Heart Failure Reviews

, Volume 11, Issue 2, pp 171–192

Surgical aspects of congestive heart failure

  • Daniel J. Goldstein
  • Douglas Smego
  • Robert E. Michler


Despite tremendous advances in the medical management of congestive heart failure the gold standard for the treatment of end stage congestive heart failure remains cardiac transplantation. The acknowledged critical limitation of sufficient suitable organ donors has resulted in the refinement and development of novel surgical alternatives for the treatment of congestive heart failure. These approaches include the extension of current conventional cardiac operations such as mitral valve repair to the failing ventricle, surgically reconstructing the size and shape of the failing left ventricle in order to optimize geometry and render it a more efficient pump, and partial or complete replacement of the ventricle with a mechanical device. The continued evolution of such therapies is likely to one day have a significant epidemiologic impact on patients suffering from end stage heart failure.


Congestive heart failure Surgical ventricular reconstruction (SVR) Mechanical devices LVADS Heart transplantation Passive and active restraint devices Mitral valve repair Aortic valve surgery Coronary artery bypass surgery High risk heart surgery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szucs, TD. The growing healthcare burden of CHF. J Renin Angiotensin Aldosterone Syst 2000;1(Suppl 1):2–6.PubMedGoogle Scholar
  2. 2.
  3. 3.
    Miller L, et al. Epidemiology of heart failure. Cardiol Clin 2001;19:547–55.PubMedCrossRefGoogle Scholar
  4. 4.
    American Heart Association. 2001 Heart and Stroke Statistical Update. Dallas, TX, American Heart Association, 2001.Google Scholar
  5. 5.
    O'Connell JB, et al. Economic impact of heart failure in the United States. J Heart Lung Transplantation 1994;13:S107–112.Google Scholar
  6. 6.
    Bolognese L, et al. Left ventricular remodeling after primary coronary angioplasty: Patterns of left ventricular dilation and long-term prognostic implications. Circulation 2002;106:2351–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Migrino RQ, et al. End-systolic volume index at 90 and 180 minutes into reperfusion therapy for acute myocardial infarction is a strong predictor of early and late mortality. Circulation 1997;96:116–21.PubMedGoogle Scholar
  8. 8.
    Sawada S, et al. Incremental value of myocardial viability for prediction of long-term prognosis in surgically revascularized patients with left ventricular dysfunction. J Am Coll Cardiol 2003;17:42(12):2106–8.CrossRefGoogle Scholar
  9. 9.
    Kang WJ, et al. Prognostic value of rest (201)Tl-dypiridamole stress (99m)Tc-sestamibi gated SPECT for predicting patient-based clinical outcomes after bypass surgery in patients with left ventricular dysfunction. J Nucl Med 2003;44(11):1735–40.PubMedGoogle Scholar
  10. 10.
    Pitt M, et al. Coronary artery surgery for ischemic heart failure:risks, benefits, and the importance of assessment of myocardial viability. Prog Cardiovasc Dis 2001;43(5):373–86.PubMedCrossRefGoogle Scholar
  11. 11.
    Ghesani M, et al. role of F-18 FDG positron emission tomography (PET) in the assessment of myocardial viability. Echocardiography 2005;22(2):165–77.PubMedCrossRefGoogle Scholar
  12. 12.
    Santana CA, et al. Incremental prognostic value of left ventricular function by myocardial ECG-gated FDG PET imaging in patients with ischemic cardiomyopathy. J Nucl Cardiol 2004;11(5):542–50.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang XJ, et al. Twenty-four hour thallium-201 late redistribution imaging enhances the detection of myocardial viability after myocardial infarction. Clin Imaging 2006;30:16–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Picano E, et al. Prognostic value of myocardial viability in medically treated patients with global left ventricular dysfunction early after and acute uncomplicated myocardial infarction: a dobutamine stress echoacrdiographic study. Circulation 1998;98(11):1078–84.PubMedGoogle Scholar
  15. 15.
    Sicari R, et al. Comparison of combination of dypiridamole and dobutamine during echocardiography with thallium scintigraphy to improve viability detection. Am J Cardiol 1999;83(1):6–10.PubMedCrossRefGoogle Scholar
  16. 16.
    Elliot MD, et al. Late gadolinium cardiovascular magnetic resonance in the assessment of myocardial viability. Coron Art Dis 2005;16(6):365–72.CrossRefGoogle Scholar
  17. 17.
    Casolo G, et al. Current perspective in the expanding role of cardiovascular magnetic resonance in the identification of myocardial viability. Itl Heart J 2005;6(8):619–28.Google Scholar
  18. 18.
    Allman KC, et al. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 2002;39(7):1159–62.CrossRefGoogle Scholar
  19. 19.
    Killip T, et al. Coronary Artery Surgery Surgery Study (CASS): a randomized trial of coronary bypass surgery. Eight years follow up and survival in patients with reduced ejection fraction. Circulation 1985;72:V102–109.PubMedGoogle Scholar
  20. 20.
    Hausmann H, et al. Decision making in end stage coronary artery disease; Revascularization or heart transplantation? Ann Thor Surg 1997;674:1296–302.CrossRefGoogle Scholar
  21. 21.
    Cleveland JC, et al. Off pulp coronary artery bypass grafting decreases risk adjusted mortality and morbidity. Ann Thorac Surg 2001;72:1282–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Arom KV, et al. Is low ejection fraction safe for off pump coronary bypass operation? Ann Thorac Surg 2000;70:1021–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Goldstein DJ, et al. Multi-vessel off pump revascularization in patients with severe left ventricular dysfunction. Eur J Cardiothorac Surg 2003;24:72–80.PubMedCrossRefGoogle Scholar
  24. 24.
    Christensen KL, et al. Aortic valve stenosis: Fatal natural history despite normal left ventricular function and low peak-to-peak pressure gradients. Cardiology 2004;102(3):147–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenhek R, et al. Mild and moderate aortic stenosis. Natural history and risk stratification by echocardiography. Eur Heart J 2004;25(3):199–205.PubMedCrossRefGoogle Scholar
  26. 26.
    Kennedy KD, et al. Natural history of moderate aortic stenosis. J Am Coll Cardiol 1991;17(2):313–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Horstkotte D, et al. The natural history of aortic valve stenosis. Eur Heart J 1988;9(Suppl E):57–64.PubMedGoogle Scholar
  28. 28.
    deFilippi CR, et al. Usefulness of dobutamine echocardiography in distinguishing severe from non-severe valvular aortic stenosis in patients with depressed left ventricular function and low transvalvular gradients. Am J Cardiol 1995;75:191–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Monin JL, et al. Aortic stenosis with severe ventricular dysfunction and low transvalvular pressure gradients: Risk stratification by low-dose dobutamine echocardiography. J Am Coll Cardiol 2001;37:2001–107.CrossRefGoogle Scholar
  30. 30.
    Pereira JJ, et al. Survival after aortic valve replacement for sefvere aortic stenosis with low transvalvular gradients and severe left ventricular dysfunction. J Am Coll Cardiol 2002;39:1356–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Powell DE, et al. Aortic valve replacement in patients with aortic stenosis and severe left ventricular dysfunction. Arch Intern Med 2000;160:1337–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Dujardin KS, et al. Mortality and morbidity of aortic regurgitation in clinical practice. A germ follow up study. Circulation 1999;99:1851–7.PubMedGoogle Scholar
  33. 33.
    Scheuble S, et al. Aortic insufficiency: defining the role of pharmacotherapy. Am J Cardiovasc Drugs 2005;5(2):113–20.PubMedCrossRefGoogle Scholar
  34. 34.
    Evangelista A, et al. Long-term vasodilator therapy in patients with severe aortic regurgitation. N Engl J Med 2005;353(13):1342–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Tavazzi L, Epidemiology of dilated cardiomyopathy: a still undetermined entity. Euro Heart J 1997;18:4–6.Google Scholar
  36. 36.
    Bolling S, Mitral reconstruction in cardiomyopathy. J Heart Valve Dis. 2002;11:S25–31.Google Scholar
  37. 37.
    Bolling S, et al. Intermediate term outcome of mitral reconstruction in cardiomyopathy. J Thorac Cardiovasc Surg 1998;115:381–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Cohn LH, et al. Comparative morbidity of mitral valve repair versus replacement for mitral regurgitation with and without coronary artery disease. Ann Thorac Surg 1995;60(5):1452–3.PubMedCrossRefGoogle Scholar
  39. 39.
    Kouris N, et al. Mitral valve repair versus replacement for isolated non-ischemic mitral regurgitation in patients with preoperative left ventricular dysfunction. A long-term follow-up echocardiographic study. Eur J Echocadiogr 2005;6(6):435–42.CrossRefGoogle Scholar
  40. 40.
    Carpentier A. Cardiac valve surgery—the “French correction”. J Thorac Cardiovasc Surg 1983;86(3):323–37.PubMedGoogle Scholar
  41. 41.
    Gorman JH 3rd, et al. Annuloplasty ring selection for chronic ischemic mitral regurgitation: lessons from the ovine model. Ann Thorac Surg 2005;79(2):752–3.CrossRefGoogle Scholar
  42. 42.
    Bolling S, et al. Early outcome of mitral valve reconstruction in patients with end stage cardiomyopathy. J Thorac Cardiovasc Surg 1995;109:676–83.PubMedCrossRefGoogle Scholar
  43. 43.
    Rothenburger M, et al. Mitral valve surgery in patients with poor left ventricular function. Thorac Cardiovasc Surg 2002;6:351–4.CrossRefGoogle Scholar
  44. 44.
    David TE, et al. Left ventricular function after mitral valve surgery. J Heart Valve Dis 1995;4(supp 2):S175–80.PubMedGoogle Scholar
  45. 45.
    DiDonato M, et al. Akinetic versus dyskinetic postinfarction scar: Relation to surgical outcome in patients undergoing endoventricular patch plasty repair. J Am Coll Cardiol 1997;29(7):1569–75.CrossRefGoogle Scholar
  46. 46.
    Lee TH, et al. Impact of left ventricular cavity size on survival in advanced heart failure. Am J Cardiol 1993;72:672–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Pfeffier MA, et al. Ventricular enlargement and reduced survival after myocardial infarction. Circulation 1987;75(suppl IV:IV-93-IV-97).Google Scholar
  48. 48.
    White HD, et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987;76:44–51.PubMedGoogle Scholar
  49. 49.
    Gaudron P, et al. Progressive left ventricular dysfunction and remodeling after MI. Circulation1993;87:755–63.PubMedGoogle Scholar
  50. 50.
    Batista, RJV et al. Partial left ventriculectomy to improve LV function. J Card Surg 1996;11:96–7.PubMedGoogle Scholar
  51. 51.
    Cooley DA, et al. Ventricular aneurysm after MI and surgical excision. JAMA 1958;167:557.Google Scholar
  52. 52.
    Jatene AD. Left ventricular aneurysmectomy. J Thorac Cardiovasc Surg 1985;89:321–31.PubMedGoogle Scholar
  53. 53.
    Dor V. Left ventricular aneurysms: the endoventricular circular patch plasty. Semin Thorac Cardiovasc Surg1997;9:123–30.PubMedGoogle Scholar
  54. 54.
    Athanasuleas CL, et al. Surgical anterior ventricular endocardial restoration in the dilated remodeled ventricle after anterior MI. RESTORE group. Am Coll Cardiol 2001;37:1999–209.CrossRefGoogle Scholar
  55. 55.
    Doenst T, et al. To STICH of not to STICH. J Thorac Cardiovasc Surg 2005;129:246–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Franco-Cereceda A, et al. Partial left ventriculectomy for dilated cardiomyopathy. J Thorac Cardiovasc Surg 2001:121:879–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Batista RJ, et al. Partial left ventriculectomy to improve left ventricular function in end-stage heart disease. J Card Surg 1996;11(2):96–7.PubMedGoogle Scholar
  58. 58.
    Batista RJ, et al. Partial left ventriculectomy to treat end-stage heart disease. Ann Thorac Surg 1997;64(3):634–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Schreuder JJ, et al. Left ventricular pressure-volume relationships before and after cardiomyoplasty in patients with heart failure. Circulation 1997;96(9):2978–86.PubMedGoogle Scholar
  60. 60.
    Kawaguchi AT, et al. Left ventricular volume reduction surgery: The 4th International Registry Report 2004. J Card Surg 2005;20(6):S5–11.PubMedCrossRefGoogle Scholar
  61. 61.
    Sabbah H. Effects of cardiac support device on reverse remodeling: molecular, biochemical and structural mechanisms. J Card Fail 2004;10(6 Suppl):S207–14.PubMedCrossRefGoogle Scholar
  62. 62.
    Rastogi S, et al. Reversal of maladaptive gene program in left ventricular myocardium of dogs with heart failure following long-term therapy with the Acorn Cardiac Support Device. Heart Fail Rev 2005 10(2):157–63.PubMedCrossRefGoogle Scholar
  63. 63.
    Gupta RC, et al. Improvement of cardiac sarcoplasmic reticulum calcium calcium cycling in dogs with heart failure following long-term therapy with the Acorn Cardiac Support Device. Heart Fail Rev 2005 10(2):149–55.PubMedCrossRefGoogle Scholar
  64. 64.
    Rastogi S, et al. Long-term therapy with the acorn cardiac support device normalizes gene expression of growth factors and gelatinases in dogs with heart failure. J Heart Lung Transpl 2005;24(10):1619–25.CrossRefGoogle Scholar
  65. 65.
    Takagaki M, et al. Novel device to change left ventricular shape for heart failure treatment: device design and implantation procedure. ASAIO J 2000;47(3):244–8.Google Scholar
  66. 66.
    McCarthy PM, et al: Device based change in left ventricular shape: a new concept for the treatment of dilated cardiomyopathy. J Thor Cardiovasc Surg 2001;122:482–90.CrossRefGoogle Scholar
  67. 67.
    Fukamachi K, et al. Initial safety and feasibility clinical trial of the myosplint device. J Card Surg 2005;20(6):S43–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Goldstein DJ, et al. Medical progress: implantable left ventricular assist devices. N Engl J Med 1998;339:1522–33.PubMedCrossRefGoogle Scholar
  69. 69.
    Ochiai Y, et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation 2002;106(12 Suppl):I198–202.PubMedCrossRefGoogle Scholar
  70. 70.
    Morgan JA, et al. Is severe right ventricular failure in left ventricular assist device recipients a risk factor for unsuccessful bridging to transplant and post-transplant mortality? Ann Thorac Surg 2004;77(3):859–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Morgan JA, et al. Does bridging to transplantation with a left ventricular assist device adversely affect posttransplantation survival? A comparative analysis of mechanical versus inotropic support. J Thorac Cardiovasc Surg 2003;126(4):1188–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Holman WL, et al. Treatment of end-stage heart disease with outpatient ventricular assist devices. Ann Thorac Surg 2002;73(5):1489–93.PubMedCrossRefGoogle Scholar
  73. 73.
    Rose EA, et al. Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.PubMedCrossRefGoogle Scholar
  74. 74.
    Goldstein DJ, et al. Safety and feasibility trial of the MicroMed DeBakey ventricular assist device as a bridge to transplantation. J Am Coll Cardiol 2005;45(6):962–3.PubMedCrossRefGoogle Scholar
  75. 75.
    Copeland JG, et al. Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med 2004;351(9):859–67.PubMedCrossRefGoogle Scholar
  76. 76.
    Dowling RD, et al. Initial experience with the AbioCor implantable replacement heart system. J Thorac Cardiovasc Surg 2004;127(1):131–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Goldstein DJ, et al. Cardiac allotransplantation. In: Rose EA, Stevenson LW (editors). Management of End Stage Heart Disease, ed I. Philadelphia. Lippincott-Raven, 1998, pp.177–185.Google Scholar
  78. 78.
    Massad M. Current trends in transplantation. Cardiology 2004;101:79–92.PubMedCrossRefGoogle Scholar
  79. 79.
    Menasche P, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003;41(7):1078–83.PubMedCrossRefGoogle Scholar
  80. 80.
    Pagani F, et al. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. J Am Coll Cardiol 2003;41:879–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Menasche P, et al. Autologous skeletal myoblast transplantation for cardiac insufficiency. First clinical case. Arch Mal Coeur Vaiss 2001;94(3):180–2.PubMedGoogle Scholar
  82. 82.
    Singla DK, et al. Transplantation of embryonic stem cells into the infracted mouse heart: formation of multiple cell types. J Moll Cell Cardiol 2006;40(1):195–200.CrossRefGoogle Scholar
  83. 83.
    Min JY, et al. Stem cell therapy in the aging hearts of Fisher 344 rats: synergistic effects on myogenesis and angiogenesis. J Throac Cardiovasc Surg 2005;130(2):547–53.CrossRefGoogle Scholar
  84. 84.
    Ruan W, et al. Assessment of left ventricular segmental function after autologous bone marrow stem cell transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging. Chin Med J 2005;118(14):1175–81.PubMedGoogle Scholar
  85. 85.
    Wollert KC, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infaction: the BOOST randomized controlled clinical trial. Lancet 2004;364(9429):141–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Fuchs S, et al. Safety and feasibility of transendocardial autologous bone marrow cell transplantation in patients with advanced heart disease. Am J Cardiol 2006;97(6):823–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Daniel J. Goldstein
    • 1
  • Douglas Smego
    • 2
  • Robert E. Michler
    • 3
  1. 1.Heart Transplantation and Mechanical Circulatory Support Programs, Associate Professor, Department of Cardiothoracic SurgeryMontefiore Medical Center/Albert Einstein College of MedicineNew York
  2. 2.Department of Cardiothoracic SurgeryMontefiore Medical Center/Albert Einstein College of MedicineNew York
  3. 3.Department of Cardiothoracic Surgery, Co-Director, Montefiore-Einstein Heart CenterMontefiore Medical Center/Albert Einstein College of MedicineNew York

Personalised recommendations