Heart Failure Reviews

, Volume 10, Issue 3, pp 237–248

Sarcomeric Proteins and Familial Hypertrophic Cardiomyopathy: Linking Mutations in Structural Proteins to Complex Cardiovascular Phenotypes



Hypertrophic Cardiomyopathy (HCM) is a relatively common primary cardiac disorder defined as the presence of a hypertrophied left ventricle in the absence of any other diagnosed etiology. HCM is the most common cause of sudden cardiac death in young people which often occurs without precedent symptoms. The overall clinical phenotype of patients with HCM is broad, ranging from a complete lack of cardiovascular symptoms to exertional dyspnea, chest pain, and sudden death, often due to arrhythmias. To date, 270 independent mutations in nine sarcomeric protein genes have been linked to Familial Hypertrophic Cardiomyopathy (FHC), thus the clinical variability is matched by significant genetic heterogeneity. While the final clinical phenotype in patients with FHC is a result of multiple factors including modifier genes, environmental influences and genotype, initial screening studies had suggested that individual gene mutations could be linked to specific prognoses. Given that the sarcomeric genes linked to FHC encode proteins with known functions, a vast array of biochemical, biophysical and physiologic experimental approaches have been applied to elucidate the molecular mechanisms that underlie the pathogenesis of this complex cardiovascular disorder. In this review, to illustrate the basic relationship between protein dysfunction and disease pathogenesis we focus on representative gene mutations from each of the major structural components of the cardiac sarcomere: the thick filament (β MyHC), the thin filament (cTnT and Tm) and associated proteins (MyBP-C). The results of these studies will lead to a better understanding of FHC and eventually identify targets for therapeutic intervention.

Key Words

hypertrophic cardiomyopathy sarcomeric proteins transgenic models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Teare D. Asymmetrical hypertrophy of the heart in young adults. British Heart Journal 1958;20:1–8.PubMedGoogle Scholar
  2. 2.
    Maron BJ. Hypertrophic cardiomyopathy: A systematic review 2002;287:1308–1320.Google Scholar
  3. 3.
    Mogensen J, Bahl A, McKenna WJ. Hypertrophic cardiomyopathy-the clinical challenge of managing a hereditary heart condition. Eur Heart J 2003;24:496–498.CrossRefPubMedGoogle Scholar
  4. 4.
    McKenna WJ, Behr ER. Hypertrophic cardiomyopathy: Management, risk stratification, and prevention of sudden death. Heart 2002;87:169–176.CrossRefPubMedGoogle Scholar
  5. 5.
    Hughes SE, McKenna WJ. New insights into the pathology of inherited cardiomyopathy. Heart 2005;91:257–264.CrossRefPubMedGoogle Scholar
  6. 6.
    Maron BJ, Spirito P, Wesley Y, Arce J. Development and progression of left ventricular hypertrophy in children with hypertrophic cardiomyopathy. New England Journal of Medicine 1986;315:610–614.PubMedGoogle Scholar
  7. 7.
    Geisterfer-Lowrance AAT, Kass S, Tanigawa G, Vosberg H-P, McKenna W, Seidman CE, Seidman JGA. Molecular basis for familial hypertrophic cardiomyopathy. A á cardiac myosin heavy chain gene missense mutation. Cell 1990;62:999–1006.PubMedGoogle Scholar
  8. 8.
    Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg H-P, Seidman JG, Seidman CE. à-Tropomyosin and cardiac troponin t mutations cause familial hypertrophic cardiomyopathy: A disease of the sarcomere. Cell 1994;77:701–712.CrossRefPubMedGoogle Scholar
  9. 9.
    Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet 1995;11:434–437.CrossRefPubMedGoogle Scholar
  10. 10.
    Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Beckmann J, Weissenbach J, Vosberg H-P, Fiszman M, Komajda M, Schwartz K. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nature Genetics 1995;11:438–440.CrossRefPubMedGoogle Scholar
  11. 11.
    Nakajima-Taniguchi C, Matsui H, Nagata S, Kishimoto T, Yamauchi-Takihara K. Novel missense mutation in à-tropomyosin gene in Japanese patients with hypertrophic cardiomyopathy 1995;27:2053–2058.Google Scholar
  12. 12.
    Poetter K, Jiang H, Hassanzadeh S, Master SR, Chang A, Dalakas MC, Rayment I, Sellers JR, Fananapazir L, Epstein ND. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nature Genetics 1996;13:63–69i.CrossRefPubMedGoogle Scholar
  13. 13.
    Kimura A, Harada H, Park JE, Nishi H, Satoh M, Takahashi M, Hiroi S, Sasaoka T, Ohbuchi N, Nakamura T, Koyanagi T, Hwang TH, Choo JA, Chung KS, Hasegawa A, Nagai R, Okazaki O, Nakamura H, Matsuzaki M, Sakamoto T, Toshima H, Koga Y, Imaizumi T, Sasazuki T. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. 1997;16:379–382.Google Scholar
  14. 14.
    Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A. Structural analysis of the titin gene in hypertrophic cardiomyopathy: Identification of a novel disease gene. Biochemical and Biophysical Research Communications 1999;262:411–417.CrossRefPubMedGoogle Scholar
  15. 15.
    Olson TM, Doan TP, Kishimoto NY, Whitby FG, Ackerman MJ, Fananapazir L. Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J Mol Cell Cardiol 2000;32:1687–1694.CrossRefPubMedGoogle Scholar
  16. 16.
    Michele DE, Metzger JM. Physiological consequences of tropomyosin mutations associated with cardiac and skeletal myopathies. J Mol Med 2000;78:543–553.CrossRefPubMedGoogle Scholar
  17. 17.
    Marian AJ, Roberts R The molecular genetic basis for hypertrophic cardiomyopathy. J Mol Cell Cardiol 2001;33: 655–670.CrossRefPubMedGoogle Scholar
  18. 18.
    Fatkin D, Graham RM. Molecular mechanisms of inherited cardiomyopathies. Physiol Rev 2002;82:945–980.PubMedGoogle Scholar
  19. 19.
    Gomes AV, Potter JD. Molecular and cellular aspects of troponin cardiomyopathies. Ann N Y Acad Sci 2004;1015:214–224.CrossRefPubMedGoogle Scholar
  20. 20.
    Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M. Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 2003;107,2227–2232.CrossRefPubMedGoogle Scholar
  21. 21.
    Watkins H, Rosenzweig A, Hwang DS, Levi T, McKenna W, Seidman CE, Seidman, JG. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 1992;326:1108–1114.PubMedGoogle Scholar
  22. 22.
    Blair E, Redwood C, de Jesus Oliveira M, Moolman-Smook JC, Brink P, Corfield VA, Ostman-Smith I, Watkins H. Mutations of the light meromyosin domain of the beta-myosin heavy chain rod in hypertrophic cardiomyopathy. Circ Res 2002;90:263–269.CrossRefPubMedGoogle Scholar
  23. 23.
    Lowey S. Functional consequences of mutations in the myosin heavy chain at sites implicated in familial hypertrophic cardiomyopathy. Trends Cardiovasc Med 2002;12:348–354.CrossRefPubMedGoogle Scholar
  24. 24.
    Moolman JC, Brink PA, Corfield VA. Identification of a new missense mutation at Arg403, a CpG mutation hotspot, in exon 13 of the beta-myosin heavy chain gene in hypertrophic cardiomyopathy. Hum Mol Genet 1993;2:1731–1732.PubMedGoogle Scholar
  25. 25.
    Fananapazir L, Epstein ND. Genotype-phenotype correlations in hypertrophic cardiomyopathy. Insights provided by comparisons of kindreds with distinct and identical á-myosin heavy chain gene mutations. Circulation 1994;89:22–32.PubMedGoogle Scholar
  26. 26.
    Sata M, Ikebe M. Functional Anaylsis of the Mutations in the Human Cardiac á-Myosin that Are Resonsible for Familial Hypertrophic Cardiomyopathy. Journal of Clinical Investigation 1996;98:2866–2873.PubMedGoogle Scholar
  27. 27.
    Sweeney HL, Feng HS, Yang Z, Watkins H. Functional analyses of troponin T mutations that cause hypertrophic cardiomyopathy: Insights into disease pathogenesis and troponin function. Proceedings of the National Academy of Science USA 1998;95:14406–14410.Google Scholar
  28. 28.
    Roopnarine O, Leinwand LA. Functional analysis of myosin mutations that cause Familial Hypertrophic Cardiomyopathy. Biophysical Journal 1998;75:3023–3030.PubMedGoogle Scholar
  29. 29.
    Cuda G, Fananapazir L, Epstein ND, Sellers JR. The in vitro motility activity of á-cardiac myosin depend on the nature of the á-myosin heavy chain gene mutation in hypertrophic cardiomyopathy. Journal of Muscle Research and Cell Motility 1997;18:275–283.CrossRefPubMedGoogle Scholar
  30. 30.
    Geisterfer-Lowrance AAT, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, Seidman JG. A mouse model of familial hypertrophic cardiomyopathy. Science 1996;272:731–734.PubMedGoogle Scholar
  31. 31.
    Marian AJ, Wu Y, Lim DS, McCluggage M, Youker K, Yu QT, Brugada R, DeMayo F, Quinones M, Roberts R. A transgenic rabbit model for human hypertrophic cardiomyopathy. J Clin Invest 1999;104:1683–1692.PubMedGoogle Scholar
  32. 32.
    Palmer BM, Fishbaugher DE, Schmitt JP, Wang Y, Alpert NR, Seidman CE, Seidman JG, VanBuren P, Maughan DW. Differential cross-bridge kinetics of FHC myosin mutations R403Q and R453C in heterozygous mouse myocardium. Am J Physiol Heart Circ Physiol 2004;287:H91–H99.PubMedGoogle Scholar
  33. 33.
    Georgakopoulos D, Christe ME, Giewat M, Seidman CM, Seidman JG, Kass DA. The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an alpha-cardiac myosin heavy chain missense mutation. Nat Med 1999;5:327–330.PubMedGoogle Scholar
  34. 34.
    Tyska MJ, Hayes E, Giewat M, Seidman CE, Seidman JG, Warshaw DM. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ Res 2000;86:737–744.PubMedGoogle Scholar
  35. 35.
    Palmiter KA, Tyska MJ, Haeberle JR, Alpert NR, Fananapazir L, Warshaw DM. R403Q and L908V mutant beta-cardiac myosin from patients with familial hypertrophic cardiomyopathy exhibit enhanced mechanical performance at the single molecule level. J Muscle Res Cell Motil 2000;21:609–620.CrossRefPubMedGoogle Scholar
  36. 36.
    Blanchard E, Seidman C, Seidman JG, LeWinter M, Maughan D. Altered crossbridge kinetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. Circ Res 1999;84:475–483.PubMedGoogle Scholar
  37. 37.
    Keller DI, Coirault C, Rau T, Cheav T, Weyand M, Amann K, Lecarpentier Y, Richard P, Eschenhagen T, Carrier L. Human homozygous R403W mutant cardiac myosin presents disproportionate enhancement of mechanical and enzymatic properties. J Mol Cell Cardiol 2004;36:355–362.CrossRefPubMedGoogle Scholar
  38. 38.
    Spindler M, Saupe K, Christe, Sweeney HL, Seidman CE, Seidman JG. Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of Familial Hypertrophic Cardiomyopathy. J Clin Invest 1998;101:1775–1783.PubMedGoogle Scholar
  39. 39.
    Crilley JG, Boehm EA, Blair E, Rajagopalan B, Blamire AM, Styles P, McKenna WJ, Ostman-Smith I, Clarke K, Watkins H. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 2003;41:1776–1782.CrossRefPubMedGoogle Scholar
  40. 40.
    Moolman J.C, Corfield VA, Posen BM, Ngumbela K, Seidman CE, Brink PA, Watkins H. Sudden death due to troponin T mutations. J American College of Cardiology 1997;29:549–555.Google Scholar
  41. 41.
    Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O'Donoghue A, Spirito P, Matsumori A, Moravec CS, Seidman JG, Seidman CE. Mutations in the genes for cardiac troponin t and à-tropomyosin in hypertrophic cardiomyopathy. New England Journal of Medicine 1995;332:1058–1064.CrossRefPubMedGoogle Scholar
  42. 42.
    Anan R, Shono H, Kisanuki, Arima, Nakao S, Tanaka H. Patients with familial hypertrophic cardiomyopathy caused by a Phe110Ile missense mutation in the cardiac troponin T gene have variable cardiac morphologies and a favorable prognosis. Circulation 1998;98:391–397.PubMedGoogle Scholar
  43. 43.
    Kamisago M, Sharma SD, DePalma SR, Solomon S, Sharma P, McDonough B, Smoot L, Mullen MP, Woolf PK, Wigle ED, Seidman JG, Seidman CE, Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 2000;343:1688–1696.CrossRefPubMedGoogle Scholar
  44. 44.
    Li D, Czernuszewicz GZ, Gonzalez O, Tapscott T, Karibe A, Durand JB, Brugada R, Hill R, Gregoritch JM, Anderson JL, Quinones M, Bachinski LL, Roberts R. Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 2001;104:2188–2193.PubMedGoogle Scholar
  45. 45.
    Karibe A, Tobacman LS, Strand J, Butters C, Back N, Bachinski LL, Arai, AE, Ortiz A, Roberts R, Homsher E, Fananapazir L. Hypertrophic cardiomyopathy caused by a novel alpha-tropomyosin mutation (V95A) is associated with mild cardiac phenotype, abnormal calcium binding to troponin, abnormal myosin cycling, and poor prognosis. Circulation 2001;103:65–71.PubMedGoogle Scholar
  46. 46.
    Mogensen J, Perrot A, Andersen PS, Havndrup O, Klausen IC, Christiansen M, Bross P, Egeblad H, Bundgaard H, Osterziel KJ, Haltern G, Lapp H, Reinecke P, Gregersen N, Borglum AD. Clinical and genetic characteristics of alpha cardiac actin gene mutations in hypertrophic cardiomyopathy. J Med Genet 2004;41:e10.Google Scholar
  47. 47.
    Tobacman LS. Thin filament-mediated regulation of cardiac contraction. Annual Review of Physiology 1996;58:447–481.CrossRefPubMedGoogle Scholar
  48. 48.
    Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle 2000;80:853–924.Google Scholar
  49. 49.
    Perry SV, Troponin T. Genetics, properties and function. Journal of Muscle Research and Cell Motility 1998;19:575–602.PubMedGoogle Scholar
  50. 50.
    Lehman W, Hatch V, Korman V, Rosol M, Thomas L, Maytum R, Geeves MA, Van Eyk JE, Tobacman LS, Craig R. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol 2000;302:593–606.CrossRefPubMedGoogle Scholar
  51. 51.
    Gordon AM, Regnier M, Homsher E. Skeletal and cardiac muscle contractile activation: Tropomyosin “rocks and rolls”. News Physiol Sci 2001;16:49–55.PubMedGoogle Scholar
  52. 52.
    McKillop DF, Geeves MA. Regulation of the interaction between actin and myosin subfragment 1: Evidence for three states of the thin filament. Biophys J 1993;65:693–701.PubMedGoogle Scholar
  53. 53.
    Lindhout DA, Sykes BD. Structure and dynamics of the C-domain of human cardiac troponin C in complex with the inhibitory region of human cardiac troponin I. J Biol Chem 2003;278:27024–22034.CrossRefPubMedGoogle Scholar
  54. 54.
    Blumenschein TM, Tripet BP, Hodges RS, Sykes BD. Mapping the interacting regions between troponins T and C. Binding of TnT and TnI peptides to TnC and NMR mapping of the TnT-binding site on TnC. J Biol Chem 2001;276:36606–36612.CrossRefPubMedGoogle Scholar
  55. 55.
    Takeda S, Yamashita A, Maeda K, Maeda Y. Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form. Nature 2003;424:35–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Brown JH, Kim KH, Jun G, Greenfield NJ, Dominguez R, Volkmann N, Hitchcock-DeGregori SE, Cohen C. Deciphering the design of the tropomyosin molecule. Proc Natl Acad Sci USA 2001;98:8496–8501.PubMedGoogle Scholar
  57. 57.
    Hernandez OM, Housmans PR, Potter JD. Invited Review: Pathophysiology of cardiac muscle contraction and relaxation as a result of alterations in thin filament regulation. J Appl Physiol 2001;90:1125–1136.PubMedGoogle Scholar
  58. 58.
    Rust EM, Albayya FP, Metzger JM. Identification of a contractile deficit in adult cardiac myocytes expressing hypertrophic cardiomyopathy-associated mutant troponin T proteins. 1999;103:1459–1467.Google Scholar
  59. 59.
    Lin D, Bobkova A, Homsher E, Tobacman LS. Altered cardiac troponin T in vitro function in the presence of a mutation implicated in familial hypertrophic cardiomyopathy. 1996;97:2842–2848.Google Scholar
  60. 60.
    Morimoto S, Yanaga F, Minakami R, Ohtsuki I. Ca2+-sensitizing effects of the mutations at Ile-79 and Arg92 of troponin T in hypertrophic cardiomyopathy. 1998;275:C200–C207.Google Scholar
  61. 61.
    Yanaga F, Morimoto S, Ohtsuki I. Ca2+ sensitization and potentiation of the maximum level of myofibrillar ATPase activity caused by mutations of troponin T found in familial hypertrophic cardiomyopathy. Journal of Biological Chemistry 1999;274:8806–8812.CrossRefPubMedGoogle Scholar
  62. 62.
    Tobacman LS, Lin D, Butters C, Landis C, Back N, Pavlov D, Homsher E. Functional consequences of troponin T mutations found in hypertrophic cardiomyopathy. Journal of Biological Chemistry 1999;274:28363–28370.CrossRefPubMedGoogle Scholar
  63. 63.
    Szczesna D, Zhang R, Zhao J, Jones M, Guzman G, Potter JD. Altered regulation of cardiac muscle contraction by troponin T mutations that cause familial hypertrophic cardiomyopathy. Journal of Biological Chemistry 2000;275:624–630.CrossRefPubMedGoogle Scholar
  64. 64.
    Bing W, Knott A, Redwood C, Esposito G, Purcell I, Watkins H, Marston S. Effect of hypertrophic cardiomyopathy mutations in human cardiac muscle alpha -tropomyosin (Asp175Asn and Glu180Gly) on the regulatory properties of human cardiac troponin determined by in vitro motility assay. J Mol Cell Cardiol 2000;32:1489–1498.CrossRefPubMedGoogle Scholar
  65. 65.
    Michele DE, Albayya FP, Metzger JM. Direct, convergent hypersensitivity of calcium-activated force generation produced by hypertrophic cardiomyopathy mutant alpha–tropomyosins in adult cardiac myocytes. Nat Med 1999;5:1413–1417.PubMedGoogle Scholar
  66. 66.
    Redwood C, Lohmann K, Bing W, Esposito GM, Elliott K, Abdulrazzak H, Knott A, Purcell I, Marston S, Watkins H. Investigation of a truncated cardiac troponin T that causes familial hypertrophic cardiomyopathy: Ca(2+) regulatory properties of reconstituted thin filaments depend on the ratio of mutant to wild-type protein. Circulation Research 2000;86:1146–1152.PubMedGoogle Scholar
  67. 67.
    Hitchcock-DeGregori SE, Heald RW. Altered actin and troponin binding of amino-terminal variants of chicken striated muscle alpha-tropomyosin expressed in Escherichia coli. Journal of Biological Chemistry 1987;262:9730–9735.PubMedGoogle Scholar
  68. 68.
    Hinkle A, Goranson A, Butters CA, Tobacman LS. Roles for the troponin tail domain in thin filament assembly and regulation. A deletional study of cardiac troponin T. Journal of Biological Chemistry 1999;274:7157–7164.CrossRefPubMedGoogle Scholar
  69. 69.
    Tobacman LS, Nihli M, Butters C, Heller M, Hatch V, Craig R, Lehman W, Homsher E. The troponin tail domain promotes a conformational state of the thin filament that suppresses myosin activity. Journal of Biological Chemistry 2002;277:27636–27642.CrossRefPubMedGoogle Scholar
  70. 70.
    Palm T, Graboski S, Hitchcock-DeGregori SE, Greenfield NJ. Disease-causing mutations in cardiac troponin T: identification of a critical tropomyosin-binding region. Biophys J 2001;81:2827–2837.PubMedGoogle Scholar
  71. 71.
    Hinkle A, Tobacman LS. Folding and Function of the Troponin Tail Domain. Effects of Cardiomyopathic Troponin T Mutations. Journal of Biological Chemistry 2003;278:506–513.PubMedGoogle Scholar
  72. 72.
    Forissier JF, Carrier L, Farza H, Bonne G, Bercovici J, Richard P, Hainque B, Townsend PJ, Yacoub MH, Faure S, Dubourg O, Millaire A, Hagege A, Desnos M, Komajda M, Schwartz K. Codon 102 of the cardiac troponin T gene is a putative hot spot for mutations in familial hypertrophic cardiomyopathy. Circulation 1996;94:3069–3073.PubMedGoogle Scholar
  73. 73.
    Varnava AM, Elliott PM, Sharma S, McKenna WJ, Davies, MJ. Hypertrophic cardiomyopathy: The interrelation of disarray, fibrosis, and small vessel disease. Heart 2000;84:476–482.CrossRefPubMedGoogle Scholar
  74. 74.
    Greenfield NJ, Palm T, Hitchcock-DeGregori SE. Structure and interactions of the carboxyl terminus of striated muscle alpha-tropomyosin: It is important to be flexible. Biophys J 2002;83:2754–2766.PubMedGoogle Scholar
  75. 75.
    Heller MJ, Nili M, Homsher E, Tobacman LS. Cardiomyopathic tropomyosin mutations that increase thin filament Ca2+ sensitivity and tropomyosin N-domain flexibility. J Biol Chem 2003;278:41742–41748.PubMedGoogle Scholar
  76. 76.
    Oberst L, Zhao G, Park JT, Brugada R, Michael LH, Entman ML, Roberts R, Marian AJ. Dominant-negative effect of a mutant cardiac troponin T on cardiac structure and function in transgenic mice. Journal of Clinical Investigation 1998;102:1498–1505.PubMedGoogle Scholar
  77. 77.
    Tardiff JC, Factor SM, Tompkins BD, Hewett TE, Palmer BM, Moore RL, Schwartz S, Robbins J, Leinwand LA. A truncated cardiac troponin t molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. Journal of Clinical Investigation 1998;101, 2800–2811.PubMedGoogle Scholar
  78. 78.
    Tardiff JC, Hewett TE, Palmer BM, Olsson C, Factor SM, Moore RL, Robbins J, Leinwand LA. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J Clin Invest 1999;104:469–481.PubMedGoogle Scholar
  79. 79.
    Miller T, Szczesna D, Housmans PR, Zhao J, deFreitas F, Gomes AV, Culbreath L, McCue J, Wang Y, Xu Y, Kerrick WG, Potter JD. Abnormal Contractile Function in Transgenic Mice Expressing an FHC-Linked Troponin T (179N) Mutation. Journal of Biological Chemistry 2000.Google Scholar
  80. 80.
    Prabhakar R, Boivin GP, Grupp IL, Hoit B, Arteaga G, Solaro JR, Wieczorek DF. A familial hypertrophic cardiomyopathy alpha-tropomyosin mutation causes severe cardiac hypertrophy and death in mice. J Mol Cell Cardiol 2001;33:1815–1828.CrossRefPubMedGoogle Scholar
  81. 81.
    Prabhakar R, Petrashevskaya N, Schwartz A, Aronow B, Boivin GP, Molkentin JD, Wieczorek DF. A mouse model of familial hypertrophic cardiomyopathy caused by a alpha-tropomyosin mutation. Mol Cell Biochem 2003;251:33–42.CrossRefPubMedGoogle Scholar
  82. 82.
    Michele DE, Gomez CA, Hong KE, Westfall MV, Metzger JM. Cardiac dysfunction in hypertrophic cardiomyopathy mutant tropomyosin mice is transgene-dependent, hypertrophy-independent, and improved by beta-blockade. Circ Res 2002;91:255–262.CrossRefPubMedGoogle Scholar
  83. 83.
    Wernicke D, Thiel C, Duja-Isac CM, Essin KV, Spindler M, Nunez DJ, Plehm R, Wessel N, Hammes A, Edwards RJ, Lippoldt A, Zacharias U, Stromer H, Neubauer S, Davies MJ, Morano I, Thierfelder L. Alpha-Tropomyosin mutations Asp(175)Asn and Glu(180)Gly affect cardiac function in transgenic rats in different ways. Am J Physiol Regul Integr Comp Physiol 2004;287:R685–R695.PubMedGoogle Scholar
  84. 84.
    Maron BJ, Bonow RO, Cannon RO, 3rd Leon MB, Epstein SE. Hypertrophic cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (1). N Engl J Med 1987;316:780–789.PubMedGoogle Scholar
  85. 85.
    Maron BJ, Gardin JM, Flack JM, Gidding SS, Bild DE. HCM in the general population. Circulation 1996;94:588–589.PubMedGoogle Scholar
  86. 86.
    Elliott PM, Sharma S, Varnava A, Poloniecki J, Rowland E, McKenna WJ. Survival after cardiac arrest or sustained ventricular tachycardia in patients with hypertrophic cardiomyopathy. J American College of Cardiology 1999;33:1596–1601.Google Scholar
  87. 87.
    Knollmann BC, Kirchhof P, Sirenko SG, Degen H, Greene AE, Schober T, Mackow JC, Fabritz L, Potter JD, Morad M. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ Res 2003;92:428–436.CrossRefPubMedGoogle Scholar
  88. 88.
    Evans CC, Pena JR, Phillips RM, Muthuchamy M, Wieczorek DF, Solaro RJ, Wolska BM. Altered hemodynamics in transgenic mice harboring mutant tropomyosin linked to hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 2000;279:H2414–H2423.PubMedGoogle Scholar
  89. 89.
    Javadpour MM, Tardiff JC, Pinz I, Ingwall JS. Decreased energetics in murine hearts bearing the R92Q mutation in cardiac troponin T. J Clin Invest 2003;112:768–775.CrossRefPubMedGoogle Scholar
  90. 90.
    Charron P, Dubourg O, Desnos M, Bennaceur M, Carrier L, Camproux AC, Isnard R, Hagege A, Langlard JM, Bonne G, Richard P, Hainque B, Bouhour JB, Schwartz K, Komajda M. Clinical features and prognostic implications of familial hypertrophic cardiomyopathy related to the cardiac myosin-binding protein C gene. Circulation 1998;97:2230–2236.PubMedGoogle Scholar
  91. 91.
    Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman CE. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N Engl J Med 1998;338:1248–1257.CrossRefPubMedGoogle Scholar
  92. 92.
    Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, Seidman CE. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 2002;105:446–451.CrossRefPubMedGoogle Scholar
  93. 93.
    Flashman E, Redwood C, Moolman-Smook J, Watkins H. Cardiac myosin binding protein C: Its role in physiology and disease. Circ Res 2004;94:1279–1289.CrossRefPubMedGoogle Scholar
  94. 94.
    Kasahara H, Itoh M, Sugiyama T, Kido N, Hayashi H, Saito H, Tsukita S, Kato N. Autoimmune myocarditis induced in mice by cardiac C-protein. Cloning of complementary DNA encoding murine cardiac C-protein and partial characterization of the antigenic peptides. J Clin Invest 1994;94:1026–1036.PubMedGoogle Scholar
  95. 95.
    Winegrad, S. Myosin-binding protein C (MyBP-C) in cardiac muscle and contractility. Adv Exp Med Biol 2003;538,31–40; discussion 40–41.Google Scholar
  96. 96.
    Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J. A mouse model of myosin binding protein C human familial hypertrophic cardiomyopathy. J Clin Invest 1998;102:1292–1300.PubMedGoogle Scholar
  97. 97.
    Yang Q, Osinska H, Klevitsky R, Robbins J. Phenotypic deficits in mice expressing a myosin binding protein C lacking the titin and myosin binding domains. J Mol Cell Cardiol 2001;33:1649–1658.PubMedGoogle Scholar
  98. 98.
    Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J. In vivo modeling of myosin binding protein C familial hypertrophic cardiomyopathy. Circulation Research 1999;85:841–847.PubMedGoogle Scholar
  99. 99.
    Harris SP, Bartley CR, Hacker TA, McDonald KS, Douglas, PS, Greaser ML, Powers PA, Moss RL. Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circ Res 2002;90:594–601.CrossRefPubMedGoogle Scholar
  100. 100.
    Korte FS, McDonald KS, Harris SP, Moss RL. Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C. Circ Res 2003;93:752–758.CrossRefPubMedGoogle Scholar
  101. 101.
    Palmer BM, Georgakopoulos D, Janssen PM, Wang Y, Alpert NR, Belardi DF, Harris SP, Moss RL, Burgon PG, Seidman CE, Seidman JG, Maughan DW, Kass DA. Role of cardiac myosin binding protein C in sustaining left ventricular systolic stiffening. Circ Res 2004;94:1249–1255.PubMedGoogle Scholar
  102. 102.
    Palmer BM, McConnell BK, Li GH, Seidman CE, Seidman JG, Irving TC, Alpert NR, Maughan DW. Reduced cross-bridge dependent stiffness of skinned myocardium from mice lacking cardiac myosin binding protein-C. Mol Cell Biochem 2004;263:73–80.CrossRefPubMedGoogle Scholar
  103. 103.
    Palmer BM, Noguchi T, Wang Y, Heim JR, Alpert NR, Burgon PG, Seidman CE, Seidman JG, Maughan DW, LeWinter MM. Effect of cardiac myosin binding protein-C on mechanoenergetics in mouse myocardium. Circ Res 2004;94:1615–1622.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Physiology and Biophysics and the Department of Medicine (Cardiology)Albert Einstein College of MedicineBronx
  2. 2.Albert Einstein College of MedicineBronx

Personalised recommendations