and cellular localization. Am J Physiol 267:F546–557PubMedGoogle Scholar
  55. 55.
    Jardinaud F, Banisadr G, Noble F, Melik-Parsadaniantz S, Chen H, Dugave C, Laplace H, Rostene W, Fournie-Zaluski MC, Roques BP, Popovici T (2004) Ontogenic and adult whole body distribution of aminopeptidase N in rat investigated by in vitro autoradiography. Biochimie 86:105–113Google Scholar
  56. 56.
    Zhuo J, Moeller I, Jenkins T, Chai SY, Allen AM, Ohishi M, Mendelsohn FA (1998) Mapping tissue angiotensin-converting enzyme and angiotensin AT1, AT2 and AT4 receptors. J Hypertens 16:2027–2037PubMedGoogle Scholar
  57. 57.
    Diet F, Pratt RE, Berry GJ, Momose N, Gibbons GH, Dzau VJ (1996) Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 94:2756–2767PubMedGoogle Scholar
  58. 58.
    Schieffer B, Schieffer E, Hilfiker-Kleiner D, Hilfiker A, Kovanen PT, Kaartinen M, Nussberger J, Harringer W, Drexler H (2000) Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 101:1372–1378PubMedGoogle Scholar
  59. 59.
    Reaux A, de Mota N, Zini S, Cadel S, Fournié-Zaluski MC, Roques BP, Corvol P, Llorens-Cortes C (1999) PC18, a specific aminopeptidase N inhibitor, induces vasopressin release by increasing the half-life of brain angiotensin III. Neuroendocinology 69:370–376Google Scholar
  60. 60.
    Stragier B, Demaegdt H, De Bundel D, Smolders I, Sarre S, Vanderheyden P, Vauquelin G, Ebinger G, Michotte Y (2007) The effect of angiotensin IV on dopamine release in the striatum is not mediated via inhibition of aminopeptidase N. Brain Res 1131:97–105PubMedGoogle Scholar
  61. 61.
    Braszko JJ, Kupreyszewski G, Witczuk N, Wisniewski K (1988) Angiotensin II (3–8) heptapeptide affects motor activity, performance of passive avoidance and a conditioned avoidance response in rats. Neuroscience 27:777–783PubMedGoogle Scholar
  62. 62.
    Wright JW, Miller-Wing AV, Shaffer MJ, Higginson C, Wright DE, Hanesworth JM, Harding JW (1993) Angiotensin II (3–8) (Ang IV) hippocampal binding: potential role in the facilitation of memory. Brain Res Bull 32:497–502PubMedGoogle Scholar
  63. 63.
    Tchekalarova J, Kambourova T, Georgiev V (2001a) Interaction between angiotensin IV and adenosine A(I) receptor related drugs in passive avoidance conditioning in rats. Behav Brain Res 123:113–116PubMedGoogle Scholar
  64. 64.
    Braszko JJ (2004) Involvement of D1 dopamine receptors in the cognitive effects of angiotensin IV and des-Phe6 angiotensin IV. Peptides 25:1195–1203PubMedGoogle Scholar
  65. 65.
    Braszko JJ (2006) D2 dopamine receptor blockade prevents cognitive effects of Ang IV and des-Phe6 Ang IV. Physiol Behav 88:152–159PubMedGoogle Scholar
  66. 66.
    Lee J, Albiston AL, Allen AM, Mendelsohn FAO, Ping SE, Barrett GL, Murphy M, Morris MJ, McDowall SG, Chai SY (2004) Effect of i.c.v. injection of AT4 receptor ligands, Nle1-angiotensin IV and LVV-hemorphin-7, on spatial learning in rats. Neuroscience 124:341–349PubMedGoogle Scholar
  67. 67.
    Pederson ES, Harding JW, Wright JW (1998) Attenuation of scopolamine-induced spatial learning impairments by an angiotensin IV analog. Regul Pept 74:97–103PubMedGoogle Scholar
  68. 68.
    Pederson ES, Krishnan R, Hardin JW, Wright JW (2001) A role for the angiotensin AT4 receptor subtype in overcoming scopolamine-induced spatial memory deficits. Regul Pept 102:147–156PubMedGoogle Scholar
  69. 69.
    Albiston AL, Pederson ES, Burns P, Purcell B, Wright JW, Harding JW, Mendelsohn FAO, Weisinger RS, Chai SY (2004) Attenuation of scopolamine-induced learning deficits by LVV-haemorphin-7 in rats in the passive avoidance and water maze paradigms. Behav Brain Res 154:239–243PubMedCrossRefGoogle Scholar
  70. 70.
    Olson ML, Olson EA, Qualls JH, Stratton JJ, Harding JW, Wright JW (2004) Norleucine1-Angiotensin IV alleviates mecamylamine-induced spatial memory deficits. Peptides 25:233–241PubMedGoogle Scholar
  71. 71.
    Borawska M, Kupryszewski G, Witczuk B, Wisniewski K (1989) Effects of angiotensin II and its fragments: angiotensin II(3–8)-hexapeptide and angiotensin II(4–8)-pentapeptide on retrieval in passive avoidance situation in rats chronically treated with ethanol. Pol J Pharmacol Pharm 41:227–230PubMedGoogle Scholar
  72. 72.
    Wisniewski K, Borawska M, Car H (1993) The effect of angiotensin II and its fragments on post-alcohol impairment of learning and memory. Pol J Pharmacol 45:23–29PubMedGoogle Scholar
  73. 73.
    Wright JW, Clemens JA, Panetta JA, Smalstig EB, Weatherly LA, Kramar EA, Pederson ES, Mungall BH, Harding JW (1996) Effects of LY231617 and angiotensin IV on ischemia-induced deficits in circular water maze and passive avoidance performance in rats. Brain Res 717:1–11PubMedGoogle Scholar
  74. 74.
    Wright JW, Stubley L, Pedersen ES, Kramar EA, Hanesworth JM, Harding JW (1999) Contributions to the brain angiotensin IV-AT4 receptor subtype system to spatial learning. J Neurosci 19:3952–3961PubMedGoogle Scholar
  75. 75.
    Kramár EA, Armstrong DL, Ikeda S, Wayner MJ, Harding JW, Wright JW (2001) The effects of angiotensin IV analogs on long-term potentiation within the CA1 region of the hippocampus in vitro. Brain Res 897:114–121PubMedGoogle Scholar
  76. 76.
    Wayner MJAD, Phelix CF, Wright JW, Harding JW (2001) Angiotensin IV enhances LTP in rat dentate gyrus in vivo. Peptides 22:1403–1414PubMedGoogle Scholar
  77. 77.
    Lee J, Chai S, Mendelsohn FAO, Morris MJ, Allen AM (2001a) Potentiation of cholinergic transmission in the rat hippocampus by angiotensin IV and LVV-hemorphin-7. Neuropharmacology 40:618–623PubMedGoogle Scholar
  78. 78.
    De Bundel D, Ceulemans A-G, Smolders I, Sarre S, Ebinger G, Michotte Y (2006) Effects of angiotensin IV and LVV-haemorphin-7 on drinking behavior and hippocampal acetylcholine levels in vivo. Abstract presented at the Gordon research conference on Angiotensin. Aussois, FranceGoogle Scholar
  79. 79.
    Maubach K (2003) GABA(A) receptor subtype selective cognition enhancers. Curr Drug Targets CNS Neurol Disord 2:233–239PubMedGoogle Scholar
  80. 80.
    Myhrer T (2003) Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Rev 41:268–287PubMedGoogle Scholar
  81. 81.
    Tchekalarova J, Kambourova T, Georgiev V (2001b) Effects of angiotensin III and angiotensin IV on pentylenetetrazol seizure susceptibility (threshold and kindling): interaction with adenosine A(1) receptors. Brain Res Bull 56:87–91PubMedGoogle Scholar
  82. 82.
    Tchekalarova J, Georgiev V (2005a) Angiotensin peptides modulatory system: how is it implicated in the control of seizure susceptibility? Life Sci 76:955–970PubMedGoogle Scholar
  83. 83.
    Tchekalarova J, Sotiriou E, Georgiev V, Kostopoulos G, Angelatou F (2005b) Up-regulation of adenosine A1 receptor binding in pentylenetetrazol kindling in mice: effects of angiotensin IV. Brain Res 1032:94–103PubMedGoogle Scholar
  84. 84.
    Biggs CS, Pearce BR, Fowler LJ, Whitton PS (1992) Regional effects of sodium valproate on extracellular concentrations of 5-hydroxytryptamine, dopamine, and their metabolites in the rat brain: an in vivo microdialysis study. J Neurochem 59:1702–1708PubMedGoogle Scholar
  85. 85.
    Yan QS, Mishra PK, Burger RL, Bettendorf AF, Jobe PC, Dailey JW (1992) Evidence that carbamazepine and antiepilepsirine may produce a component of their anticonvulsant effects by activating serotonergic neurons in genetically epilepsy-prone rats. J Pharmacol Exp Ther 261:652–659PubMedGoogle Scholar
  86. 86.
    Baf MH, Subhash MN, Lakshmana KM, Rao BS (1994a) Sodium valproate induced alterations in monoamine levels in different regions of the rat brain. Neurochem Int 24:67–72PubMedGoogle Scholar
  87. 87.
    Baf MH, Subhash MN, Lakshmana KM, Rao BS (1994b) Alterations in monoamine levels in discrete regions of rat brain after chronic administration of carbamazepine. Neurochem Res 19:1139–1143PubMedGoogle Scholar
  88. 88.
    Dailey JW, Reith ME, Yan QS, Li MY, Jobe PC (1997) Carbamazepine increases extracellular serotonin concentration: lack of antagonism by tetrodotoxin or zero Ca2+. Eur J Pharmacol 328:153–162PubMedGoogle Scholar
  89. 89.
    Smolders I, Khan GM, Lindekens H, Prikken S, Marvin CA, Manil J, Ebinger G, Michotte Y (1997) Effectiveness of vigabatrin against focally evoked pilocarpine-induced seizures and concomitant changes in extracellular hippocampal and cerebellar glutamate, gamma-aminobutyric acid and dopamine levels, a microdialysis-electrocorticography study in freely moving rats. J Pharmacol Exp Ther 283:1239–1248PubMedGoogle Scholar
  90. 90.
    Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2005b) Hippocampal dopamine and serotonin elevations as pharmacodynamic markers for the anticonvulsant efficacy of oxcarbazepine and 10,11-dihydro-10-hydroxycarbamazepine. Neurosci Lett 390:48–53PubMedGoogle Scholar
  91. 91.
    Clinckers R, Smolders I, Meurs A, Ebinger G, Michotte Y (2004) Anticonvulsant action of hippocampal dopamine and serotonin is independently mediated by D2 and 5-HT1A receptors. J Neurochem 89:834–843PubMedGoogle Scholar
  92. 92.
    Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 38:277–301PubMedGoogle Scholar
  93. 93.
    Kaliszewski C, Fernandez LA, Wicke JD (1988) Differences in mortality rate between abrupt and progressive carotid ligation in the gerbil: role of endogenous angiotensin II. J Cereb Blood Flow Metab 8:149–154PubMedGoogle Scholar
  94. 94.
    Fernandez LA, Spencer DD, Kaczmar T Jr (1986) Angiotensin II decreases mortality rate in gerbils with unilateral carotid ligation. Stroke 17:82–85PubMedGoogle Scholar
  95. 95.
    Fernandez LA, Caride VJ, Stromberg C, Naveri L, Wicke JD (1994) Angiotensin AT2 receptor stimulation increases survival in gerbils with abrupt unilateral carotid ligation. J Cardiovasc Pharmacol 24:937–940PubMedCrossRefGoogle Scholar
  96. 96.
    Kagiyama T, Kagiyama S, Phillips MI (2003) Expression of angiotensin type 1 and 2 receptors in brain after transient middle cerebral artery occlusion in rats. Regul Pept 110:241–247PubMedGoogle Scholar
  97. 97.
    Iwai M, Liu HW, Chen R, Ide A, Okamoto S, Hata R, Sakanaka M, Shiuchi T, Horiuchi M (2004) Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation 110:843–848PubMedGoogle Scholar
  98. 98.
    Li J, Culman J, Hortnagl H, Zhao Y, Gerova N, Timm M, Blume A, Zimmermann M, Seidel K, Dirnagl U, Unger T (2005) Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J 19:617–619PubMedGoogle Scholar
  99. 99.
    Faure S, Chapot R, Tallet D, Javellaud J, Achard JM, Oudart N (2006b) Cerebroprotective effect of angiotensin IV in experimental ischemic stroke in the rat mediated by AT(4) receptors. J Physiol Pharmacol 57:329–342PubMedGoogle Scholar
  100. 100.
    Kakinuma Y, Hama H, Sugiyama F, Goto K, Murakami K, Fukamizu A (1997) Anti-apoptotic action of angiotensin fragments to neuronal cells from angiotensinogen knock-out mice. Neurosci Lett 232:167–170PubMedGoogle Scholar
  101. 101.
    Phillips MI, Sumners C (1998) Angiotensin II in central nervous system physiology. Regul Pept 78:1–11PubMedGoogle Scholar
  102. 102.
    Averill DB, Diz DI (2000) Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51:119–128PubMedGoogle Scholar
  103. 103.
    Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, Polson JW, Potts PD, Tagawa T (2000) Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51:119–128Google Scholar
  104. 104.
    Lochard N, Thibault G, Silversides DW, Touyz RM, Reudelhuber TL (2004) Chronic production of angiotensin IV in the brain leads to hypertension that is reversible with an angiotensin II AT1 receptor antagonist. Circ Res 94:1451–1457PubMedGoogle Scholar
  105. 105.
    Faure S, Javellaud J, Achard JM, Oudart N (2006a) Vasoconstrictive effect of angiotensin IV in isolated rat basilar artery independent of AT1 and AT2 receptors. J Vasc Res 43:19–26PubMedGoogle Scholar
  106. 106.
    Coleman JKM, Krebs LT, Hamilton TA, Ong B, Lawrence KA, Sardinia MF, Harding JW, Wright JW (1998a) Autoradiographic identification of kidney angiotensin IV binding sites and angiotensin IV-induced renal cortical blood flow changes in rats. Peptides 19:269–277PubMedGoogle Scholar
  107. 107.
    Coleman JK, Lee JI, Miller JM, Nuttall AL (1998b) Changes in cochlear blood flow due to intra-arterial infusions of angiotensin II (3–8) (angiotensin IV) in guinea pigs. Heart Res 119:61–68Google Scholar
  108. 108.
    Hamilton TA, Handa RK, Harding JW, Wright JW (2001) A role for the angiotensin IV AT4/system in mediating natriuresis in the rat. Peptides 22:935–944PubMedGoogle Scholar
  109. 109.
    Gardiner SM, Kemp PA, March JE, Bennett T (1993) Regional haemodynamic effects of angiotensin II (3–8) in conscious rats. Br J Pharmacol 110:159–162PubMedGoogle Scholar
  110. 110.
    Fitzgerald SM, Evans RG, Bergstrom G, Anderson WP (1999) Renal hemodynamic response to intrarenal infusion of ligands for the putative angiotensin IV receptor in anesthetized rats. J Cardiovasc Pharmacol 34:206–211PubMedGoogle Scholar
  111. 111.
    van Rodijnen WF, van Lambalgen TA, van Wijhe MH, Tangelder GJ, Ter Wee PM (2002) Renal microvascular actions of angiotensin II fragments. Am J Physiol Renal Physiol 283:F86–92PubMedGoogle Scholar
  112. 112.
    Handa RK (2006) Biphasic actions of angiotensin IV on renal blood flow in the rat. Regul Pept 136:23–29PubMedGoogle Scholar
  113. 113.
    Li XC, Campbell DJ, Ohishi M, Yuan S, Zhuo JL (2006) AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. Am J Physiol Renal Physiol 290:F1024–1033PubMedGoogle Scholar
  114. 114.
    Ruiz-Ortega M, Esteban V, Egido J (2007) The regulation of the inflammatory response through nuclear factor-kappa B pathway by angiotensin IV extends the role of the renin angiotensin system in cardiovascular diseases. Trends Cardiovasc Med 17:19–25PubMedGoogle Scholar
  115. 115.
    Moeller I, Clune EF, Fennessy PA, Bingley JA, Albiston AL, Mendelsohn FAO, Chai SY (1999) Up regulation of AT4 receptor levels in carotid arteries following balloon injury. Regul Pept 83:25–30PubMedGoogle Scholar
  116. 116.
    Esteban V, Ruperez M, Sanchez-Lopez E, Rodriguez-Vita J, Lorenzo O, Demaegdt H, Vanderheyden PML, Egido J, Ruiz-Ortega M (2005) Angiotensin IV activates the nuclear transcription factor-kappaB and related proinflammatory genes in vascular smooth muscle cells. Circ Res 96:965–973PubMedGoogle Scholar
  117. 117.
    Kerins DM, Hao Q, Vaughan DE (1995) Angiotensin induction of PAI-1 expression in endothelial cells is mediated by the hexapeptide angiotensin IV. J Clin Invest 96:2515–2520PubMedGoogle Scholar
  118. 118.
    Georgiev VP, Klusha VE, Getova DP, Petkov VD, Svirskis SV, Mutsenietse RK, Kambourova TS, Oppitz MZh, Ancans JE (1988) Comparative studies on the central effects of the angiotensin II analogue (Sar1 azaVal3 Ile8) AT II. Acta Physiol Pharmacol Bulg 14:22–29PubMedGoogle Scholar
  119. 119.
    Capponi AM, Catt KJ (1979) Angiotensin II receptors in adrenal cortex and uterus. Binding and activation properties of angiotensin analogues. J Biol Chem 254:5120–5127PubMedGoogle Scholar
  120. 120.
    Le MT, Vanderheyden PML, Szaszák M, Hunyady L, Vauquelin G (2002) Angiotensin IV is a potent agonist for constitutive active human AT1 receptors: distinct roles of the N- and C-terminal residues of angiotensin II during AT1 receptor activation. J Biol Chem 277:23107–23110PubMedGoogle Scholar
  121. 121.
    Wright JW, Harding JW (1995) Brain angiotensin receptor subtypes AT1, AT2, and AT4 and their functions. Regul Pept 59:269–295PubMedGoogle Scholar
  122. 122.
    Roberts KA, Krebs LT, Kramár EA, Shaffer MJ, Harding JW, Wright JW (1995) Autoradiographic identification of brain angiotensin IV binding sites and differential c-Fos expression following intracerebroventricular injection of angiotensin II and IV in rats. Brain Res 682:13–21PubMedGoogle Scholar
  123. 123.
    Ptasinska-Wnuk D, Kunert-Radek J, Pawlikowski M (2003) Angiotensins II and IV stimulate the rat anterior pituitary cell proliferation independently of the AT1 receptor subtype. Neuro Endocrinol Lett 6:397–400Google Scholar
  124. 124.
    Mendelsohn FAO, Jenkins TA, Berkovic SF (1993) Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res 613:221–229PubMedGoogle Scholar
  125. 125.
    Brown DC, Steward LJ, Ge J, Barnes NM (1996) Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol 118:414–420PubMedGoogle Scholar
  126. 126.
    Song K, Allen AM, Paxinos G, Mendelsohn FAO (1992) Mapping of angiotensin II receptors subtype heterogeneity in brain. J Comp Neurol 316:467–484PubMedGoogle Scholar
  127. 127.
    Harding JW, Wright JW, Swanson GN, Hanesworth JM, Krebs LT (1994) AT4 receptors: specificity and distribution. Kidney Int 46:1510–1512PubMedGoogle Scholar
  128. 128.
    Swanson GN, Hanesworth JM, Sardinia MF, Coleman JKM, Write JW, Hall KL, Miller Wing AV, Stobb JW, Cook VI, Harding EC, Harding JW (1992) Discovery of a distinct binding site for angiotensin 11(3–8), a putative angiotensin IV receptor. Regul Pept 40:409–419PubMedGoogle Scholar
  129. 129.
    Moeller I, Paxinos G, Mendelsohn FAO, Aldred GP, Casley D, Chai SY (1996) Distribution of AT4 receptors in the Macaca fascicularis brain. Brain Res 712:307–324PubMedGoogle Scholar
  130. 130.
    Zhang JH, Hanesworth JM, Sardinia M, Alt JA, Wright JW, Harding JW (1999) Structural analysis of angiotensin IV receptor (AT4) from selected bovine tissues. J Pharmacol Exp Ther 289:1075–1083PubMedGoogle Scholar
  131. 131.
    Chai SY, Bastias MA, Clune EF, Matsacos DJ, Mustafa T, Lee JH, McDowall SG, Mendelsohn FAO, Albiston AL, Paxinos G (2000) Distribution of angiotensin IV binding sites (AT4 receptor) in the human forebrain, midbrain and pons as visualised by in vitro receptor autoradiography. J Chem Neuroanat 20:339–348PubMedGoogle Scholar
  132. 132.
    von Bohlen und Halbach O (2003) Angiotensin IV in the central nervous system. Cell Tissue Res 1:1–9Google Scholar
  133. 133.
    Thomas W, Mendelsohn FAO (2003) Angiotensin receptors: form and function and distribution. Int J Biochem Cell Biol 35:774–779PubMedGoogle Scholar
  134. 134.
    Fernando RN, Larm J, Albiston AL, Chai SY (2005) Distribution and cellular localization of insulin-regulated aminopeptidase in the rat central nervous system. J Comp Neurol 487:372–390PubMedGoogle Scholar
  135. 135.
    Miller-Wing AV, Hanesworth JM, Sardinia MF, Hall KL, Wright JW, Speth RC, Grove KL, Harding JW (1993) Central angiotensin IV binding sites: distribution and specificity in guinea pig brain. J Pharmacol Exp Ther 266:1718–1726PubMedGoogle Scholar
  136. 136.
    Hanesworth JM, Sardinia MF, Krebs LT, Hall KL, Harding JW (1993) Elucidation of a specific binding site for angiotensin II (3–8), angiotensin IV, in mammalian heart membranes. J Pharmacol Exp Ther 266:1036–1042PubMedGoogle Scholar
  137. 137.
    Hall KL, Hanesworth JM, Ball AE, Felgenhauer GP, Hosick HL, Harding JW (1993) Identification and characterisation of a novel angiotensin binding site in cultured vascular smooth muscle cells that is specific for the hexapeptide (3–8) fragment of angiotensin II, angiotensin IV. Regul Pept 44:225–232PubMedGoogle Scholar
  138. 138.
    Hall KL, Venkateswaran S, Hanesworth JM, Schelling ME, Harding JW (1995) Characterization of a functional angiotensin IV receptor on coronary microvascular endothelial cells. Regul Pept 58:107–115PubMedGoogle Scholar
  139. 139.
    de Gasparo M, Husain A, Alexander W, Cat KJ, Chiu AT, Drew M, Goodfriend T, Harding JW, Inagami T, Timmermans PBMWM (1995) Proposed update of angiotensin receptor nomenclature. Hypertension 25:924–939PubMedGoogle Scholar
  140. 140.
    Albiston AL, McDowall SG, Matsacos D, Sim P, Clune E, Mustafa T, Lee J, Mendelsohn FAO, Simpson RG, Connolly L, Chai SY (2001) Evidence that the Angiotensin IV (AT4) receptor is the enzyme insulin-regulated aminopeptidase. J Biol Chem 276:48623–48626PubMedGoogle Scholar
  141. 141.
    Lew RA, Mustafa T, Ye S, McDowall SG, Chai SY, Albiston AL (2003) Angiotensin AT4 ligands are potent, competitive inhibitors of insulin regulated aminopeptidase (IRAP). J Neurochem 86:344–350PubMedGoogle Scholar
  142. 142.
    Sardinia MF, Hanesworth JM, Krebs LT, Harding JW (1993) AT4 receptor binding characteristics: d-amino acid- and glycine-substituted peptides. Peptides 14:949–954PubMedGoogle Scholar
  143. 143.
    Sardinia MF, Hanesworth JM, Krishnan F, Harding JW (1994) AT4 receptor structure-binding relationship: N-terminal-modified angiotensin IV analogues. Peptides 15:1399–1406PubMedGoogle Scholar
  144. 144.
    Krishnan R, Hanesworth JM, Wright JW, Harding JW (1999) Structure-binding studies of the adrenal AT4 receptor: analysis of position two- and three-modified angiotensin IV analogs. Peptides 20:915–920PubMedGoogle Scholar
  145. 145.
    Handa RK (2001a) Characterization and signalling of the AT(4) receptor in human proximal tubule epithelial (HK-2) cells. J Am Soc Nephrol 12:440–449PubMedGoogle Scholar
  146. 146.
    Moeller I, Lew RA, Mendelsohn FAO, Smith AI, Brennan ME, Tetaz TJ, Chai SY (1997) The globin fragment LVV-hemorphin-7 is an endogenous ligand for the AT4 receptor in the brain. J Neurochem 68:2530–2537PubMedCrossRefGoogle Scholar
  147. 147.
    Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, Mendelsohn FAO (1998) Angiotensin receptors in the nervous system. Brain Res Bull 47:17–28PubMedGoogle Scholar
  148. 148.
    Garreau I, Chansel D, Vandermeersch S, Fruitier I, Piot JM, Ardaillou R (1998) Hemorphins inhibit angiotensin IV binding and interact with aminopeptidase N. Peptides 19:1339–1348PubMedGoogle Scholar
  149. 149.
    Karelin AA, Philippova MM, Karelina EV, Ivanov VT (1994) Isolation of endogenous hemorphin-related hemoglobin fragments from bovine brain. Biochem Biophys Res Commun 202:410–415PubMedGoogle Scholar
  150. 150.
    Ohyagi Y, Yamada T, Goto I (1994) Hemoglobin as a novel protein developmentally regulated in neurons. Brain Res 635:323–327PubMedGoogle Scholar
  151. 151.
    Piot JM, Zhao Q, Guillochon D, Ricart G, Thomas D (1992) Isolation and characterization of two opioid peptides from a bovine hemoglobin peptic hydolysate. Biochem Biophys Res Commun 189:101–110PubMedGoogle Scholar
  152. 152.
    Barkhudaryan N, Kellermann J, Galoyan A, Lottspeich F (1993) High molecular weight aspartic endopeptidase generates a coronaro-constrictory peptide from the β-chain of hemoglobin. FEBS Lett 329:215–218PubMedGoogle Scholar
  153. 153.
    Lee J, Allen AM, Mendelsohn FAO, Ping S, Barrett GL, Murphy M, Morris MJ, McDowall SG (2001b) AT4 receptor ligands potentiate spatial learning of rats in the Barnes circular maze. In: 21st Scientific meeting of the Hong Kong society of neurosciences, Hong KongGoogle Scholar
  154. 154.
    Zhang JH, Stobb JW, Hanesworth JM, Sardinia MF, Harding JW (1998) Characterization and purification of the bovine adrenal angiotensin IV receptor (AT4) using [125I]benzoylphenyl-alanine-angiotensin IV as a specific photolabel. J Pharmacol Exp Ther 287:416–424PubMedGoogle Scholar
  155. 155.
    Bernier SG, Bellemare JM, Escher E, Guillemette G (1998) Characterization of AT4 receptor from bovine aortic endothelium with photosensitive analogues of angiotensin IV. Biochemistry 37:4280–4287PubMedGoogle Scholar
  156. 156.
    Mustafa T, Chai SY, Mendelsohn FAO, Møeller I, Albiston AL (2001b) Characterization of the AT(4) receptor in a human neuroblastoma cell line (SK-N-MC). J Neurochem 76:1679–1687PubMedGoogle Scholar
  157. 157.
    Rogi T, Tsujimoto M, Nakazato H, Mizutani S, Tomoda Y (1996) Human placental leucine aminopeptidase/oxytocinase. A new member of type II membrane spanning zinc metallopeptidase family. J Biol Chem 271:56–61PubMedGoogle Scholar
  158. 158.
    Kandror KV, Yu L, Pilch PF (1994) The major protein of GLUT4-containing vesicles, gp160, has aminopeptidase activity. J Biol Chem 269:30777–30778PubMedGoogle Scholar
  159. 159.
    Kandror KV, Pilch PF (1994) gp160, a tissue-specific marker for insulin-activated glucose transport. Proc Natl Acad Sci USA 91:8017–8021PubMedGoogle Scholar
  160. 160.
    Keller SR, Scott HM, Mastick CC, Aebersold R, Lienhard GE (1995) Cloning and characterization of a novel insulin-regulated membrane aminopeptidase from Glut4 vesicles. J Biol Chem 270:23612–23618PubMedGoogle Scholar
  161. 161.
    Ross SA, Scott HM, Morris NJ, Leung WY, Mao F, Lienhard GE, Keller SR (1996) Characterization of the insulin-regulated membrane aminopeptidase in 3T3–L1 adipocytes. J Biol Chem 271:3328–3332PubMedGoogle Scholar
  162. 162.
    Laustsen PG, Rasmussen TE, Petersen K, Pedraza-Díaz S, Moestrup SK, Gliemann J, Sottrup-Jensen L, Kristensen T (1997) The complete amino acid sequence of human placental oxytocinase. Biochim Biophys Acta 1352:1–7PubMedGoogle Scholar
  163. 163.
    Herbst JJ, Ross SA, Scott HM, Bobin SA, Morris NJ, Lienhard GE, Keller SR (1997) Insulin stimulates cell surface aminopeptidase activity toward vasopressin in adipocytes. Am J Physiol 272:E600–E606PubMedGoogle Scholar
  164. 164.
    Mizutani S (1998) Physiological roles of placental proteases in feto-placental homeostasis. Nagoya J Med Sci 61:85–95PubMedGoogle Scholar
  165. 165.
    Horio J, Nomura S, Okada M, Katsumata Y, Nakanishi Y, Kumano Y, Takami S, Kinoshita M, Tsujimoto M, Nakazato H, Mizutani S (1999) Structural organization of the 5′-end and chromosomal assignment of human placental leucine aminopeptidase/insulin-regulated membrane aminopeptidase gene. Biochem Biophys Res Commun 262:269–274PubMedGoogle Scholar
  166. 166.
    Tsujimoto M, Mizutani S, Adachi H, Kimura M, Nakazato H, Tomoda Y (1992) Identification of human placental leucine aminopeptidase as oxytocinase. Arch Biochem Biophys 292:388–392PubMedGoogle Scholar
  167. 167.
    Handa RK, Krebs LT, Harding JW, Handa SE (1998) Angiotensin IV AT4-receptor system in the rat kidney. Am J Physiol 274:F290–F299PubMedGoogle Scholar
  168. 168.
    Matsumoto H, Nagasaka T, Hattori A, Rogi T, Tsuruoka N, Mizutani S, Tsujimoto M (2001b) Expression of placental leucine aminopeptidase/oxytocinase in neuronal cells and its action on neuronal peptides. Eur J Biochem 268:3259–3266PubMedGoogle Scholar
  169. 169.
    Nomura M, Tsukahara S, Ando H, Katsumata Y, Okada M, Itakura A, Nomura S, Kikkawa F, Nagasaka T, Mizutani S (2002) Differential distribution of placental leucine aminopeptidase/oxytocinase and aminopeptidase A in human trophoblasts of normal placenta and complete hydatidiform mole. Placenta 23:631–639PubMedGoogle Scholar
  170. 170.
    von Bohlen und Halbach O, Albrecht D (2000) Identification of angiotensin IV binding sites in the mouse brain by a fluorescent binding study. Neuroendocrinology 72:218–223Google Scholar
  171. 171.
    Moeller I, Chai SY, Oldfield BJ, McKinley MJ, Casley D, Mendelsohn FAO (1995) Localization of angiotensin IV binding sites to motor and sensory neurons in the sheep spinal cord and hindbrain. Brain Res 701:301–306PubMedGoogle Scholar
  172. 172.
    Fernando RN, Luff SE, Albiston AL, Chai SY (2007) Sub-cellular localization of insulin-regulated membrane aminopeptidase, IRAP to vesicles in neurons. J Neurochem 102:967–976PubMedGoogle Scholar
  173. 173.
    Matsumoto H, Hattori A, Mizutani S, Tsujimoto M (2001a) Cleavage of peptide hormones by placental leucine aminopeptidase (oxytocinase). Cell-surface aminopeptidases: basic and clinical aspects. Elsevier Science, Amsterdam, pp 295–299Google Scholar
  174. 174.
    Matsumoto H, Rogi T, Yamashiro K, Kodama S, Tsuruoka N, Hattori A, Takio K, Mizutani S, Tsujimoto M (2000) Characterization of a recombinant soluble form of human placental leucine aminopeptidase/oxytocinase expressed in Chinese hamster ovary cells. Eur J Biochem 267:46–52PubMedGoogle Scholar
  175. 175.
    Wallis MG, Lankford MF, Keller SR (2007) Vasopressin is a physiological substrate for the insulin-regulated aminopeptidase IRAP. Am J Physiol Endocrinol Metab 293:E1092–E1102PubMedGoogle Scholar
  176. 176.
    Hiwada K, Saeki-Yamaguchi C, Inaoka Y, Kokubu T (1978) Cystine aminopeptidases from pregnancy serum and placenta. Biochem Med 20:296–304PubMedGoogle Scholar
  177. 177.
    Yamahara N, Nomura S, Suzuki T, Itakura A, Ito M, Okamoto T, Tsujimoto M, Nakazato H, Mizutani S (2000) Placental leucine aminopeptidase/oxytocinase in maternal serum and placenta during normal pregnancy. Life Sci 66:1401–1410PubMedGoogle Scholar
  178. 178.
    Masuda S, Hattori A, Matsumoto H, Miyazawa S, Natori Y, Mizutani S, Tsujimoto M (2003) Involvement of the V2 receptor in vasopressin-stimulated translocation of placental leucine aminopeptidase/oxytocinase in renal cells. Eur J Biochem 270:1988–1994PubMedGoogle Scholar
  179. 179.
    Nakamura H, Itakuara A, Okamura M, Ito M, Iwase A, Nakanishi Y, Okada M, Nagasaka T, Mizutani S (2000) Oxytocin stimulates the translocation of oxytocinase of human vascular endothelial cells via activation of oxytocin receptors. Endocrinology 141:4481–4485PubMedGoogle Scholar
  180. 180.
    Ye S, Chai SY, Lew RA, Albiston AL (2007) Insulin-regulated aminopeptidase: analysis of peptide substrate and inhibitor binding to the catalytic domain. Biol Chem 388:399–403PubMedGoogle Scholar
  181. 181.
    Laustsen PG, Vang S, Kristensen T (2001) Mutational analysis of the active site of human insulin-regulated aminopeptidase. Eur J Biochem 268:98–104PubMedGoogle Scholar
  182. 182.
    Demaegdt H, Vanderheyden PML, De Backer JP, Mosselmans S, Laeremans H, Le MT, Kersemans V, Michotte Y, Vauquelin G (2004) Endogenous cystinyl aminopeptidase in Chinese hamster ovary cells: characterization by [(125)I]Ang IV binding and catalytic activity. Biochem Pharmacol 68:885–892PubMedGoogle Scholar
  183. 183.
    Demaegdt H, Lenaerts PJ, Swales J, De Backer JP, Laeremans H, Le MT, Kersemans K, Vogel L, Michotte Y, Vanderheyden PML, Vauquelin G (2006) AT4 receptor ligand interaction with cystinyl aminopeptidase and aminopeptidase N: [125I]Ang IV only binds to the cystinyl aminopeptidase apoenzyme. Eur J Pharmacol 546:19–27PubMedGoogle Scholar
  184. 184.
    Mazarati A, Wasterlain CG (2002) Anticonvulsant effects of four neuropeptides in the rat hippocampus during self-sustaining status epilepticus. Neurosci Lett 331:123–127PubMedGoogle Scholar
  185. 185.
    Kadar T, Pesti A, Penke B, Telegdy G (1984) Inhibition of seizures induced by picrotoxin and electroshock by cholecystokinin octapeptides and their fragments in rats after intracerebroventricular administration. Neuropharmacology 23:955–961PubMedGoogle Scholar
  186. 186.
    Koide S, Onishi H, Katayama M, Yamagami S (1993) Endogenous methionine enkephalin may play an anticonvulsant role in the seizure-susceptible El mouse. Neurochem Res 8:1259–1262Google Scholar
  187. 187.
    Tirassa P, Costa N, Aloe L (2005) CCK-8 prevents the development of kindling and regulates the GABA and NPY expression in the hippocampus of pentylenetetrazole (PTZ)-treated adult rats. Neuropharmacology 48:732–742PubMedGoogle Scholar
  188. 188.
    De Wied D, Diamant M, Fodor M (1993) Central nervous system effects of the neurohypophyseal hormones and related peptides. Front Neuroendocrinol 14:251–302PubMedGoogle Scholar
  189. 189.
    Kovacs GL, De Wied D (1994) Peptidergic modulation of learning and memory processes. Pharmacol Rev 46:269–291PubMedGoogle Scholar
  190. 190.
    Engelmann M, Wotjak CT, Neumann I, Ludwig M, Landgraf R (1996) Behavioral consequences of intracerebral vasopressin an oxytocin: focus on learning and memory. Neurosci Biobehav Rev 20:341–358PubMedGoogle Scholar
  191. 191.
    Fujiwara M, Ohgami Y, Inada K, Iwasaki K (1997) Effect of active fragments of arginine-vasopressin on the disturbance of spatial cognition in rats. Behav Brain Res 83:91–96PubMedGoogle Scholar
  192. 192.
    Hori E, Uwano T, Tamura R, Miyake N, Nishijo H, Ono T (2002) Effects of a novel arginin-vasopressin derivative, NC-1900, on the spatial memory impairment of rats with transient forebrain ishaemia. Cog Brain Res 13:1–15Google Scholar
  193. 193.
    Bielsky IF, Hu SB, Ren X, Terwilliger EF, Young LJ (2005) The V1a vasopressin receptor is necessary and sufficient for normal social recognition: a gene replacement study. Neuron 47:503–513PubMedGoogle Scholar
  194. 194.
    Tomizawa K, Iga N, Lu Y-F, Moriwaki A, Matsushita M, Li S-T, Miyamoto O, Itano T, Matsui H (2003) Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat Neurosci 6:384–390PubMedGoogle Scholar
  195. 195.
    Ferguson JN, Young LJ, Hearn EF, Matzuk MM, Insel TR, Winslow JT (2000) Social amnesia in mice lacking the oxytocin gene. Nat Genet 25:284–288PubMedGoogle Scholar
  196. 196.
    Ferguson JN, Aldag JM, Insel TR, Young LJ (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci 21:8278–8285PubMedGoogle Scholar
  197. 197.
    McEwen BB (2004a) De Wied and colleagues I: evidence for a VP and an OT influence on MP: launching the “VP/OT central memory theory”. Adv Pharmacol 50:51–101PubMedGoogle Scholar
  198. 198.
    McEwen BB (2004b) De Wied and colleagues II: further clarification of the roles of vasopressin and oxytocin in memory processing. Adv Pharmacol 50:103–140PubMedGoogle Scholar
  199. 199.
    McEwen BB (2004c) De Wied and colleagues III: brain sites and transmitter systems involved in the vasopressin and oxytocin influence on memory processing. Adv Pharmacol 50:141–176PubMedGoogle Scholar
  200. 200.
    McEwen BB (2004d) Expansion of vasopressin/oxytocin memory research III: research summary and commentary on theoretical and methodological issues. Adv Pharmacol 50:421–451PubMedGoogle Scholar
  201. 201.
    McEwen BB (2004e) Brain–fluid barriers: relevance for theoretical controversies regarding vasopressin and oxytocin memory research. Adv Pharmacol 50:531–592PubMedGoogle Scholar
  202. 202.
    McEwen BB (2004f) Closing remarks: review and commentary on selected aspects of the roles of vasopressin and oxytocin in memory processing. Adv Pharmacol 50:593–654PubMedGoogle Scholar
  203. 203.
    Wu W, Yu LC (2004) Roles of oxytocin in spatial learning and memory in the nucleus basalis of Meynert in rats. Regul Pept 120:119–125PubMedGoogle Scholar
  204. 204.
    Huston JP, Schildein S, Gerhardt P, Privou C, Fink H, Hasenohrl RU (1998) Modulation of memory, reinforcement and anxiety parameters by intra-amygdala injection of cholecystokinin-fragments Boc-CCK-4 and CCK-8s. Peptides 19:27–37PubMedGoogle Scholar
  205. 205.
    Sebret A, Lena I, Crete D, Matsui T, Roques BP, Dauge V (1999) Rat hippocampal neurons are critically involved in physiological improvement of memory processes induced by cholecystokinin-B receptor stimulation. J Neurosci 19:7230–7237PubMedGoogle Scholar
  206. 206.
    Voits M, Hasenohrl RU, Huston JP, Fink H (2001) Repeated treatment with cholecystokinin octapeptide improves maze performance in aged Fischer 344 rats. Peptides 22:1325–1330PubMedGoogle Scholar
  207. 207.
    Dauge V, Pophillat M, Crete D, Melik-Parsadaniantz S, Roques BP (2003) Involvement of brain endogenous cholecystokinin in stress-induced impairment of spatial recognition memory. Neuroscience 118:19–23PubMedGoogle Scholar
  208. 208.
    Itoh S, Katsuura G, Takashima A (1987) Interactions of cholecystokinin, beta-endorphin, and their antagonists on passive avoidance behavior in rats. Can J Physiol Pharmacol 65:2260–2264PubMedGoogle Scholar
  209. 209.
    Itoh S, Takashima A, Igano K, Inouye K (1989) Memory effect of caerulein and its analogs in active and passive avoidance responses in the rat. Peptides 10:843–848PubMedGoogle Scholar
  210. 210.
    Katsuura G, Itoh S (1986) Preventive effect of cholecystokinin octapeptide on experimental amnesia in rats. Peptides 7:105–110PubMedGoogle Scholar
  211. 211.
    Takashima A, Yokota T, Maeda Y, Itoh S (1991) Pretreatment with caerulein protects against memory impairment induced by protein kinase C inhibitors in the rat. Peptides 12:699–703PubMedGoogle Scholar
  212. 212.
    Virgo L, Humphries C, Ortimer A, Barnes T, Hirsh S, de Belleroche J (1995) Cholecystokinin messenger RNA deficit in frontal and temporal cerebral cortex in schizofrenia. Biol Psychiatr 37:694–701Google Scholar
  213. 213.
    Lofberg C, Harro J, Gottfries CG, Oreland L (1996) Cholecystokinin peptides and receptor binding in Alzheimer’s disease. J Neural Transm 103:851–860PubMedGoogle Scholar
  214. 214.
    Takahashi M, Sugaya K, Kojima K, Katoh T, Ueki M, Kubota K (1993) SUT-8701, a cholecystokinin analog, prevents the cholinergic degeneration in the rat cerebral cortex following basal forebrain lesioning. Jpn J Pharmacol 61:341–349PubMedGoogle Scholar
  215. 215.
    Harro J, Oreland L (1992) Age-related differences of cholecystokinin receptor binding in the rat brain. Prog Neuropsychopharmacol Biol Psychiatr 16:369–375Google Scholar
  216. 216.
    Ohta M, Tanaka Y, Masuda M, Miyasaka K, Funakoshi A (1995) Impaired release of cholecystokinin (CCK) from synaptosomes in old rats. Neurosci Lett 198:161–164PubMedGoogle Scholar
  217. 217.
    Czech MP, Corvera S (1999) Signaling mechanisms that regulate glucose transport. J Biol Chem 274:1865–1868PubMedGoogle Scholar
  218. 218.
    Jhun BH, Rampal AL, Liu H, Lachaal M, Jung CY (1992) Effects of insulin on steady state kinetics of GLUT4 subcellular distribution in rat adipocytes. Evidence of constitutive GLUT4 recycling. J Biol Chem 267:17710–17715PubMedGoogle Scholar
  219. 219.
    Yang J, Holman GD (1993) Comparison of GLUT4 and GLUT1 subcellular trafficking in basal and insulin-stimulated 3T3-L1 cells. J Biol Chem 268:4600–4603PubMedGoogle Scholar
  220. 220.
    Satoh S, Nishimura H, Clark AE, Kozka IJ, Vannucci SJ, Simpson IA, Quon MJ, Cushman SW, Holman GD (1993) Use of bismannose photolabel to elucidate insulin-regulated GLUT4 subcellular trafficking kinetics in rat adipose cells. Evidence that exocytosis is a critical site of hormone action. J Biol Chem 268:17820–17829PubMedGoogle Scholar
  221. 221.
    Yeh J, Verhey KJ, Birnbaum MJ (1995) Kinetic analysis of glucose transporter trafficking in fibroblasts and adipocytes. Biochemistry 34:15523–15531PubMedGoogle Scholar
  222. 222.
    Lim SN, Bonzelius F, Low SH, Wille H, Weimbs T, Herman GA (2001) Identification of discrete classes of endosome-derived small vesicles as a major cellular pool for recycling membrane proteins. Mol Biol Cell 12:981–995PubMedGoogle Scholar
  223. 223.
    Johnson AO, Lampson MA, McGraw TE (2001) A di-leucine sequence and a cluster of acidic amino acids are required for dynamic retention in the endosomal recycling compartment of fibroblasts. Mol Biol Cell 12:367–381PubMedGoogle Scholar
  224. 224.
    Bryant NJ, Govers R, James DE (2002) Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 3:267–277PubMedGoogle Scholar
  225. 225.
    Ross SA, Herbst JJ, Keller SR, Lienhard GE (1997) Trafficking kinetics of the insulin-regulated membrane aminopeptidase in 3T3-L1 adipocytes. Biochem Biophys Res Commun 239:247–251PubMedGoogle Scholar
  226. 226.
    Martin S, Rice JE, Gould GW, Keller SR, Slot JW, James DE (1997) The glucose transporter GLUT4 and the aminopeptidase vp165 colocalise in tubulo-vesicular elements in adipocytes and cardiomyocytes. J Cell Sci 110:2281–2291PubMedGoogle Scholar
  227. 227.
    Malide D, Dwyer NK, Blanchette-Mackie EJ, Cushman SW (1997) Immunocytochemical evidence that GLUT4 resides in a specialized translocation post-endosomal VAMP2-positive compartment in rat adipose cells in the absence of insulin. J Histochem Cytochem 45:1083–1096PubMedGoogle Scholar
  228. 228.
    Sumitani S, Ramlal T, Somwar R, Keller SR, Klip A (1997) Insulin regulation and selective segregation with glucose transporter-4 of the membrane aminopeptidase vp165 in rat skeletal muscle cells. Endocrinology 138:1029–1034PubMedGoogle Scholar
  229. 229.
    Garza LA, Birnbaum MJ (2000) Insulin-responsive aminopeptidase trafficking in 3T3-L1 adipocytes. J Biol Chem 275:2560–2567PubMedGoogle Scholar
  230. 230.
    Maianu L, Keller SR, Garvey WT (2001) Adipocytes exhibit abnormal subcellular distribution and translocation of vesicles containing glucose transporter 4 and insulin-regulated aminopeptidase in type 2 diabetes mellitus: implications regarding defects in vesicle trafficking. J Clin Endocrin Metab 86:5450–5456Google Scholar
  231. 231.
    Waters SB, D’Auria M, Martin SS, Nguyen C, Kozma LM, Luskey KL (1977) The amino terminus of insulin-responsive aminopeptidase causes Glut4 translocation in 3T3-L1 adipocytes. J Biol Chem 272:23323–23327Google Scholar
  232. 232.
    Subtil A, Lampson MA, Keller SR, McGraw TE (2000) Characterization of the insulin-regulated endocytic recycling mechanism in 3T3-L1 adipocytes using a novel reporter molecule. J Biol Chem 275:4787–4795PubMedGoogle Scholar
  233. 233.
    Johnson AO, Subtil A, Petrush R, Kobylarz K, Keller SR, McGraw TE (1998) Identification of an insulin-responsive, slow endocytic recycling mechanism in Chinese hamster ovary cells. J Biol Chem 273:17968–17977PubMedGoogle Scholar
  234. 234.
    Larance M, Ramm G, Stockli J, van Dam EM, Winata S, Wasinger V, Simpson F, Graham M, Junutula JR, Guilhaus M, James DE (2005) Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J Biol Chem 280:37803–37813PubMedGoogle Scholar
  235. 235.
    Peck GR, Ye S, Pham V, Fernando RN, Macaulay SL, Chai SY, Albiston AL (2006) Interaction of the Akt substrate, AS160, with the glucose transporter 4 vesicle marker protein, insulin-regulated aminopeptidase. Mol Endocrinol 10:2576–2583Google Scholar
  236. 236.
    Hosaka T, Brooks CC, Presman E, Kim SK, Zhang Z, Breen M, Gross DN, Sztul E, Pilch PF (2005) p115 Interacts with the GLUT4 vesicle protein, IRAP, and plays a critical role in insulin-stimulated GLUT4 translocation. Mol Biol Cell 16:2882–2890PubMedGoogle Scholar
  237. 237.
    Tojo H, Kaieda I, Hattori H, Katayama N, Yoshimura K, Kakimoto S, Fujisawa Y, Presman E, Brooks CC, Pilch PF (2003) The Formin family protein, formin homolog overexpressed in spleen, interacts with the insulin-responsive aminopeptidase and profilin IIa. Mol Endocrinol 17:1216–1229PubMedGoogle Scholar
  238. 238.
    Katagiri H, Asano T, Yamada T, Aoyama T, Fukushima Y, Kikuchi M, Kodama T, Oka Y (2002) Acyl-coenzyme A dehydrogenases are localized on GLUT4-containing vesicles via association with insulin-regulated aminopeptidase in a manner dependent on its dileucine motif. Mol Endocrinol 16:1049–1059PubMedGoogle Scholar
  239. 239.
    Chi NW, Lodish HF (2000) Tankyrase is a golgi-associated mitogen-activated protein kinase substrate that interacts with IRAP in GLUT4 vesicles. J Biol Chem 275:38437–38444PubMedGoogle Scholar
  240. 240.
    Yeh TY, Sbodio JI, Tsun ZY, Luo B, Chi NW (2007) Insulin-stimulated exocytosis of GLUT4 is enhanced by IRAP and its partner tankyrase. Biochem J 402:279–290PubMedGoogle Scholar
  241. 241.
    Gold PE (2001) Drug enhancement of memory in aged rodents and humans. American Psychological Association, Washinton, pp 293–304Google Scholar
  242. 242.
    Ragozzino ME, Unick KE, Gold PE (1996) Hippocampal acetylcholine release during memory testing in rats: augmentation by glucose. Proc Natl Acad Sci USA 93:4693–4698PubMedGoogle Scholar
  243. 243.
    Kopf SR, Buchholzer ML, Hilgert M, Loffelholz K, Klein J (2001) Glucose plus choline improve passive avoidance behaviour and increase hippocampal acetylcholine release in mice. Neuroscience 103:365–371PubMedGoogle Scholar
  244. 244.
    McNay EC, Fries TM, Gold PE (2000) Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc Natl Acad Sci USA 97:2881–2885PubMedGoogle Scholar
  245. 245.
    Dash PK, Orsi SA, Moore AN (2006) Spatial memory formation and memory-enhancing effect of glucose involves activation of the tuberous sclerosis complex-mammalian target of rapamycin pathway. J Neurosci 26:8048–8056PubMedGoogle Scholar
  246. 246.
    Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G (1997) Rapamycin suppresses 5′-TOP mRNA translation through inhibition of p70s6k. EMBO J 16:3693–3704PubMedGoogle Scholar
  247. 247.
    Sonenberg N, Gingras AC (1998) The mRNA 5′ cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Bio 10:268–275Google Scholar
  248. 248.
    Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, Yeung RS, Ru B, Pan D (2002) Tsc tumour suppressor proteins antagonize amino-acid TOR signaling. Nat Cell Biol 4:699–704PubMedGoogle Scholar
  249. 249.
    Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signaling. Nat Cell Biol 4:648–657PubMedGoogle Scholar
  250. 250.
    Jaworski J, Spangler S, Seeburg DP, Hoogenraad CC, Sheng M (2005) Control of dendritic arborization by the phosphoinositide-3′-kinase-Akt-mammalian target of rapamycin pathway. J Neurosci 25:11300–11312PubMedGoogle Scholar
  251. 251.
    Kumar V, Zhang MX, Swank MW, Kunz J, Wu GY (2005) Regulation of dendritic morphogenesis by Ras-P13K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci 25:11288–11299PubMedGoogle Scholar
  252. 252.
    Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci USA 102:14238–14243PubMedGoogle Scholar
  253. 253.
    Oby E, Janigro D (2006) The blood–brain-barrier and epilepsy. Critical review. Epilepsia 47:1761–1774PubMedGoogle Scholar
  254. 254.
    Garriga-Canut M, Schoenike B, Qazi R, Bergendahl K, Daley TJ, Pfender RM, Morrison JF, Ockuly J, Stafstrom C, Sutula T, Roopra A (2006) 2-Deoxy-d-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat Neurosci 9:1382–1387PubMedGoogle Scholar
  255. 255.
    Handa RK, Harding JW, Simasko SM (1999b) Characterization and function of the bovine kidney epithelial angiotensin receptor subtype 4 using angiotensin IV and divalinal angiotensin IV as receptor ligands. J Pharmacol Exp Ther 291:1242–1249PubMedGoogle Scholar
  256. 256.
    Dulin NO, Madhun ZT, Chang C, Bert-Mattera L, Dickens D, Douglas JG (1995) Angiotensin IV receptors and signalling in opossum kidney cells. Am J Physiol 269:F644–F652PubMedGoogle Scholar
  257. 257.
    Patel JM, Martens JR, Li YD, Gelband CH, Raizada MK, Block ER (1998) Angiotensin IV receptor-mediated activation of lung endothelial NOS is associated with vasorelaxation. Am J Physiol 275:L1061–L1068PubMedGoogle Scholar
  258. 258.
    Hill-Kapturczak N, Kapturczak MH, Block ER, Patel JM, Malinski T, Madsen KM, Tisher CC (1999) Angiotensin II-stimulated nitric oxide release from porcine pulmonary endothelium is mediated by angiotensin IV. J Am Soc Nephrol 10:481–491PubMedGoogle Scholar
  259. 259.
    Chen JK, Zimpelmann J, Harris RC, Burns KD (2001) Angiotensin IV induces tyrosine phosphorylation of focal adhesion kinase and paxillin in proximal tubule cells. Am J Physiol Renal Physiol 280:F980–F998PubMedGoogle Scholar
  260. 260.
    Li YD, Block ER, Patel JM (2002) Activation of multiple signaling modules is critical in angiotensin IV-induced lung endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol 238:L707–716Google Scholar
  261. 261.
    Lu J, Zhang J, Block ER, Patel JM (2005) Angiotensin IV enhances phosphorylation of 4EBP1 by multiple signaling events in lung endothelial cells. Mol Cell Biochem 275:181–188PubMedGoogle Scholar
  262. 262.
    Shipp MA, Look TA (1993) Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key? Blood 82:1052–1070PubMedGoogle Scholar
  263. 263.
    Mittrucker HW, Steeg C, Malissen B, Fleischer B (1995) The cytoplasmic tail of the T cell receptor zeta chain is required for signaling via CD26. Eur J Immunol 25:295–297PubMedGoogle Scholar
  264. 264.
    von Bonin A, Huhn J, Fleischer B (1998) Dipeptidyl-peptidase IV/CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol Rev 161:43–53Google Scholar
  265. 265.
    Gaetaniello L, Fiore M, de Filippo S, Pozzi N, Tamasi S, Pignata C (1998) Occupancy of dipeptidyl peptidase IV activates an associated tyrosine kinase and triggers an apoptotic signal in human hepatocarcinoma cells. Hepatology 27:934–942PubMedGoogle Scholar
  266. 266.
    Hühn J, Ehrlich S, Fleischer B, von Bonin A (2000) Molecular analysis of CD26-mediated signal transduction in T cells. Immunol Lett 72:127–132PubMedGoogle Scholar
  267. 267.
    Navarette Santos A, Langner J, Herrmann M, Riemann D (2000a) Aminopeptidase N/CD13 is directly linked to signal transduction pathways in monocytes. Cell Immunol 201:22–32Google Scholar
  268. 268.
    Navarrete Santos A, Langner J, Riemann D (2000b) Enzymatic activity is not a precondition for the intracellular calcium increase mediated by mAbs specific for aminopeptidase N/CD13. Adv Exp Med Biol 477:43–47PubMedGoogle Scholar
  269. 269.
    Fleischer B, Sturm E, De Vries JE, Spits H (1988) Triggering of cytotoxic T lymphocytes and NK cells via the Tp103 pathway is dependent on the expression of the T cell receptor/CD3 complex. J Immunol 141:1103–1107PubMedGoogle Scholar
  270. 270.
    Hegen M, Mittrucker HW, Hug R, Demuth HU, Neubert K, Barth A, Fleischer B (1993) Enzymatic activity of CD26 (dipeptidylpeptidase IV) is not required for its signalling function in T cells. Immunobiology 189:483–493PubMedGoogle Scholar
  271. 271.
    Kahne T, Reinhold D, Neubert K, Born I, Faust J, Ansorge S (2000) Signal transduction events induced or affected by inhibition of the catalytic activity of dipeptidyl peptidase IV (DP IV, CD26). Adv Exp Med Biol 477:131–137PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Bart Stragier
    • 1
  • Dimitri De Bundel
    • 1
  • Sophie Sarre
    • 1
  • Ilse Smolders
    • 1
  • Georges Vauquelin
    • 2
  • Alain Dupont
    • 3
  • Yvette Michotte
    • 1
  • Patrick Vanderheyden
    • 2
  1. 1.Department of Pharmaceutical Chemistry, Drug Analysis and Drug InformationResearch Group Experimental Pharmacology, Vrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Molecular and Biochemical PharmacologyVrije Universiteit BrusselBrusselsBelgium
  3. 3.Department of PharmacologyVrije Universiteit BrusselBrusselsBelgium

Personalised recommendations