Heart Failure Reviews

, Volume 12, Issue 3–4, pp 249–260 | Cite as

Mitochondria and cardioprotection

  • Fabio Di Lisa
  • Marcella Canton
  • Roberta Menabò
  • Nina Kaludercic
  • Paolo Bernardi


Major factors linking mitochondrial dysfunction with myocardial injury are analyzed along with protective mechanisms elicited by endogenous processes and pharmacological treatments. In particular, a reduced rate of ATP hydrolysis and a slight increase in ROS formation appear to represent the prevailing components of self-defense mechanisms, especially in the case of ischemic preconditioning. These protective processes are activated by signaling pathways, which converge on mitochondria activating the mitochondrial KATP channels and/or inhibiting the mitochondrial permeability transition pore. These pathways can also be stimulated by pharmacological treatments. Another major goal for cardioprotection is decreasing the burst in mitochondrial ROS formation that characterizes post-ischemic reperfusion. Finally, mitochondrial targets for therapeutic intervention may include the switch of substrate being utilized, because inhibition of fatty acid oxidation is associated with cardioprotective effects.


Mitochondria Metabolism Ischemia Permeability Transition Reactive oxygen species 



Apoptosis inducing factor


BCL-2 homology


Carnitine palmitoyl transferase


Cyclosporin A


Connexin 43




Protonmotive force


Mitochondrial membrane potential


Endoplasmic reticulum


Fatty acid oxidation


Inner mitochondrial membrane


Intermembrane space


Ischemic preconditioning


Monoamine oxidase


Mitochondrial KATP channel


Inorganic phosphate


Outer mitochondrial membrane


Pyruvate dehydrogenase


Permeability transition pore


Reactive oxygen species


Superoxide dismutase


Phospholipase A2





This work was supported by grants from CNR, FIRB, and MIUR.


  1. 1.
    Di Lisa F, Menabò R, Canton M, Petronilli V (1998) The role of mitochondria in the salvage and the injury of the ischemic myocardium. Biochim Biophys Acta 1366:69–78PubMedGoogle Scholar
  2. 2.
    Halestrap AP, Kerr PM, Javadov S, Woodfield KY (1998) Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta 1366:79–94PubMedGoogle Scholar
  3. 3.
    Jennings RB, Ganote CE (1976) Mitochondrial structure and function in acute myocardial injury. Circ Res 38:80–91Google Scholar
  4. 4.
    Bennett MJ, Rinaldo P, Strauss AW (2000) Inborn errors of mitochondrial fatty acid oxidation. Crit Rev Clin Lab Sci 37:1–44PubMedGoogle Scholar
  5. 5.
    Smeitink JA, Zeviani M, Turnbull DM, Jacobs HT (2006) Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 3:9–13PubMedGoogle Scholar
  6. 6.
    Wallace DC (2000) Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am Heart J 139:S70–S85PubMedGoogle Scholar
  7. 7.
    Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Mitochondrial pathology in cardiac failure. Cardiovasc Res 49:17–26PubMedGoogle Scholar
  8. 8.
    Russell LK, Finck BN, Kelly DP (2005) Mouse models of mitochondrial dysfunction and heart failure. J Mol Cell Cardiol 38:81–91PubMedGoogle Scholar
  9. 9.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly Y, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423PubMedGoogle Scholar
  10. 10.
    Di Lisa F, Bernardi P (1998) Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem 184:379–391PubMedGoogle Scholar
  11. 11.
    Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, Hansford RG (1995) Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol 486:1–13PubMedGoogle Scholar
  12. 12.
    Murphy E, Steenbergen C (2007) Preconditioning: the mitochondrial connection. Annu Rev Physiol 69:51–67PubMedGoogle Scholar
  13. 13.
    Rouslin W, Erickson JL, Solaro RJ (1986) Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle. Am J Physiol 250:H503–H508PubMedGoogle Scholar
  14. 14.
    Allen DG, Orchard CH (1987) Myocardial contractile function during ischemia and hypoxia. Circ Res 60:153–168PubMedGoogle Scholar
  15. 15.
    Jennings RB, Steenbergen C (1985) Nucleotide metabolism and cellular damage in myocardial ischemia. Annu Rev Physiol 477:727–749Google Scholar
  16. 16.
    Corr PB, Gross RW, Sobel BE (1984) Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 55:135–154PubMedGoogle Scholar
  17. 17.
    Idell Wenger JA, Grotyohann LW, Neely JR (1978) Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 253:4310–4318PubMedGoogle Scholar
  18. 18.
    Katz AM, Messineo FC (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res 48:1–16PubMedGoogle Scholar
  19. 19.
    Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155PubMedGoogle Scholar
  20. 20.
    Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786PubMedGoogle Scholar
  21. 21.
    Bernardi P, Krauskopf A, Basso E, Petronilli V, Blalchy-Dyson E, Di Lisa F, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099PubMedGoogle Scholar
  22. 22.
    Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70:191–199PubMedGoogle Scholar
  23. 23.
    Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res 61:372–385PubMedGoogle Scholar
  24. 24.
    Weiss JN, Korge P, Honda HM, Ping P (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93:292–301PubMedGoogle Scholar
  25. 25.
    Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495PubMedGoogle Scholar
  26. 26.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedGoogle Scholar
  27. 27.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344PubMedGoogle Scholar
  28. 28.
    Fridovich I (2004) Mitochondria: are they the seat of senescence? Aging Cell 3:13–16PubMedGoogle Scholar
  29. 29.
    St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790PubMedGoogle Scholar
  30. 30.
    Fridovich I (1995) Superoxide radical, superoxide dismutases. Annu Rev Biochem 64:97–112PubMedGoogle Scholar
  31. 31.
    Cadenas E, Davies KJ (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230PubMedGoogle Scholar
  32. 32.
    Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217PubMedGoogle Scholar
  33. 33.
    Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233PubMedGoogle Scholar
  34. 34.
    Orsini F, Migliaccio E, Moroni M, Contursi C, Raker VA, Piccini D, Martin-Padura I, Pelliccia G, Trinei M, Bono M, Puri C, Tacchetti C, Ferrini M, Mannucci R, Nicoletti I, Lanfrancone L, Giorgio M, Pelicci PG (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem 279:25689–25695PubMedGoogle Scholar
  35. 35.
    Trinei M, Giorgio M, Cicalese A, Barozzi S, Ventura A, Migliaccio E, Milia E, Padura IM, Raker VA, Maccarana M, Petronilli V, Minucci S, Bernardi P, Lanfrancone L, Pelicci PG (2002) A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene 21:3872–3878PubMedGoogle Scholar
  36. 36.
    Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313PubMedGoogle Scholar
  37. 37.
    Pinton P, Rimessi A, Marchi S, Orsini F, Migliaccio E, Giorgio M, Contursi C, Minucci S, Mantovani F, Wieckowski MR, Del SG, Pelicci PG, Rizzuto R (2007) Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315:659–663PubMedGoogle Scholar
  38. 38.
    Hausenloy DJ, Yellon DM (2003) The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 35:339–341PubMedGoogle Scholar
  39. 39.
    Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341:233–249PubMedGoogle Scholar
  40. 40.
    Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176PubMedGoogle Scholar
  41. 41.
    Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F (2001) The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem 276:12030–12034PubMedGoogle Scholar
  42. 42.
    Kim JS, Jin Y, Lemasters JJ (2006) Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol 290:H2024–H2034PubMedGoogle Scholar
  43. 43.
    Penzo D, Petronilli V, Angelin A, Cusan C, Colonna R, Scorrano L, Pagano F, Prato M, Di Lisa F, Bernardi P (2004) Arachidonic acid released by phospholipase A(2) activation triggers Ca(2+)-dependent apoptosis through the mitochondrial pathway. J Biol Chem 279:25219–25225PubMedGoogle Scholar
  44. 44.
    Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801PubMedGoogle Scholar
  45. 45.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565PubMedGoogle Scholar
  46. 46.
    Shulga N, Pastorino JG (2006) Acyl coenzyme A-binding protein augments bid-induced mitochondrial damage and cell death by activating mu-calpain. J Biol Chem 281:30824–30833PubMedGoogle Scholar
  47. 47.
    Aguilar HI, Botla R, Arora AS, Bronk SF, Gores GJ (1996) Induction of the mitochondrial permeability transition by protease activity in rats: a mechanism of hepatocyte necrosis. Gastroenterology 110:558–566PubMedGoogle Scholar
  48. 48.
    Polster BM, Basanez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454PubMedGoogle Scholar
  49. 49.
    Chen M, Won DJ, Krajewski S, Gottlieb RA (2002) Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem 277:29181–29186PubMedGoogle Scholar
  50. 50.
    Breckenridge DG, Xue D (2004) Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol 16:647–652PubMedGoogle Scholar
  51. 51.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219PubMedGoogle Scholar
  52. 52.
    Gustafsson AB, Gottlieb RA (2007) Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol 292:C45–C51PubMedGoogle Scholar
  53. 53.
    Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163PubMedGoogle Scholar
  54. 54.
    Forte M, Bernardi P (2006) The permeability transition and BCL-2 family proteins in apoptosis: co-conspirators or independent agents? Cell Death Differ 13:1287–1290PubMedGoogle Scholar
  55. 55.
    Hino K, Nishikawa M, Sato E, Inoue M (2005) L-carnitine inhibits hypoglycemia-induced brain damage in the rat. Brain Res 1053:77–87PubMedGoogle Scholar
  56. 56.
    Nakai A, Shibazaki Y, Taniuchi Y, Miyake H, Oya A, Takeshita T (2004) Role of mitochondrial permeability transition in fetal brain damage in rats. Pediatr Neurol 30:247–253PubMedGoogle Scholar
  57. 57.
    Bernardi P, Petronilli V, Di Lisa F, Forte M (2001) A mitochondrial perspective on cell death. Trends Biochem Sci 26:112–117PubMedGoogle Scholar
  58. 58.
    Bernardi P, Azzone GF (1981) Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J Biol Chem 256:7187–7192PubMedGoogle Scholar
  59. 59.
    Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67PubMedGoogle Scholar
  60. 60.
    Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730PubMedGoogle Scholar
  61. 61.
    Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139PubMedGoogle Scholar
  62. 62.
    Milanesi E, Costantini P, Gambalunga A, Colonna R, Petronilli V, Cabrelle A, Semenzato G, Cesura AM, Pinard E, Bernardi P (2006) The mitochondrial effects of small organic ligands of BCL-2: sensitization of BCL-2-overexpressing cells to apoptosis by a pyrimidine-2,4,6-trione derivative. J Biol Chem 281:10066–10072PubMedGoogle Scholar
  63. 63.
    Comelli M, Metelli G, Mavelli I (2007) Downmodulation of mitochondrial F0F1 ATP synthase by diazoxide in cardiac myoblasts: a dual effect of the drug. Am J Physiol Heart Circ Physiol 292:H820–H829PubMedGoogle Scholar
  64. 64.
    Ylitalo K, Ala-Rami A, Vuorinen K, Peuhkurinen K, Lepojarvi M, Kaukoranta P, Kiviluoma K, Hassinen I (2001) Reversible ischemic inhibition of F(1)F(0)-ATPase in rat and human myocardium. Biochim Biophys Acta 1504:329–339PubMedGoogle Scholar
  65. 65.
    Imahashi K, Schneider MD, Steenbergen C, Murphy E (2004) Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circ Res 95:734–741PubMedGoogle Scholar
  66. 66.
    Zhao ZQ, Velez DA, Wang NP, Hewan-Lowe KO, Nakamura M, Guyton RA, Vinten-Johansen J (2001) Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis 6:279–290PubMedGoogle Scholar
  67. 67.
    Hattori R, Hernandez TE, Zhu L, Maulik N, Otani H, Kaneda Y, Das DK (2001) An essential role of the antioxidant gene Bcl-2 in myocardial adaptation to ischemia: an insight with antisense Bcl-2 therapy. Antioxid Redox Signal 3:403–413PubMedGoogle Scholar
  68. 68.
    Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55:534–543PubMedGoogle Scholar
  69. 69.
    Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524PubMedGoogle Scholar
  70. 70.
    Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460PubMedGoogle Scholar
  71. 71.
    Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549PubMedGoogle Scholar
  72. 72.
    Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G (2001) Signal transduction of ischemic preconditioning. Cardiovasc Res 52:181–198PubMedGoogle Scholar
  73. 73.
    Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ (1997) Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072–1082PubMedGoogle Scholar
  74. 74.
    O’Rourke B (2000) Myocardial K(ATP) channels in preconditioning. Circ Res 87:845–855PubMedGoogle Scholar
  75. 75.
    Oldenburg O, Cohen MV, Yellon DM, Downey JM (2002) Mitochondrial K(ATP) channels: role in cardioprotection. Cardiovasc Res 55:429–437PubMedGoogle Scholar
  76. 76.
    Costa AD, Quinlan CL, Andrukhiv A, West IC, Jaburek M, Garlid KD (2006) The direct physiological effects of mitoK(ATP) opening on heart mitochondria. Am J Physiol Heart Circ Physiol 290:H406–H415PubMedGoogle Scholar
  77. 77.
    Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol 280:H649–H657Google Scholar
  78. 78.
    Holmuhamedov EL, Wang L, Terzic A (1999) ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol 519 Pt 2 :347–360PubMedGoogle Scholar
  79. 79.
    Korge P, Honda HM, Weiss JN (2002) Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning. Proc Natl Acad Sci U S A 99:3312–3317PubMedGoogle Scholar
  80. 80.
    Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291:H2067–H2074PubMedGoogle Scholar
  81. 81.
    Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, Garcia-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586PubMedGoogle Scholar
  82. 82.
    Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466PubMedGoogle Scholar
  83. 83.
    Costantini P, Chernyak BV, Petronilli V, Bernardi P (1995) Selective inhibition of the mitochondrial permeability transition pore at the oxidation-reduction sensitive dithiol by monobromobimane. FEBS Lett 362:239–242PubMedGoogle Scholar
  84. 84.
    Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC, Garlid KD (2006) The mechanism by which the mitochondrial ATP-sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition. J Biol Chem 281:20801–20808PubMedGoogle Scholar
  85. 85.
    Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y, Bolli R, Cardwell EM, Ping P (2003) Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92:873–880PubMedGoogle Scholar
  86. 86.
    Boengler K, Dodoni G, Rodriguez-Sinovas A, Cabestrero A, Ruiz-Meana M, Gres P, Konietzka I, Lopez-Iglesias C, Garcia-Dorado D, Di Lisa F, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244PubMedGoogle Scholar
  87. 87.
    Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G (2002) No ischemic preconditioning in heterozygous connexin43-deficient mice. Am J Physiol Heart Circ Physiol 283:H1740–H1742PubMedGoogle Scholar
  88. 88.
    Halestrap AP, Davidson AM (1990) Inhibition of Ca2+-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis- trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268:153–160PubMedGoogle Scholar
  89. 89.
    McGuinness O, Yafei N, Costi A, Crompton M (1990) The presence of two classes of high-affinity cyclosporin A binding sites in mitochondria. Evidence that the minor component is involved in the opening of an inner-membrane Ca2+-dependent pore. Eur J Biochem 194:671–679PubMedGoogle Scholar
  90. 90.
    Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662PubMedGoogle Scholar
  91. 91.
    Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561PubMedGoogle Scholar
  92. 92.
    Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102:12005–12010PubMedGoogle Scholar
  93. 93.
    Clarke SJ, McStay GP, Halestrap AP (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 277:34793–34799PubMedGoogle Scholar
  94. 94.
    Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters JJ (2002) Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol 62:22–29PubMedGoogle Scholar
  95. 95.
    Griffiths EJ, Halestrap AP (1993) Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469PubMedGoogle Scholar
  96. 96.
    Nazareth W, Yafei N, Crompton M (1991) Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol 23:1351–1354PubMedGoogle Scholar
  97. 97.
    Di Lisa F, Menabò R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276:2571–2575PubMedGoogle Scholar
  98. 98.
    Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307:93–98PubMedGoogle Scholar
  99. 99.
    Nieminen AL, Saylor AK, Tesfai SA, Herman B, Lemasters JJ (1995) Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J 307(Pt 1):99–106PubMedGoogle Scholar
  100. 100.
    Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734PubMedCrossRefGoogle Scholar
  101. 101.
    Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111:194–197PubMedGoogle Scholar
  102. 102.
    Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658PubMedGoogle Scholar
  103. 103.
    Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833PubMedGoogle Scholar
  104. 104.
    Smith RA, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100:5407–5412PubMedGoogle Scholar
  105. 105.
    Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 264:687–701PubMedGoogle Scholar
  106. 106.
    Jauslin ML, Meier T, Smith RA, Murphy MP (2003) Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 17:1972–1974PubMedGoogle Scholar
  107. 107.
    Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596PubMedGoogle Scholar
  108. 108.
    Smith RA, Porteous CM, Coulter CV, Murphy MP (1999) Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263:709–716PubMedGoogle Scholar
  109. 109.
    Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19:1088–1095PubMedGoogle Scholar
  110. 110.
    Boveris A, Oshino N, Chance B (1972) The cellular production of hydrogen peroxide. Biochem J 128:617–630PubMedGoogle Scholar
  111. 111.
    Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344PubMedGoogle Scholar
  112. 112.
    Ganote CE, Armstrong SC (2003) Effects of CCCP-induced mitochondrial uncoupling and cyclosporin A on cell volume, cell injury and preconditioning protection of isolated rabbit cardiomyocytes. J Mol Cell Cardiol 35:749–759PubMedGoogle Scholar
  113. 113.
    Bienengraeber M, Ozcan C, Terzic A (2003) Stable transfection of UCP1 confers resistance to hypoxia/reoxygenation in a heart-derived cell line. J Mol Cell Cardiol 35:861–865PubMedGoogle Scholar
  114. 114.
    Teshima Y, Akao M, Jones SP, Marban E (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200PubMedGoogle Scholar
  115. 115.
    McLeod CJ, Aziz A, Hoyt RF Jr., McCoy JP Jr., Sack MN (2005) Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem 280:33470–33476PubMedGoogle Scholar
  116. 116.
    Elz JS, Nayler WG (1988) Calcium gain during postischemic reperfusion. The effect of 2,4- dinitrophenol. Am J Pathol 131:137–145PubMedGoogle Scholar
  117. 117.
    Ganote CE, McGarr J, Liu SY, Kaltenbach JP (1980) Oxygen-induced enzyme release. Assessment of mitochondrial function in anoxic myocardial injury and effects of the mitochondrial uncoupling agent 2,4-dinitrophenol (DNP). J Mol Cell Cardiol 12:387–408PubMedGoogle Scholar
  118. 118.
    Altschuld RA, Wenger WC, Lamka KG, Kindig OR, Capen CC, Mizushira V, Vander-Heide RS, Brierley GP (1985) Structural and functional properties of adult rat heart myocytes lysed with digitonin. J Biol Chem 260:14325–14334PubMedGoogle Scholar
  119. 119.
    Ganote CE, Armstrong SC (1993) Ischaemia and the myocyte cytoskeleton: review and speculation. Cardiovasc Res 27:1387–1403PubMedCrossRefGoogle Scholar
  120. 120.
    Siegmund B, Klietz T, Schwartz P, Piper HM (1991) Temporary contractile blockade prevents hypercontracture in anoxic-reoxygenated cardiomyocytes. Am J Physiol 260:H426–H435PubMedGoogle Scholar
  121. 121.
    Silverman HS, Stern MD (1994) Ionic basis of ischaemic cardiac injury: insights from cellular studies. Cardiovasc Res 28:581–597PubMedGoogle Scholar
  122. 122.
    Maurel A, Hernandez C, Kunduzova O, Bompart G, Cambon C, Parini A, Frances B (2003) Age-dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats. Am J Physiol Heart Circ Physiol 284:H1460–H1467PubMedGoogle Scholar
  123. 123.
    Bianchi P, Pimentel DR, Murphy MP, Colucci WS, Parini A (2005) A new hypertrophic mechanism of serotonin in cardiac myocytes: receptor-independent ROS generation. FASEB J 19:641–643PubMedGoogle Scholar
  124. 124.
    Pchejetski D, Kunduzova O, Dayon A, Calise D, Seguelas MH, Leducq N, Seif I, Parini A, Cuvillier O (2007) Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 100:41–49PubMedGoogle Scholar
  125. 125.
    Bianchi P, Kunduzova O, Masini E, Cambon C, Bani D, Raimondi L, Seguelas MH, Nistri S, Colucci W, Leducq N, Parini A (2005) Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 112:3297–3305PubMedGoogle Scholar
  126. 126.
    Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33:243–257PubMedGoogle Scholar
  127. 127.
    Taegtmeyer H, King LM, Jones BE (1998) Energy substrate metabolism, myocardial ischemia, and targets for pharmacotherapy. Am J Cardiol 82:54K–60KPubMedGoogle Scholar
  128. 128.
    Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129PubMedGoogle Scholar
  129. 129.
    Stanley WC, Sabbah HN (2005) Metabolic therapy for ischemic heart disease: the rationale for inhibition of fatty acid oxidation. Heart Fail Rev 10:275–279PubMedGoogle Scholar
  130. 130.
    Chandler MP, Chavez PN, McElfresh TA, Huang H, Harmon CS, Stanley WC (2003) Partial inhibition of fatty acid oxidation increases regional contractile power and efficiency during demand-induced ischemia. Cardiovasc Res 59:143–151PubMedGoogle Scholar
  131. 131.
    Kennedy JA, Kiosoglous AJ, Murphy GA, Pelle MA, Horowitz JD (2000) Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart. J Cardiovasc Pharmacol 36:794–801PubMedGoogle Scholar
  132. 132.
    Lopaschuk GD, Wall SR, Olley PM, Davies NJ (1988) Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 63:1036–1043PubMedGoogle Scholar
  133. 133.
    Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86:580–588PubMedGoogle Scholar
  134. 134.
    McCormack JG, Barr RL, Wolff AA, Lopaschuk GD (1996) Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation 93:135–142PubMedGoogle Scholar
  135. 135.
    Pantos C, Bescond-Jacquet A, Tzeis S, Paizis I, Mourouzis I, Moraitis P, Malliopoulou V, Politi ED, Karageorgiou H, Varonos D, Cokkinos DV (2005) Trimetazidine protects isolated rat hearts against ischemia-reperfusion injury in an experimental timing - dependent manner. Basic Res Cardiol 100:154–160PubMedGoogle Scholar
  136. 136.
    Bertomeu-Gonzalez V, Bouzas-Mosquera A, Kaski JC (2006) Role of trimetazidine in management of ischemic cardiomyopathy. Am J Cardiol 98:19J–24JPubMedGoogle Scholar
  137. 137.
    Sabbah HN, Stanley WC (2005) Metabolic therapy for heart disease: impact of trimetazidine. Heart Fail Rev 10:281–288PubMedGoogle Scholar
  138. 138.
    McVeigh JJ, Lopaschuk GD (1990) Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol 259:H1079–H1085PubMedGoogle Scholar
  139. 139.
    Taniguchi M, Wilson C, Hunter CA, Pehowich DJ, Clanachan AS, Lopaschuk GD (2001) Dichloroacetate improves cardiac efficiency after ischemia independent of changes in mitochondrial proton leak. Am J Physiol Heart Circ Physiol 280:H1762–H1769PubMedGoogle Scholar
  140. 140.
    Huelsmann WC, Siliprandi D, Ciman M, Siliprandi N (1964) Effect of carnitine on the oxidation of alpha-ketoglutarate to succinate in the presence of acetoacetate or pyruvate. Biochim Biophys Acta 93:166–168PubMedGoogle Scholar
  141. 141.
    Lysiak W, Lilly K, Di Lisa F, Toth PP, Bieber LL (1988) Quantitation of the effect of L-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria. J Biol Chem 263:1151–1156PubMedGoogle Scholar
  142. 142.
    Broderick TL, Quinney HA, Lopaschuk GD (1992) Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. J Biol Chem 267:3758–3763PubMedGoogle Scholar
  143. 143.
    Brevetti G, Di Lisa F, Perna S, Menabo R, Barbato R, Martone VD, Siliprandi N (1996) Carnitine-related alterations in patients with intermittent claudication: indication for a focused carnitine therapy. Circulation 93:1685–1689PubMedGoogle Scholar
  144. 144.
    Ferrari R, Cucchini F, Visioli O (1984) The metabolical effects of L-carnitine in angina pectoris. Int J Cardiol 5:213–216PubMedGoogle Scholar
  145. 145.
    Iliceto S, Scrutinio D, Bruzzi P, D’Ambrosio G, Boni L, Di BM, Biasco G, Hugenholtz PG, Rizzon P (1995) Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-Carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM) Trial. J Am Coll Cardiol 26:380–387PubMedGoogle Scholar
  146. 146.
    Ramsay RR, Arduini A (1993) The carnitine acyltransferases and their role in modulating acyl-CoA pools. Arch Biochem Biophys 302:307–314PubMedGoogle Scholar
  147. 147.
    Arduini A, Denisova N, Virmani A, Avrova N, Federici G, Arrigoni ME (1994) Evidence for the involvement of carnitine-dependent long-chain acyltransferases in neuronal triglyceride and phospholipid fatty acid turnover. J Neurochem 62:1530–1538PubMedGoogle Scholar
  148. 148.
    Arduini A, Mancinelli G, Radatti GL, Dottori S, Molajoni F, Ramsay RR (1992) Role of carnitine and carnitine palmitoyltransferase as integral components of the pathway for membrane phospholipid fatty acid turnover in intact human erythrocytes. J Biol Chem 267:12673–12681PubMedGoogle Scholar
  149. 149.
    Andrieu AN, Jaffrezou JP, Hatem S, Laurent G, Levade T, Mercadier JJ (1999) L-carnitine prevents doxorubicin-induced apoptosis of cardiac myocytes: role of inhibition of ceramide generation. FASEB J 13:1501–1510Google Scholar
  150. 150.
    Mutomba MC, Yuan H, Konyavko M, Adachi S, Yokoyama CB, Esser V, McGarry JD, Babior BM, Gottlieb RA (2000) Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine. FEBS Letters 478:19–25PubMedGoogle Scholar
  151. 151.
    Paumen MB, Ishida Y, Muramatsu M, Yamamoto M, Honjo T (1997) Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem 272:3324–3329PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Fabio Di Lisa
    • 1
    • 3
  • Marcella Canton
    • 1
  • Roberta Menabò
    • 3
  • Nina Kaludercic
    • 1
  • Paolo Bernardi
    • 2
    • 3
  1. 1.Dipartimento di Chimica BiologicaUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di Scienze Biomediche SperimentaliUniversità di PadovaPadovaItaly
  3. 3.Istituto di Neuroscienze del CNRUniversità di PadovaPadovaItaly

Personalised recommendations