Heart Failure Reviews

, Volume 9, Issue 4, pp 241–254

Heart Failure Following Anterior Myocardial Infarction: An Indication for Ventricular Restoration, a Surgical Method to Reverse Post-Infarction Remodeling

  • Alfred W. H. StanleyJr.
  • Constantine L. Athanasuleas
  • Gerald D. Buckberg
  • The RESTORE Group


Anterior myocardial infarction produces abrupt left ventricular (LV) dysynergy and global systolic dysfunction. Rapid intense neurohumoral activation, infarct expansion, and early ventricular chamber dilatation all contribute to restoring a normal stroke volume despite a persistently depressed ejection fraction. Continued neurohumoral activation provokes late remodeling of the remote non-infarcted myocardium, characterized by an abnormal progressively increasing LV volume/mass ratio that leads to further LV remodeling.

Heart failure is a progressive disorder of LV remodeling. Heart failure from post-infarction remodeling is unique because of the persistent non-functioning scar that self- perpetuates abnormal loading conditions and neurohumoral activation. Medical therapy attenuates remodeling and improves survival but does not change the size of the scar. Surgical ventricular restoration to exclude the non-functioning infarct from the ventricular cavity decreases ventricular volumes, increases global ejection fraction, attenuates neurohumoral activation and yields an excellent 5-year survival. Combined medical and surgical therapy is recommended in this patient population.


post infarction remodeling neuroendocrine factors infarction scar LV culprit muscle remote muscle ventricular volume functional mitral regurgitation surgical ventricular restoration SVR ventricular restoration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mann DL. Mechanisms and models in heart failure: A combinatorial approach. Circulation 1999;100:999–1008.PubMedGoogle Scholar
  2. 2.
    Francis GS. Pathophysiology of chronic heart failure. Am J Med 2001;110(suppl 7A):37S–46S.CrossRefPubMedGoogle Scholar
  3. 3.
    Jessup M, Brozena S. Heart failure. N Engl J Med 2003;348:2007–2018.CrossRefPubMedGoogle Scholar
  4. 4.
    Gheorghiade M, Bonow RO. Chronic heart failure in the United States: A manifestation of coronary artery disease. Circulation 1998;97:282–289.PubMedGoogle Scholar
  5. 5.
    Heart and Stroke Statistical Update Dallas, American Heart Association. 2000, 2004. Ref Type: Report.Google Scholar
  6. 6.
    Kannel WB, Belanger AJ. Epidemiology of heart failure. Am Heart J 1991;121:951–957.CrossRefPubMedGoogle Scholar
  7. 7.
    Packer M. How should physicians view heart failure? The philosophical and physiological evolution of three conceptual models of the disease. Am J Cardiol 1993;71:3C–11C.CrossRefPubMedGoogle Scholar
  8. 8.
    Packer M. The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 1992;20:248–254.PubMedGoogle Scholar
  9. 9.
    Massie BM. 15 years of heart-failure trials: What have we learned? Lancet 1998;352(suppl 1):SI29–SI33.CrossRefPubMedGoogle Scholar
  10. 10.
    Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure. The PROMISE Study Research Group. N Engl J Med 1991;325:1468–1475.PubMedGoogle Scholar
  11. 11.
    Abraham W, Port J, Bristow MR. Neurohumoral Receptors in the Failing Heart. In: Heart Failure. New York: Churchill Livingston, 1997:127–141.Google Scholar
  12. 12.
    Bristow MR. The adrenergic nervous system in heart failure. N Engl J Med 1984;311:850–851.PubMedGoogle Scholar
  13. 13.
    Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med 1999;341:577–585.CrossRefPubMedGoogle Scholar
  14. 14.
    Seta Y, Shan K, Bozkurt B, Oral H, Mann DL. Basic mechanisms in heart failure: The cytokine hypothesis. J Card Fail 1996;2:243–249.CrossRefPubMedGoogle Scholar
  15. 15.
    Mann DL. Stress activated cytokines and the heart. Cytokine Growth Factor Rev 1996;7:341–354.CrossRefPubMedGoogle Scholar
  16. 16.
    Levine B, Kalman J, Mayer L, Fillit HM, Packer M. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323:236–241.PubMedGoogle Scholar
  17. 17.
    Sadoshima J, Izumo S. Molecular characterization of angiotensin II—induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 1993;73:413–423.PubMedGoogle Scholar
  18. 18.
    Everett AD, Tufro-McReddie A, Fisher A, Gomez RA. Angiotensin receptor regulates cardiac hypertrophy and transforming growth factor-beta 1 expression. Hypertension 1994;23:587–592.PubMedGoogle Scholar
  19. 19.
    Tyagi SC, Kumar S, Voelker DJ, Reddy HK, Janicki JS, Curtis JJ. Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem 1996;63:185–198.CrossRefPubMedGoogle Scholar
  20. 20.
    Li YY, Feldman AM, Sun Y, McTiernan CF. Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 1998;98:1728–1734.PubMedGoogle Scholar
  21. 21.
    Anversa P, Beghi C, Kikkawa Y, Olivetti G. Myocardial response to infarction in the rat. Morphometric measurement of infarct size and myocyte cellular hypertrophy. Am J Pathol 1985;118:484–492.PubMedGoogle Scholar
  22. 22.
    Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodeling after myocardial infarction. Am J Cardiol 1991;68:7D–16D.CrossRefPubMedGoogle Scholar
  23. 23.
    Francis GS, McDonald KM. Left ventricular hypertrophy: an initial response to myocardial injury. Am J Cardiol 1992;69:3G–7G.CrossRefPubMedGoogle Scholar
  24. 24.
    Weber KT, Pick R, Silver MA, et al. Fibrillar collagen and remodeling of dilated canine left ventricle. Circulation 1990;82:1387–1401.PubMedGoogle Scholar
  25. 25.
    Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ, III, Spinale FG. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 1998;97:1708–1715.PubMedGoogle Scholar
  26. 26.
    Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis: Functional significance and regulatory factors. Cardiovasc Res 1993;27:341–348.PubMedGoogle Scholar
  27. 27.
    Weber KT. Extracellular matrix remodeling in heart failure: A role for de novo angiotensin II generation. Circulation 1997;96:4065–4082.PubMedGoogle Scholar
  28. 28.
    Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling–concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 2000;35:569–582.CrossRefPubMedGoogle Scholar
  29. 29.
    Thomas KG, Redfield MM. Asymptomatic left ventricular dysfunction. Heart Failure Review 1997;2:11–22.CrossRefGoogle Scholar
  30. 30.
    Vasan RS, Larson MG, Benjamin EJ, Evans JC, Levy D. Left ventricular dilatation and the risk of congestive heart failure in people without myocardial infarction. N Engl J Med 1997;336:1350–1355.CrossRefPubMedGoogle Scholar
  31. 31.
    McDonagh TA, Morrison CE, Lawrence A, et al. Symptomatic and asymptomatic left-ventricular systolic dysfunction in an urban population. Lancet 1997;350:829–833.CrossRefPubMedGoogle Scholar
  32. 32.
    Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 1990;82:1724–1729.PubMedGoogle Scholar
  33. 33.
    Linzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol 1960;5:370–382.CrossRefPubMedGoogle Scholar
  34. 34.
    Douglas PS, Morrow R, Ioli A, Reichek N. Left ventricular shape, afterload and survival in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1989;13:311–315.PubMedGoogle Scholar
  35. 35.
    Mitchell GF, Lamas GA, Vaughan DE, Pfeffer MA. Left ventricular remodeling in the year after first anterior myocardial infarction: A quantitative analysis of contractile segment lengths and ventricular shape. J Am Coll Cardiol 1992;19:1136–1144.PubMedGoogle Scholar
  36. 36.
    Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 1990;81:1161–1172.PubMedGoogle Scholar
  37. 37.
    Rumberger JA, Behrenbeck T, Breen JR, Reed JE, Gersh BJ. Nonparallel changes in global left ventricular chamber volume and muscle mass during the first year after transmural myocardial infarction in humans. J Am Coll Cardiol 1993;21:673–682.PubMedGoogle Scholar
  38. 38.
    Rumberger JA. Ventricular dilatation and remodeling after myocardial infarction. Mayo Clin Proc 1994;69:664–674.PubMedGoogle Scholar
  39. 39.
    Bogaert J, Bosmans H, Maes A, Suetens P, Marchal G, Rademakers FE. Remote myocardial dysfunction after acute anterior myocardial infarction: Impact of left ventricular shape on regional function: A magnetic resonance myocardial tagging study. J Am Coll Cardiol 2000;35:1525–1534.CrossRefPubMedGoogle Scholar
  40. 40.
    Ingels NB Jr. Myocardial fiber architecture and left ventricular function. Technol Health Care 1997;5:45–52.PubMedGoogle Scholar
  41. 41.
    Katz AM. The Heart as a Muscular Pump. In: Physiology of the Heart. Lippincott, Williams, and Wilkins, 2001:398–417.Google Scholar
  42. 42.
    Unverferth DV, Magorien RD, Lewis RP, Leier CV. The role of subendocardial ischemia in perpetuating myocardial failure in patients with nonischemic congestive cardiomyopathy. Am Heart J 1983;105:176–179.CrossRefPubMedGoogle Scholar
  43. 43.
    Vatner SF. Reduced subendocardial myocardial perfusion as one mechanism for congestive heart failure. Am J Cardiol 1988;62:94E–98E.CrossRefPubMedGoogle Scholar
  44. 44.
    Shannon RP, Komamura K, Shen YT, Bishop SP, Vatner SF. Impaired regional subendocardial coronary flow reserve in conscious dogs with pacing-induced heart failure. Am J Physiol 1993;265:H801–H809.PubMedGoogle Scholar
  45. 45.
    Vatner SF, Hittinger L. Coronary vascular mechanisms involved in decompensation from hypertrophy to heart failure. J Am Coll Cardiol 1993;22:34A–40A.PubMedGoogle Scholar
  46. 46.
    Stanley AW, Jr., Athanasuleas CL, Buckberg GD. Left ventricular remodeling and functional mitral regurgitation: Mechanisms and therapy. Semin Thorac Cardiovasc Surg 2001;13:486–495.PubMedGoogle Scholar
  47. 47.
    Erbel R. Diagnostic Value of Transesophageal Echocardiography in Patients with Coronary Artery Disease and Mitral Insufficiency. In: Vetter H, Hetzer R, Schmutzler H, eds. Ischemic Mitral Incompetence. New York: Springer-Verlag, 1991:89–98.Google Scholar
  48. 48.
    Boltwood CM, Tei C, Wong M, Shah PM. Quantitative echocardiography of the mitral complex in dilated cardiomyopathy: The mechanism of functional mitral regurgitation. Circulation 1983;68:498–508.PubMedGoogle Scholar
  49. 49.
    Otsuji Y, Handschumacher MD, Schwammenthal E, et al. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: Direct in vivo demonstration of altered leaflet tethering geometry. Circulation 1997;96:1999–2008.PubMedGoogle Scholar
  50. 50.
    He S, Fontaine AA, Schwammenthal E, Yoganathan AP, Levine RA. Integrated mechanism for functional mitral regurgitation: Leaflet restriction versus coapting force: In vitro studies. Circulation 1997;96:1826–1834.PubMedGoogle Scholar
  51. 51.
    Yiu SF, Enriquez-Sarano M, Tribouilloy C, Seward JB, Tajik AJ. Determinants of the degree of functional mitral regurgitation in patients with systolic left ventricular dysfunction: A quantitative clinical study. Circulation 2000;102:1400–1406.PubMedGoogle Scholar
  52. 52.
    Levine RA. Dynamic mitral regurgitation–more than meets the eye. N Engl J Med 2004;351:1681–1684.CrossRefPubMedGoogle Scholar
  53. 53.
    Packer M, Lee WH, Kessler PD, Gottlieb SS, Bernstein JL, Kukin ML. Role of neurohormonal mechanisms in determining survival in patients with severe chronic heart failure. Circulation 1987;75:IV80–IV92.PubMedGoogle Scholar
  54. 54.
    Cohn JN, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984;311:819–823.PubMedGoogle Scholar
  55. 55.
    White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987;76:44–51.PubMedGoogle Scholar
  56. 56.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990;322:1561–1566.PubMedGoogle Scholar
  57. 57.
    Cohn JN. Structural basis for heart failure. Ventricular remodeling and its pharmacological inhibition. Circulation 1995;91:2504–2507.PubMedGoogle Scholar
  58. 58.
    Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 1991;325:293–302.Google Scholar
  59. 59.
    Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N Engl J Med 1987;316:1429–1435.Google Scholar
  60. 60.
    Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 1992;327:669–677.PubMedGoogle Scholar
  61. 61.
    Greenberg B, Quinones MA, Koilpillai C, et al. Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction. Results of the SOLVD echocardiography substudy. Circulation 1995;91:2573–2581.PubMedGoogle Scholar
  62. 62.
    Pfeffer MA, Lamas GA, Vaughan DE, Parisi AF, Braunwald E. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 1988;319:80–86.PubMedGoogle Scholar
  63. 63.
    Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Lancet 1993;342:821–828.Google Scholar
  64. 64.
    Kober L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med 1995;333:1670–1676.CrossRefPubMedGoogle Scholar
  65. 65.
    Beckwith C, Munger MA. Effect of angiotensin-converting enzyme inhibitors on ventricular remodeling and survival following myocardial infarction. Ann Pharmacother 1993;27:755–766.PubMedGoogle Scholar
  66. 66.
    Konstam MA, Kronenberg MW, Rousseau MF, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dilatation in patients with asymptomatic systolic dysfunction. SOLVD (Studies of Left Ventricular Dysfunction) Investigators. Circulation 1993;88:2277–2283.PubMedGoogle Scholar
  67. 67.
    Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. The SOLVD Investigattors. N Engl J Med 1992;327:685–691.Google Scholar
  68. 68.
    Konstam MA, Rousseau MF, Kronenberg MW, et al. Effects of the angiotensin converting enzyme inhibitor enalapril on the long-term progression of left ventricular dysfunction in patients with heart failure. SOLVD Investigators. Circulation 1992;86:431–438.PubMedGoogle Scholar
  69. 69.
    Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 1996;334:1349–1355.CrossRefPubMedGoogle Scholar
  70. 70.
    Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 1999;353:2001–2007.Google Scholar
  71. 71.
    The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): A randomised trial. Lancet 1999;353:9–13.Google Scholar
  72. 72.
    Bristow MR, Gilbert EM, Abraham WT, et al. Carvedilol produces dose-related improvements in left ventricular function and survival in subjects with chronic heart failure. MOCHA Investigators. Circulation 1996;94:2807–2816.PubMedGoogle Scholar
  73. 73.
    Waagstein F, Bristow MR, Swedberg K, et al. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Lancet 1993;342:1441–1446.CrossRefPubMedGoogle Scholar
  74. 74.
    Randomised, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischaemic heart disease. Australia/New Zealand Heart Failure Research Collaborative Group. Lancet 1997;349:375–380.Google Scholar
  75. 75.
    A randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). CIBIS Investigators and Committees. Circulation 1994;90:1765–1773.Google Scholar
  76. 76.
    Lowes BD, Gill EA, Abraham WT, et al. Effects of carvedilol on left ventricular mass, chamber geometry, and mitral regurgitation in chronic heart failure. Am J Cardiol 1999;83:1201–1205.CrossRefPubMedGoogle Scholar
  77. 77.
    Packer M, Colucci WS, Sackner-Bernstein JD, et al. Double-blind, placebo-controlled study of the effects of carvedilol in patients with moderate to severe heart failure. The PRECISE Trial. Prospective Randomized Evaluation of Carvedilol on Symptoms and Exercise. Circulation 1996;94:2793–2799.PubMedGoogle Scholar
  78. 78.
    Hall SA, Cigarroa CG, Marcoux L, Risser RC, Grayburn PA, Eichhorn EJ. Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade. J Am Coll Cardiol 1995;25:1154–1161.CrossRefPubMedGoogle Scholar
  79. 79.
    Colucci WS, Packer M, Bristow MR, et al. Carvedilol inhibits clinical progression in patients with mild symptoms of heart failure. US Carvedilol Heart Failure Study Group. Circulation 1996;94:2800–2806.PubMedGoogle Scholar
  80. 80.
    Waagstein F, Caidahl K, Wallentin I, Bergh CH, Hjalmarson A. Long-term beta-blockade in dilated cardiomyopathy. Effects of short- and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol. Circulation 1989;80:551–563.PubMedGoogle Scholar
  81. 81.
    Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 1999;341:709–717.CrossRefPubMedGoogle Scholar
  82. 82.
    Weber KT. Aldosterone in congestive heart failure. N Engl J Med 2001;345:1689–1697.CrossRefPubMedGoogle Scholar
  83. 83.
    Zannad F, Alla F, Dousset B, Perez A, Pitt B. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: Insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 2000;102:2700–2706.PubMedGoogle Scholar
  84. 84.
    Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res 2004;95:754–763.CrossRefPubMedGoogle Scholar
  85. 85.
    St John SM, Lee D, Rouleau JL, et al. Left ventricular remodeling and ventricular arrhythmias after myocardial infarction. Circulation 2003;107:2577–2582.CrossRefPubMedGoogle Scholar
  86. 86.
    American Heart Association. Heart Disease and Stroke Statistics—2003 Update. 2002. Dallas, Tx. Ref Type: ReportGoogle Scholar
  87. 87.
    Erlebacher JA, Weiss JL, Weisfeldt ML, Bulkley BH. Early dilation of the infarcted segment in acute transmural myocardial infarction: Role of infarct expansion in acute left ventricular enlargement. J Am Coll Cardiol 1984;4:201–208.PubMedGoogle Scholar
  88. 88.
    Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation 2000;101:2981–2988.PubMedGoogle Scholar
  89. 89.
    Rouleau JL, de Champlain J, Klein M, et al. Activation of neurohumoral systems in postinfarction left ventricular dysfunction. J Am Coll Cardiol 1993;22:390–398.PubMedGoogle Scholar
  90. 90.
    Warren SE, Royal HD, Markis JE, Grossman W, McKay RG. Time course of left ventricular dilation after myocardial infarction: Influence of infarct-related artery and success of coronary thrombolysis. J Am Coll Cardiol 1988;11:12–19.PubMedGoogle Scholar
  91. 91.
    Schwartz H, Leiboff RL, Katz RJ, et al. Arteriographic predictors of spontaneous improvement in left ventricular function after myocardial infarction. Circulation 1985;71:466–472.PubMedGoogle Scholar
  92. 92.
    Sasayama S, Fujita M. Recent insights into coronary collateral circulation. Circulation 1992;85:1197–1204.PubMedGoogle Scholar
  93. 93.
    Christian TF, Gibbons RJ, Clements IP, Berger PB, Selvester RH, Wagner GS. Estimates of myocardium at risk and collateral flow in acute myocardial infarction using electrocardiographic indexes with comparison to radionuclide and angiographic measures. J Am Coll Cardiol 1995;26:388–393.CrossRefPubMedGoogle Scholar
  94. 94.
    Weisman HF, Bush DE, Mannisi JA, Weisfeldt ML, Healy B. Cellular mechanisms of myocardial infarct expansion. Circulation 1988;78:186–201.PubMedGoogle Scholar
  95. 95.
    Gaudron P, Eilles C, Kugler I, Ertl G. Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential mechanisms and early predictors. Circulation 1993;87:755–763.PubMedGoogle Scholar
  96. 96.
    Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT. Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 1995;27:1281–1292.PubMedGoogle Scholar
  97. 97.
    Hutchins GM, Bulkley BH. Infarct expansion versus extension: Two different complications of acute myocardial infarction. Am J Cardiol 1978;41:1127–1132.CrossRefPubMedGoogle Scholar
  98. 98.
    Pirolo JS, Hutchins GM, Moore GW. Infarct expansion: Pathologic analysis of 204 patients with a single myocardial infarct. J Am Coll Cardiol 1986;7:349–354.PubMedGoogle Scholar
  99. 99.
    Picard MH, Wilkins GT, Gillam LD, Thomas JD, Weyman AE. Immediate regional endocardial surface expansion following coronary occlusion in the canine left ventricle: Disproportionate effects of anterior versus inferior ischemia. Am Heart J 1991;121:753–762.CrossRefPubMedGoogle Scholar
  100. 100.
    Role L, Bogen D, McMahon TA, Abelmann WH. Regional variations in calculated diastolic wall stress in rat left ventricle. Am J Physiol 1978;235:H247–H250.PubMedGoogle Scholar
  101. 101.
    Pfeffer MA. Left ventricular remodeling after acute myocardial infarction. Annu Rev Med 1995;46:455–466.CrossRefPubMedGoogle Scholar
  102. 102.
    Tennant R, Wiggers CJ. The effect of coronary occlusion on myocardial contraction. American Journal of Physiology 1935;112:351.Google Scholar
  103. 103.
    Theroux P, Ross J, Jr., Franklin D, Covell JW, Bloor CM, Sasayama S. Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circ Res 1977;40:158–165.PubMedGoogle Scholar
  104. 104.
    Kloner RA, Ellis SG, Lange R, Braunwald E. Studies of experimental coronary artery reperfusion. Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 1983;68:I8–15.PubMedGoogle Scholar
  105. 105.
    Forman MB, Virmani R, Puett DW. Mechanisms and therapy of myocardial reperfusion injury. Circulation 1990;81:IV69–IV78.PubMedGoogle Scholar
  106. 106.
    Sonnenblick EH. Correlation of myocardial ultrastructure and function. Circulation 1968;38:29–44.PubMedGoogle Scholar
  107. 107.
    Streeter DD, Jr., Vaishnav RN, Patel DJ, Spotnitz HM, Ross J, Jr., Sonnenblick EH. Stress distribution in the canine left ventricle during diastole and systole. Biophys J 1970;10:345–363.PubMedGoogle Scholar
  108. 108.
    Weiss HR, Neubauer JA, Lipp JA, Sinha AK. Quantitative determination of regional oxygen consumption in the dog heart. Circ Res 1978;42:394–401.PubMedGoogle Scholar
  109. 109.
    Weiss HR. Regional oxygen consumption and supply in the dog heart: Effect of atrial pacing. Am J Physiol 1979;236:H231–H237.PubMedGoogle Scholar
  110. 110.
    Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 1960;70:68–78.PubMedGoogle Scholar
  111. 111.
    Reimer KA, JENNINGS RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 1979;40:633–644.PubMedGoogle Scholar
  112. 112.
    Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation 1977;56:786–794.PubMedGoogle Scholar
  113. 113.
    Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI). Lancet 1986;1:397–402.Google Scholar
  114. 114.
    Randomised trial of intravenous streptokinase, oral aspirin, both, or neither among 17,187 cases of suspected acute myocardial infarction: ISIS-2. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Lancet 1988;2:349–360.Google Scholar
  115. 115.
    Indications for fibrinolytic therapy in suspected acute myocardial infarction: Collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists’ (FTT) Collaborative Group. Lancet 1994;343:311–322.Google Scholar
  116. 116.
    Serruys PW, Simoons ML, Suryapranata H, et al. Preservation of global and regional left ventricular function after early thrombolysis in acute myocardial infarction. J Am Coll Cardiol 1986;7:729–742.PubMedGoogle Scholar
  117. 117.
    Tiefenbrunn AJ. Clinical benefits of thrombolytic therapy in acute myocardial infarction. Am J Cardiol 1992;69:3A–11A.CrossRefPubMedGoogle Scholar
  118. 118.
    The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. TIMI Study Group. N Engl J Med 1985;312:932–936.Google Scholar
  119. 119.
    Lenderink T, Simoons ML, Van Es GA, Van de WF, Verstraete M, Arnold AE. Benefit of thrombolytic therapy is sustained throughout five years and is related to TIMI perfusion grade 3 but not grade 2 flow at discharge. The European Cooperative Study Group. Circulation 1995;92:1110–1116.PubMedGoogle Scholar
  120. 120.
    Gibson CM, Cannon CP, Daley WL, et al. TIMI frame count: A quantitative method of assessing coronary artery flow. Circulation 1996;93:879–888.PubMedGoogle Scholar
  121. 121.
    de Boer MJ, Hoorntje JC, Ottervanger JP, Reiffers S, Suryapranata H, Zijlstra F. Immediate coronary angioplasty versus intravenous streptokinase in acute myocardial infarction: Left ventricular ejection fraction, hospital mortality and reinfarction. J Am Coll Cardiol 1994;23:1004–1008.PubMedGoogle Scholar
  122. 122.
    Grines CL, Browne KF, Marco J, et al. A comparison of immediate angioplasty with thrombolytic therapy for acute myocardial infarction. The Primary Angioplasty in Myocardial Infarction Study Group. N Engl J Med 1993;328:673–679.CrossRefPubMedGoogle Scholar
  123. 123.
    Zijlstra F, de Boer MJ, Hoorntje JC, Reiffers S, Reiber JH, Suryapranata H. A comparison of immediate coronary angioplasty with intravenous streptokinase in acute myocardial infarction. N Engl J Med 1993;328:680–684.CrossRefPubMedGoogle Scholar
  124. 124.
    O’Neill WW, Brodie BR, Ivanhoe R, et al. Primary coronary angioplasty for acute myocardial infarction (the Primary Angioplasty Registry). Am J Cardiol 1994;73:627–634.CrossRefPubMedGoogle Scholar
  125. 125.
    Grines CL, O’Neill WW. Primary angioplasty. Br Heart J 1995;73:405–406.PubMedGoogle Scholar
  126. 126.
    Stone GW, Grines CL, Browne KF, et al. Implications of recurrent ischemia after reperfusion therapy in acute myocardial infarction: A comparison of thrombolytic therapy and primary angioplasty. J Am Coll Cardiol 1995;26:66–72.CrossRefPubMedGoogle Scholar
  127. 127.
    Granger CB, Califf RM, Topol EJ. Thrombolytic therapy for acute myocardial infarction. A review. Drugs 1992;44:293–325.PubMedGoogle Scholar
  128. 128.
    Rentrop KP. Restoration of anterograde flow in acute myocardial infarction: The first 15 years. J Am Coll Cardiol 1995;25:1S–2S.CrossRefPubMedGoogle Scholar
  129. 129.
    Jeremy RW, Hackworthy RA, Bautovich G, Hutton BF, Harris PJ. Infarct artery perfusion and changes in left ventricular volume in the month after acute myocardial infarction. J Am Coll Cardiol 1987;9:989–995.PubMedGoogle Scholar
  130. 130.
    Touchstone DA, Beller GA, Nygaard TW, Tedesco C, Kaul S. Effects of successful intravenous reperfusion therapy on regional myocardial function and geometry in humans: A tomographic assessment using two-dimensional echocardiography. J Am Coll Cardiol 1989;13:1506–1513.PubMedGoogle Scholar
  131. 131.
    Athanasuleas CL, Stanley AW Jr, Buckberg GD. Restoration of contractile function in the enlarged left ventricle by exclusion of remodeled akinetic anterior segment: Surgical strategy, myocardial protection, and angiographic results. J Card Surg 1998;13:418–428.PubMedGoogle Scholar
  132. 132.
    Buckberg GD. Defining the relationship between akinesia and dyskinesia and the cause of left ventricular failure after anterior infarction and reversal of remodeling to restoration. J Thorac Cardiovasc Surg 1998;116:47–49.PubMedGoogle Scholar
  133. 133.
    White HD, Cross DB, Elliott JM, Norris RM, Yee TW. Long-term prognostic importance of patency of the infarct-related coronary artery after thrombolytic therapy for acute myocardial infarction. Circulation 1994;89:61–67.PubMedGoogle Scholar
  134. 134.
    Leung WH, Lau CP. Effects of severity of the residual stenosis of the infarct-related coronary artery on left ventricular dilation and function after acute myocardial infarction. J Am Coll Cardiol 1992;20:307–313.PubMedGoogle Scholar
  135. 135.
    Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E. Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction. Effects on systolic function. Circ Res 1981;49:618–626.PubMedGoogle Scholar
  136. 136.
    Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 1975;56:56–64.PubMedGoogle Scholar
  137. 137.
    Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem 1992;267:10551–10560.PubMedGoogle Scholar
  138. 138.
    Yamazaki T, Komuro I, Kudoh S, et al. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res 1995;77:258–265.PubMedGoogle Scholar
  139. 139.
    Kapadia SR, Oral H, Lee J, Nakano M, Taffet GE, Mann DL. Hemodynamic regulation of tumor necrosis factor-alpha gene and protein expression in adult feline myocardium. Circ Res 1997;81:187–195.PubMedGoogle Scholar
  140. 140.
    Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977–984.PubMedGoogle Scholar
  141. 141.
    Gaasch WH. Left ventricular radius to wall thickness ratio. Am J Cardiol 1979;43:1189–1194.CrossRefPubMedGoogle Scholar
  142. 142.
    Ross J, Jr. Mechanisms of cardiac contraction. What roles for preload, afterload and inotropic state in heart failure? Eur Heart J 1983;4(suppl A): 19–28.Google Scholar
  143. 143.
    Ross J, Jr. Afterload mismatch in aortic and mitral valve disease: Implications for surgical therapy. J Am Coll Cardiol 1985;5:811–826.PubMedGoogle Scholar
  144. 144.
    Ross J, Jr. Afterload mismatch and preload reserve: A conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis 1976;18:255–264.CrossRefPubMedGoogle Scholar
  145. 145.
    Dor V, Saab M, Coste P, Kornaszewska M, Montiglio F. Left ventricular aneurysm: A new surgical approach. Thorac Cardiovasc Surg 1989;37:11–19.PubMedGoogle Scholar
  146. 146.
    Athanasuleas CL, Stanley AW, Jr., Buckberg GD, Dor V, DiDonato M, Blackstone EH. Surgical anterior ventricular endocardial restoration (SAVER) in the dilated remodeled ventricle after anterior myocardial infarction. RESTORE group. Reconstructive Endoventricular Surgery, returning Torsion Original Radius Elliptical Shape to the LV. J Am Coll Cardiol 2001;37:1199–1209.CrossRefPubMedGoogle Scholar
  147. 147.
    Athanasuleas CL, Buckberg GD, Stanley AW, et al. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J Am Coll Cardiol 2004;44:1439–1445.CrossRefPubMedGoogle Scholar
  148. 148.
    Di Donato M, Sabatier M, Dor V, et al. Effects of the Dor procedure on left ventricular dimension and shape and geometric correlates of mitral regurgitation one year after surgery. J Thorac Cardiovasc Surg 2001;121:91–96.CrossRefPubMedGoogle Scholar
  149. 149.
    Dor V. Reconstructive left ventricular surgery for post-ischemic akinetic dilatation. Semin Thorac Cardiovasc Surg 1997;9:139–145.PubMedGoogle Scholar
  150. 150.
    Dor V, Di Donato M, Sabatier M, Montiglio F, Civaia F. Left ventricular reconstruction by endoventricular circular patch plasty repair: A 17-year experience. Semin Thorac Cardiovasc Surg 2001;13:435–447.PubMedGoogle Scholar
  151. 151.
    Di Donato M, Sabatier M, Toso A, et al. Regional myocardial performance of non-ischaemic zones remote from anterior wall left ventricular aneurysm. Effects of aneurysmectomy. Eur Heart J 1995;16:1285–1292.PubMedGoogle Scholar
  152. 152.
    Schenk S, McCarthy PM, Starling RC, et al. Neurohormonal response to left ventricular reconstruction surgery in ischemic cardiomyopathy. J Thorac Cardiovasc Surg 2004;128:38–43.CrossRefPubMedGoogle Scholar
  153. 153.
    Braunwald E, Kloner RA. The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–1149.PubMedGoogle Scholar
  154. 154.
    Rahimtoola SH. The hibernating myocardium. Am Heart J 1989;117:211–221.CrossRefPubMedGoogle Scholar
  155. 155.
    Rahimtoola SH. The hibernating myocardium in ischaemia and congestive heart failure. Eur Heart J 1993;14(suppl A): 22–26.Google Scholar
  156. 156.
    Van Dantzig JM, Delemarre BJ, Koster RW, Bot H, Visser CA. Pathogenesis of mitral regurgitation in acute myocardial infarction: Importance of changes in left ventricular shape and regional function. Am Heart J 1996;131:865–871.CrossRefPubMedGoogle Scholar
  157. 157.
    Grigioni F, Enriquez-Sarano M, Zehr KJ, Bailey KR, Tajik AJ. Ischemic mitral regurgitation: Long-term outcome and prognostic implications with quantitative Doppler assessment. Circulation 2001;103:1759–1764.PubMedGoogle Scholar
  158. 158.
    Qin JX, Shiota T, McCarthy PM, et al. Importance of mitral valve repair associated with left ventricular reconstruction for patients with ischemic cardiomyopathy: A real-time three-dimensional echocardiographic study. Circulation 2003;108(suppl 1): II241–II246.CrossRefPubMedGoogle Scholar
  159. 159.
    Di Donato M, Sabatier M, Dor V, et al. Effects of the Dor procedure on left ventricular dimension and shape and geometric correlates of mitral regurgitation one year after surgery. J Thorac Cardiovasc Surg 2001;121:91–96.CrossRefPubMedGoogle Scholar
  160. 160.
    Bolling SF. Mitral valve reconstruction in the patient with heart failure. Heart Fail Rev 2001;6:177–185.CrossRefPubMedGoogle Scholar
  161. 161.
    Migrino RQ, Young JB, Ellis SG, et al. End-systolic volume index at 90 to 180 minutes into reperfusion therapy for acute myocardial infarction is a strong predictor of early and late mortality. The Global Utilization of Streptokinase and t-PA for Occluded Coronary Arteries (GUSTO)-I Angiographic Investigators. Circulation 1997;96:116–121.PubMedGoogle Scholar
  162. 162.
    Thohan V. Prognostic implications of echocardiography in advanced heart failure. Curr Opin Cardiol 2004;19:238–249.CrossRefPubMedGoogle Scholar
  163. 163.
    Baer FM, Theissen P, Schneider CA, et al. MRI assessment of myocardial viability: Comparison with other imaging techniques. Rays 1999;24:96–108.PubMedGoogle Scholar
  164. 164.
    Mari C, Strauss WH. Detection and characterization of hibernating myocardium. Nucl Med Commun 2002;23:311–322.CrossRefPubMedGoogle Scholar
  165. 165.
    Segall G. Assessment of myocardial viability by positron emission tomography. Nucl Med Commun 2002;23:323–330.CrossRefPubMedGoogle Scholar
  166. 166.
    Mabuchi M, Kubo N, Morita K, et al. Prediction of functional recovery after coronary bypass surgery using quantitative gated myocardial perfusion SPECT. Nucl Med Commun 2003;24:625–631.CrossRefPubMedGoogle Scholar
  167. 167.
    Matsunari I, Taki J, Nakajima K, Tonami N, Hisada K. Myocardial viability assessment using nuclear imaging. Ann Nucl Med 2003;17:169–179.PubMedGoogle Scholar
  168. 168.
    Pierard LA, De Landsheere CM, Berthe C, Rigo P, Kulbertus HE. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: Comparison with positron emission tomography. J Am Coll Cardiol 1990;15:1021–1031.PubMedGoogle Scholar
  169. 169.
    Watada H, Ito H, Oh H, et al. Dobutamine stress echocardiography predicts reversible dysfunction and quantitates the extent of irreversibly damaged myocardium after reperfusion of anterior myocardial infarction. J Am Coll Cardiol 1994;24:624–630.PubMedGoogle Scholar
  170. 170.
    Smart SC. The clinical utility of echocardiography in the assessment of myocardial viability. J Nucl Med 1994;35:49S–58S.PubMedGoogle Scholar
  171. 171.
    Thomson LE, Kim RJ, Judd RM. Magnetic resonance imaging for the assessment of myocardial viability. J Magn Reson Imaging 2004;19:771–788.CrossRefPubMedGoogle Scholar
  172. 172.
    Mahrholdt H, Wagner A, Parker M, et al. Relationship of contractile function to transmural extent of infarction in patients with chronic coronary artery disease. J Am Coll Cardiol 2003;42:505–512.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Alfred W. H. StanleyJr.
    • 1
  • Constantine L. Athanasuleas
    • 1
  • Gerald D. Buckberg
    • 2
    • 3
  • The RESTORE Group
  1. 1.Kemp-Carraway Heart Institute and Center for Heart Failure ManagementCarraway Methodist Medical CenterBirminghamUSA
  2. 2.David Geffen School of Medicine at UCLALos AngelesUSA
  3. 3.School of Medicine at UCLALos AngelesUSA

Personalised recommendations