Heart Failure Reviews

, Volume 9, Issue 4, pp 337–345

Neurohormonal Intervention to Reduce Sudden Cardiac Death in Heart Failure: What is the Optimal Pharmacologic Strategy?



Sudden cardiac death (SCD) accounts for up to 50% of deaths in patients with heart failure (HF), depending on severity of symptomatic impairment and left ventricular dysfunction. Neurohormonal therapy directed at the renin-angiotensin-aldosterone system may reduce the propensity to SCD through improved hemodynamic responsiveness, reduced sympathetic tone in the myocardium and inhibition of cardiac remodelling. Angiotensin converting enzyme (ACE) inhibitors reduce overall mortality in chronic HF, the greatest benefit appearing to arises from reduction of HF progression rather than SCD. In HF patients who experience myocardial infarction (MI) reduced incidence in SCD may make a more marked contribution to the mortality benefits of ACE inhibition. Addition of beta-blocker therapy to ACE inhibition has consistently resulted in a reduction in SCD in patients with either mild-to-moderate or severe HF, and in the presence or absence of MI; the reduction in SCD is of the order of one-third versus placebo. Aldosterone blockade reduces the risk of SCD in advanced chronic heart failure (when added to ACE inhibitor) and in HF associated with acute MI (when given in addition to both ACE inhibitor and beta blocker). The evidence base suggests that for maximal SCD risk reduction in HF, beta-blocker therapy is advisable in combination with standard ACE inhibitor therapy, with addition of aldosterone blockade to this regimen for particular groups of heart failure patients.


heart failure sudden death sudden cardiac death ACE inhibition beta blocker aldosterone antagonism spironolactone eplerenone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Uretsky BF, Sheahan RG. Primary prevention of sudden cardiac death in heart failure: Will the solution be shocking? J Am Coll Cardiol 1997;30:1589–1597.CrossRefPubMedGoogle Scholar
  2. 2.
    Massie BM, Shah NB. Evolving trends in the epidemiologic factors in heart failure: Rationale for preventive strategies and comprehensive disease management. Am Heart J 1997;133:703–712.PubMedGoogle Scholar
  3. 3.
    Meissner MD, Akhtar M, Lehmann MH. Nonischemic sudden tachycardia in atherosclerotic death in atherosclerotic heart disease. Circulation 1992;85(Suppl 1):19–24.Google Scholar
  4. 4.
    Marcus FI, Cobb LA, Edwards JE, et al. Mechanism of death and prevalence of myocardial ischaemic symptoms in the terminal event after acute myocardial infarction. Am J Cardiol 1988;61:8–15.CrossRefPubMedGoogle Scholar
  5. 5.
    Luu M, Stevenson WG, Stevenson LW, et al. Diverse mechanisms of unexpected cardiac arrest in advanced heart failure. Circulation 1989;80:1675–1680.PubMedGoogle Scholar
  6. 6.
    Uretsky BF, Thygesen K, Armstrong PW, et al. Acute coronary findings at autopsy in heart failure patients with sudden death. Circulation 2000;102:611–616.PubMedGoogle Scholar
  7. 7.
    Ørn S, Cleland JGF, Romo M, Kjekshus J, Dickstein K. Recurrent infarction is the most common cause of death in patients with left ventricular dysfunction following myocardial infarction. Am. J. Med (in Press).Google Scholar
  8. 8.
    Stevenson WG, Sweeney MO. Arrhythmias and sudden death in heart failure. Jpn Circ J 1997;61:727–740.CrossRefPubMedGoogle Scholar
  9. 9.
    Singh BN. Significance and control of cardiac arrhythmias in patients with congestive cardiac failure. Heart Failure Rev 2002;7:285–300.CrossRefGoogle Scholar
  10. 10.
    Pratt CM, Greenway PS, Schoenfeld MH, et al. Exploration of the precision of classifying sudden cardiac death. Implications for the interpretation of clinical trials. Circulation 1996;93:519–524.PubMedGoogle Scholar
  11. 11.
    Hinkle LE Jr, Thaler HT. Clinical classification of cardiac deaths. Circulation 1982;65:457–464.PubMedGoogle Scholar
  12. 12.
    Bigger JT Jr, Fleiss JL, Kleiger R, et al. The relationships among ventricular arrhythmias, left ventricular dysfunction and mortality in the 2 years after myocardial infarction. Circulation 1984;69:250–258.PubMedGoogle Scholar
  13. 13.
    Franciosa JA, Wilen M, Ziesche S, et al. Survival in men with severe chronic left ventricular failure due to either coronary heart disease or idiopathic dilated cardiomyopathy. Am J Cardiol 1983;51:831–836.PubMedGoogle Scholar
  14. 14.
    Poole-Wilson PA, Uretsky BF, Thygesen K, et al. Mode of death in heart failure: Findings from the ATLAS trial. Heart 2003;89:42–48.CrossRefPubMedGoogle Scholar
  15. 15.
    Doval HC, Nul DR, Grancelli HD, et al. Nonsustained ventricular tachycardia in heart failure: Independent marker of increased mortality due to sudden death. GESICA-GEMA Investigators. Circulation 1996;94:3198–3203.PubMedGoogle Scholar
  16. 16.
    La Rovere MT, Pinna GD, Maestri R, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 2003;107:565–570.CrossRefPubMedGoogle Scholar
  17. 17.
    Weber KT. Aldosterone in congestive heart failure. N Engl J Med 2001;345:1689–1697.CrossRefPubMedGoogle Scholar
  18. 18.
    Kawai H, Fan TH, Dong E, et al. ACE inhibition improves cardiac NE uptake and attenuates sympathetic nerve terminal abnormalities in heart failure. Am J Physiol 1999;277:H1609–1617.PubMedGoogle Scholar
  19. 19.
    Struthers AD, Aldosterone: Cardiovascular assault. Am Heart J 2002;144:S2–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Williams SG, Tan LB. Aldosterone antagonists: Current and future perspectives. Curr Opin Cardiovasc Pulmon Renal Invest Drugs 2000;2:310–315.Google Scholar
  21. 21.
    Wit AL, Rosen MR. Pathophysiologic mechanisms of cardiac arrhythmias. Am Heart J 1983;106:798–811.CrossRefPubMedGoogle Scholar
  22. 22.
    Dzau VJ. Theodore Cooper Lecture: Tissue angiotensin and pathobiology of vascular disease: A unifying hypothesis. Hypertension 2001;37:1047–1052.PubMedGoogle Scholar
  23. 23.
    Erhardt LR. Endothelial dysfunction and cardiovascular disease: The promise of blocking the renin-angiotensin system. Int J Clin Pract 2003;57:211–218.PubMedGoogle Scholar
  24. 24.
    Koh KK, Bui MN, Hathaway L, et al. Mechanism by which quinapril improves vascular function in coronary artery disease. Am J Cardiol 1999;83:327–331.CrossRefPubMedGoogle Scholar
  25. 25.
    Ghiadoni L, Virdis A, Magagna A, et al. Effect of the angiotensin II type 1 receptor blocker candesartan on endothelial function in patients with essential hypertension. Hypertension 2000;35:501–506.PubMedGoogle Scholar
  26. 26.
    Gensini F, Padeletti L, Fatini C, et al. Angiotensin-converting enzyme and endothelial nitric oxide synthesis polymorphisms in patients with atrial fibrillation. Pacing Clin Electrophysiol 2003;26:295–298.CrossRefPubMedGoogle Scholar
  27. 27.
    Shi Y, Li D, Tardif JC, Nattel S. Enalapril effects on atrial remodeling and atrial fibrillation in experimental congestive heart failure. Cardiovasc Res 2002;54:456–461.CrossRefPubMedGoogle Scholar
  28. 28.
    Pedersen OD, Bagger H, Kober L, et al. Trandolapril reduces the incidence of atrial fibrillation after myocardial infarction in patients with left ventricular dysfunction. Circulation 1999;100:376–380.PubMedGoogle Scholar
  29. 29.
    Ranade V, Molnar J, Khokher T, et al. Effect of angiotensin-converting enzyme therapy on QT interval dispersion. Am J Ther 1999;6:257–261.PubMedGoogle Scholar
  30. 30.
    Barr CS, Naas A, Freeman M, et al. QT dispersion and sudden unexpected death in chronic heart failure. Lancet 1994;343:327–329.CrossRefPubMedGoogle Scholar
  31. 31.
    Manolis AJ, Beldekos D, Handanis S, et al. Comparison of spirapril, isradipine, or combination in hypertensive patients with left ventricular hypertrophy: Effects on LVH regression and arrthythmogenic propensity. Am J Hypertens 1998;11:640–648.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang L. ACE inhibitors suppress ischemia-induce arrhythmia by reducing the spatial dispersion of ventricular repolarization. Cardiology 1999;92:106–109.CrossRefPubMedGoogle Scholar
  33. 33.
    Hasija PK, Karloopia SD, Shahi BN, et al., Exercise-induced ventricular arrhythmias in congestive heart failure and role of ACE inhibitors. J Assoc Physicians India 1998;46:189–193.PubMedGoogle Scholar
  34. 34.
    The SOLVD Investigators, Effects of enalapril on survival in patients with reduced left ventricular ejection fraction and congestive heart failure. N Engl J Med 1991;325:293–302.Google Scholar
  35. 35.
    The CONSENSUS Trial Study Group, Effects of enalapril on mortality in severe congestive heart failure: Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987;316:1429–1435.Google Scholar
  36. 36.
    Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991;325:303–310.PubMedGoogle Scholar
  37. 37.
    Torp-Pedersen C, Kober L, Carlsen J. On behalf of the Trace Study Group, Angiotensin-converting enzyme inhibition after myocardial infarction: The Trandolapril Cardiac Evaluation study. Am Heart J 1996;132:235–243.CrossRefPubMedGoogle Scholar
  38. 38.
    Cleland JGF, Erhardt L, Murray G, et al. On behalf of the AIRE Study Investigators, Effect of ramipril on morbidity and mode of death among survivors of acute myocardial infarction with clinical evidence of heart failure. Eur Heart J 1997;18:41–51.PubMedGoogle Scholar
  39. 39.
    Ambrosioni E, Borghi C, Magnani B. For The Survival of Myocardial Infarction Long-Term Evaluation (SMILE) Study Investigators, The effect of the angiotensin-converting-enzyme inhibitor zofenopril on mortality and morbidity after anterior myocardial infarction. N Engl J Med 1995;332:80–85.CrossRefPubMedGoogle Scholar
  40. 40.
    Pfeffer MA, Braunwald E, Moyé LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 1992;327:669–677.PubMedGoogle Scholar
  41. 41.
    Dickstein K, Kjekshus J and the OPTIMAAL Steering Committee for the OPTIMAAL Study Group, Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: The OPTIMAAL randomised trial. Lancet 2002;360:752–760.CrossRefPubMedGoogle Scholar
  42. 42.
    Pfeffer MA, McMurray JJV, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 2003;349:1893–1906.CrossRefPubMedGoogle Scholar
  43. 43.
    Lichstein E, Morganroth J, Harrist R, et al. Effect of propranolol on ventricular arrhythmia. The beta-blocker heart attack trial experience. Circulation 1983;67:I5–10.PubMedGoogle Scholar
  44. 44.
    Goldstein S. For the BHAT Research Group, Propranolol therapy in patients with acute myocardial infarction: The Beta-Blocker Heart Attack Trial. Circulation 1983;67(Suppl 1):I53–156.PubMedGoogle Scholar
  45. 45.
    Dellsperger KC, Martins JB, Clothier JL, et al. Incidence of sudden cardiac death associated with coronary artery occlusion in dogs with hypertension and left ventricular hypertrophy is reduced by chronic β -adrenergic blockade. Circulation 1990;82:941–950.PubMedGoogle Scholar
  46. 46.
    Deedwania PC, Carbajal EV, Role of beta blockade in the treatment of myocardial ischemia. Am J Cardiol 1997;80(9B):23J–28J.CrossRefPubMedGoogle Scholar
  47. 47.
    Egstrup K. Silect ischemia and beta-blockade. Circulation 1991;84(Suppl 6):V184–192.Google Scholar
  48. 48.
    Haverkamp W, Gulker H, Hindricks G, et al. Effects of beta-blockade on the incidence of ventricular tachyarrhythmias during acute myocardial ischemia: Experimental findings and clinical implications. Basic Res Cardiol 1990;85(Suppl 1):293–303.PubMedGoogle Scholar
  49. 49.
    Patel J, Lee W, Fusilli L, et al. Anti-arrhythmic efficacy of beta-adrenergic blockade during ischemia in myocardium with scar. Am J Med Sci 1994;307:259–263.PubMedGoogle Scholar
  50. 50.
    Packer M, Bristow MR, Cohn JN, et al. for the US Carvedilol Heart Failure Study Group. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 1996;334:1349–1355.CrossRefPubMedGoogle Scholar
  51. 51.
    CIBIS Investigators and Committees. A randomized trial of β -blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). Circulation 1994;90:1765–1773.Google Scholar
  52. 52.
    CIBIS Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): A randomised trial. Lancet 1999;353:9–13.Google Scholar
  53. 53.
    Hjalmarson A, Goldstein S, Fagerberg B, et al. for the MERIT-HF Study Group. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: The Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). JAMA 2000;283:1295–1302.CrossRefPubMedGoogle Scholar
  54. 54.
    Hjalmarson A, Fagerberg B on behalf of the MERIT-HF Study Group. MERIT-HF mortality and morbidity data. Basic Res Cardiol 2000;95(Suppl 1):I98–103.CrossRefPubMedGoogle Scholar
  55. 55.
    The BEST Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med 2001;344:1659–1667.Google Scholar
  56. 56.
    Domanski MJ, Krause-Steinrauf H, Massie BM, et al. for the BEST Investigators. A comparative analysis of the results from 4 trials of β -blocker therapy for heart failure: BEST, CIBIS-II, MERIT-HF, and COPERNICUS. J Cardiac Failure 2003;9:354–362.CrossRefGoogle Scholar
  57. 57.
    Packer M, Fowler MB, Roecker EB, et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: Results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation 2002;106:2194–2199.CrossRefPubMedGoogle Scholar
  58. 58.
    Goldstein S, Fagerberg B, Hjalmarson A, et al. Metoprolol controlled release/extended release in patients with heart failure: Analysis of the experience in the MERIT-HF study. J Am Coll Cardiol 2001;38:932–938.CrossRefPubMedGoogle Scholar
  59. 59.
    Jánosi A, Ghali JK, Herliz J, et al. On behalf of the MERIT-HF Study Group, Metoprolol CR/XL in postmyocardial infarction patients with chronic heart failure: Experiences from MERIT-HF. Am Heart J 2003;146:721–728.CrossRefPubMedGoogle Scholar
  60. 60.
    The CAPRICORN Investigators. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: The CAPRICORN randomised trial. Lancet 2001;357:1385–1390.Google Scholar
  61. 61.
    MacFadyen RJ, Lee AF, Morton JJ, et al. How often are angiotensin II and aldosterone concentrations raised during chronic ACE inhibitor treatment in cardiac failure? Heart 1999;82:57–61.PubMedGoogle Scholar
  62. 62.
    Vantrimpont P, Rouleau JL, Ciampi A, et al. Two-year time course and significance of neurohumoral activation in the Survival and Ventricular Enlargement (SAVE) Study. Eur Heart J 1998;19:1552–1563.CrossRefPubMedGoogle Scholar
  63. 63.
    Weber KT, Aldosterone in congestive heart failure. N Engl J Med 2001;345:1689–1697.CrossRefPubMedGoogle Scholar
  64. 64.
    Tsuji H, Venditti FJ Jr, Evans JC, et al. The associations of levels of serum potassium and magnesium with ventricular premature complexes (the Framingham Heart Study). Am J Cardiol 1994;74:232–235.CrossRefPubMedGoogle Scholar
  65. 65.
    Gottlieb SS, Baruch L, Kukin ML, et al. Prognostic importance of the serum magnesium concentration in patients with congestive heart failure. J Am Coll Cardiol 1990;16:827–831.PubMedGoogle Scholar
  66. 66.
    Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 2000;101:594–597.PubMedGoogle Scholar
  67. 67.
    Farquharson CA, Struthers AD. Aldosterone induces acute endothelial dysfunction in vivo in humans: Evidence for an aldosterone-induced vasculopathy. Clin Sci (Lond) 2002;103:425–431.PubMedGoogle Scholar
  68. 68.
    Bauersachs J, Heck M, Fraccarollo D, et al. Addition of spironolactone to angiotensin-converting enzyme inhibition in heart failure improves endothelial vasomotor dysfunction: Role of vascular superoxide anion formation and endothelial nitric oxide synthase expression. J Am Coll Cardiol 2002;39:351–358.CrossRefPubMedGoogle Scholar
  69. 69.
    Heitzer T, Schlinzig T, Krohn K, et al. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001;104:2673–2678.PubMedGoogle Scholar
  70. 70.
    Suzuki G, Morita H, Mishima T, et al. Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure. Circulation 2002;106:2967–2972.CrossRefPubMedGoogle Scholar
  71. 71.
    Modena MG, Aveta P, Menozzi A, et al. Aldosterone inhibition limits collagen synthesis and progressive left ventricular enlargement after anterior myocardial infarction. Am Heart J 2001;141:41–46.CrossRefPubMedGoogle Scholar
  72. 72.
    Wang W. Chronic administration of aldosterone depresses baroreceptor reflex function in the dog. Hypertension 1994;24;571–575.PubMedGoogle Scholar
  73. 73.
    Yee KM, Struthers AD. Aldosterone blunts the baroreflex response in man. Clin Sci 1998;95:687–692.CrossRefPubMedGoogle Scholar
  74. 74.
    Barr CS, Lang CC, Hanson J, et al. Effects of adding spironolactone to an angiotensin-converting enzyme inhibitor in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 1995;76:1259–1265.CrossRefPubMedGoogle Scholar
  75. 75.
    MacFadyen RJ, Barr CS, Struthers AD. Aldosterone blockade reduces vascular collagen turnover, improves heart rate variability and reduces early morning rise in heart rate in heart failure patients. Cardiovasc Res 1997;35:30–34.CrossRefPubMedGoogle Scholar
  76. 76.
    Pitt B, Zannad F, Remme WJ, et al. for the Randomized Aldactone Evaluation Study Investigators. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999;341:709–717.CrossRefPubMedGoogle Scholar
  77. 77.
    Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003;348:1309–1321.CrossRefPubMedGoogle Scholar
  78. 78.
    Pitt B, Zannad F, Bittman R, et al. The EPHESUS Trial: Evaluation of eplerenone in the subgroup of patients with baseline left ventricular ejection fraction ≤30%. Journal of Cardiac Failure 2003;9(Suppl 1):S57.CrossRefGoogle Scholar
  79. 79.
    Advisory Council to Improve Outcomes Nationwide in Heart Failure, Consensus recommendations for the management of chronic heart failure. On behalf of the membership of the advisory council to improve outcomes nationwide in heart failure. Am J Cardiol 1999;83:1A–38A.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Senior Lecturer in Medicine/Consultant Physician, Coronary Care UnitLeicester Royal InfirmaryLeicesterUK
  2. 2.Department of Medicine & TherapeuticsUniversity of LeicesterLeicesterUK

Personalised recommendations