Heart Failure Reviews

, Volume 10, Issue 3, pp 211–223

Titin: Physiological Function and Role in Cardiomyopathy and Failure

  • Henk Granzier
  • Yiming Wu
  • Labeit Siegfried
  • Martin LeWinter
Article

Abstract

Titin is a giant protein that constitutes the third myofilament of the sarcomere. Single titin molecules anchor in the Z-disk and extend all the way to the M-line region of the sarcomere. Successive titin molecules are arranged head-to-head and tail-to-tail, providing a continuous filament along the full length of the myofibril. The majority of titin's I-band region is extensible and functions as a molecular spring that when extended develops passive force. We will discuss mechanisms for adjusting titin-based force, including alternative splicing and posttranslational modifications. Multiple biological functions can be assigned to different regions of the titin molecule. In addition to titin's role in determining passive muscle stiffness, recent evidence suggests a role in protein metabolism, compartmentalization of metabolic enzymes, binding of chaperones, and positioning of the membrane systems of the T-tubules and sarcoplasmic reticulum. We will also discus titin-based force adjustments that occur in various muscle diseases and several disease-causing titin mutations that have been discovered. We will focus on the role of titin in heart failure patients that was recently investigated in patients with end-stage heart failure due to non-ischemic dilated cardiomyopathy. In end-stage failing hearts, compliant titin isoforms comprise a greater percentage of titin and changes in titin isoform expression in heart failure patients with DCM significantly impact diastolic filling by lowering myocardial stiffness.

Key Words

diastole passive stiffness titin isoforms stretch sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huxley AF, Peachey LD. The maximum length for contraction in vertebrate straiated muscle. J Physiol 1961;156:150–165.PubMedGoogle Scholar
  2. 2.
    Locker RH, Leet NG. Histology of highly–stretched beef muscle. IV. Evidence for movement of gap filaments through the Z-line, using the N2-line and M-line as markers. J Ultrastruct Res 1976;56(1):31–38.CrossRefPubMedGoogle Scholar
  3. 3.
    Trombitas K, Tigyi–Sebes A. Direct evidence for connecting C filaments in flight muscle of honey bee. Acta Biochim Biophys Acad Sci Hung 1974;9(3):243–253.PubMedGoogle Scholar
  4. 4.
    Furst DO, Osborn, M, Nave R, Weber K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: A map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 1988;106(5):1563–1572.CrossRefPubMedGoogle Scholar
  5. 5.
    Itoh Y, Suzuki T, Kimura S, Ohashi K, Higuchi H, Sawada H, Shimizu T, Shibata M, Maruyama K. Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J Biochem (Tokyo) 1988;104(4):504–508.Google Scholar
  6. 6.
    Wang SM, Sun MC, Jeng CJ. Location of the C-terminus of titin at the Z-line region in the sarcomere. Biochem Biophys Res Commun 1991;176(1):189–193.PubMedGoogle Scholar
  7. 7.
    Trombitas K, Pollack GH. Elastic properties of the titin filament in the Z-line region of vertebrate striated muscle. J Muscle Res Cell Motil 1993;14(4):416–422.PubMedGoogle Scholar
  8. 8.
    Whiting A, Wardale J, Trinick J. Does titin regulate the length of muscle thick filaments? J Mol Biol 1989;205(1):263–268.PubMedGoogle Scholar
  9. 9.
    Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh CL, Francke U, Leonard K, Wardale J, Whiting A, et al. A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 1990;345(6272):273–276.CrossRefPubMedGoogle Scholar
  10. 10.
    Labeit S, Kolmerer B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270(5234):293–296.PubMedGoogle Scholar
  11. 11.
    Helmes M, Trombitas K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: Titin is an adjustable spring. Circ Res 1999;84(11):1339–1352.PubMedGoogle Scholar
  12. 12.
    Trombitas K, Freiburg A, Centner T, Labeit S, Granzier H. Molecular dissection of N2B cardiac titin's extensibility. Biophys J 1999;77(6):3189–3196.PubMedGoogle Scholar
  13. 13.
    Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, Gregorio CC. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 1999;146(3):631–644.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang K. Titin/connectin and nebulin: Giant protein rulers of muscle structure and function. Adv Biophys 1996;33:123–134.PubMedGoogle Scholar
  15. 15.
    Trinick J. Titin and nebulin: Protein rulers in muscle? Trends Biochem Sci 1994;19(10):405–409.CrossRefPubMedGoogle Scholar
  16. 16.
    Horowits R, Kempner ES, Bisher ME, Podolsky RJ. A physiological role for titin and nebulin in skeletal muscle. Nature 1986;323(6084):160–164.CrossRefPubMedGoogle Scholar
  17. 17.
    Trombitas K, Greaser M, Labeit S, Jin JP, Kellermayer M, Helmes M, Granzier H. Titin extensibility in situ: Entropic elasticity of permanently folded and permanently unfolded molecular segments. J Cell Biol 1998;140(4):853–859.CrossRefPubMedGoogle Scholar
  18. 18.
    Kellermayer MS, Smith SB, Granzier HL, Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science 1997;276(5315):1112–1116.CrossRefPubMedGoogle Scholar
  19. 19.
    Watanabe K, Nair P, Labeit D, Kellermayer MS, Greaser M, Labeit S, Granzier H. Molecular mechanics of cardiac titin's PEVK and N2B spring elements. J Biol Chem 2002;277(13):11549–11558.CrossRefPubMedGoogle Scholar
  20. 20.
    Granzier H, Kellermayer M, Helmes M, Trombitas K. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Biophys J 1997;73(4):2043–2053.PubMedGoogle Scholar
  21. 21.
    Linke WA, Granzier H. A spring tale: New facts on titin elasticity. Biophys J 1998;75(6):2613–2614.PubMedGoogle Scholar
  22. 22.
    Helmes M, Trombitas K, Granzier H. Titin develops restoring force in rat cardiac myocytes. Circ Res 1996;79(3):619–626.PubMedGoogle Scholar
  23. 23.
    Granzier H, Helmes M, Cazorla O, McNabb M, Labeit D, Wu Y, Yamasaki R, Redkar A, Kellermayer M, Labeit S, Trombitas K. Mechanical properties of titin isoforms. Adv Exp Med Biol 2000;481:283–300; discussion 300–304.Google Scholar
  24. 24.
    Trombitas K, Freiburg A, Centner T, Labeit S, Granzier H. Molecular dissection of N2B cardiac titin's extensibility. Biophys J 1999;77(6):3189–3196.PubMedGoogle Scholar
  25. 25.
    Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, Marszalek PE, Fernandez JM. Reverse engineering of the giant muscle protein titin. Nature 2002;418(6901):998–1002.CrossRefPubMedGoogle Scholar
  26. 26.
    Helmes M, Trombitas K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H. Mechanically driven contour-length adjustment in rat cardiac titin's unique N2B sequence: Titin is an adjustable spring. Circ Res 1999;84(11):1339–1352.PubMedGoogle Scholar
  27. 27.
    Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, Gregorio CC. I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 1999;146(3):631–644.CrossRefPubMedGoogle Scholar
  28. 28.
    Granzier HL, Irving TC. Passive tension in cardiac muscle: Contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 1995;68(3):1027–1044.PubMedGoogle Scholar
  29. 29.
    Yamamoto K, Masuyama T, Sakata Y, Nishikawa N, Mano T, Yoshida J, Miwa T, Sugawara M, Yamaguchi Y, Ookawara T, Suzuki K, Hori M. Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart. Cardiovasc Res 2002;55(1):76–82.CrossRefPubMedGoogle Scholar
  30. 30.
    Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol 2000;32(12):2151–2162.CrossRefPubMedGoogle Scholar
  31. 31.
    Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 2003;21(1):3–12.CrossRefPubMedGoogle Scholar
  32. 32.
    Muller-Seitz M, Kaupmann K, Labeit S, Jockusch H. Chromosomal localization of the mouse titin gene and its relation to “muscular dystrophy with myositis” and nebulin genes on chromosome 2. Genomics 1993;18(3):559–561.PubMedGoogle Scholar
  33. 33.
    Rossi E, Faiella A, Zeviani M, Labeit S, Floridia G, Brunelli S, Cammarata M, Boncinelli E, Zuffardi O. Order of six loci at 2q24-q31 and orientation of the HOXD locus. Genomics 1994;24(1):34–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, Labeit D, Gregorio CC, Granzier H, Labeit S. The complete gene sequence of titin, expression of an unusual approximately 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 2001;89(11):1065–1072.PubMedGoogle Scholar
  35. 35.
    Freiburg A, Trombitas K, Hell W, Cazorla O, Fougerousse F, Centner T, Kolmerer B, Witt C, Beckmann JS, Gregorio CC, Granzier H, Labeit S. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 2000;86(11):1114–1121.Google Scholar
  36. 36.
    Trombitas K, Wu Y, Labeit D, Labeit S, Granzier H. Cardiac titin isoforms are coexpressed in the half-sarcomere and extend independently. Am J Physiol Heart Circ Physiol 2001;281(4):H1793–1799.PubMedGoogle Scholar
  37. 37.
    Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitas K, Labeit S, Granzier H. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 2000;86(1):59–67.PubMedGoogle Scholar
  38. 38.
    Neagoe C, Opitz CA, Makarenko I, Linke WA. Gigantic variety: Expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. J Muscle Res Cell Motil 2003;24(2–3):175–189.PubMedGoogle Scholar
  39. 39.
    Bell SP, Nyland L, Tischler MD, McNabb M, Granzier H, LeWinter MM. Alterations in the determinants of diastolic suction during pacing tachycardia. Circ Res 2000;87(3):235–240.PubMedGoogle Scholar
  40. 40.
    Warren CM, Krzesinski PR, Greaser ML. Vertical agarose gel electrophoresis and electroblotting of high-molecular-weight proteins. Electrophoresis 2003;24(11):1695–1702.CrossRefPubMedGoogle Scholar
  41. 41.
    Lahmers S, Wu Y, Call DR, Labeit S, Granzier H. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res 2004;94(4):505–513.CrossRefPubMedGoogle Scholar
  42. 42.
    Cazorla O, Freiburg A, Helmes M, Centner T, McNabb M, Wu Y, Trombitas K, Labeit S, Granzier H. Differential expression of cardiac titin isoforms and modulation of cellular stiffness. Circ Res 2000;86(1):59–67.PubMedGoogle Scholar
  43. 43.
    Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H. Protein kinase A phosphorylates titin's cardiac–specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 2002;90(11):1181–1188.CrossRefPubMedGoogle Scholar
  44. 44.
    Fukuda N, Wu Y, Nair P, Granzier HL. Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. J Gen Physiol 2005;125(3):257–271.CrossRefPubMedGoogle Scholar
  45. 45.
    Labeit D, Watanabe K, Witt C, Fujita H, Wu Y, Lahmers S, Funck T, Labeit S, Granzier H. Calcium dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci USA, 2003. Oct 30 [Epub ahead of print].Google Scholar
  46. 46.
    Fujita H, Labeit D, Gerull B, Labeit S, Granzier H. Titin-isoform dependent adjustment of myocardial tension by calcium. Am J Physiol (Heart), 2004. In press.Google Scholar
  47. 47.
    Yamasaki R, Berri M, Wu Y, Trombitas K, McNabb M, Kellermayer MS, Witt C, Labeit D, Labeit S, Greaser M, Granzier H. Titin-actin interaction in mouse myocardium: Passive tension modulation and its regulation by calcium/S100A1. Biophys J 2001;81(4):2297–2313.PubMedGoogle Scholar
  48. 48.
    Kulke M, Fujita-Becker S, Rostkova E, Neagoe C, Labeit D, Manstein DJ, Gautel M, Linke WA. Interaction between PEVK-titin and actin filaments: Origin of a viscous force component in cardiac myofibrils. Circ Res 2001;89(10):874–881.PubMedGoogle Scholar
  49. 49.
    Stuyvers BD, Miura M, ter Keurs HE. Dynamics of viscoelastic properties of rat cardiac sarcomeres during the diastolic interval: Involvement of Ca2+. J Physiol 1997;502(Pt 3):661–677.PubMedGoogle Scholar
  50. 50.
    Campbell KS, Patel JR, Moss R.L. Cycling cross-bridges increase myocardial stiffness at submaximal levels of Ca2+ activation. Biophys J 2003;84(6):3807–3815.PubMedGoogle Scholar
  51. 51.
    Fukuda N, Granzier H. Role of the giant elastic protein titin in the Frank-Starling mechanism of the heart. Curr Vasc Pharmacol 2004;2(2):135–139.CrossRefPubMedGoogle Scholar
  52. 52.
    Cazorla O, Wu Y, Irving TC, Granzier H. Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 2001;88(10):1028–1035.PubMedGoogle Scholar
  53. 53.
    Cazorla O, Vassort G, Garnier D, Le Guennec J.Y. Length modulation of active force in rat cardiac myocytes: Is titin the sensor? J Mol Cell Cardiol 1999;31(6):1215–1227.CrossRefPubMedGoogle Scholar
  54. 54.
    Fukuda N, Sasaki D, Ishiwata S, Kurihara S. Length dependence of tension generation in rat skinned cardiac muscle: Role of titin in the Frank-Starling mechanism of the heart. Circulation 2001;104(14):1639–1645.PubMedGoogle Scholar
  55. 55.
    Fukuda N, Wu Y, Farman G, Irving TC, Granzier H. Titin isoform variance and length dependence of activation in skinned bovine cardiac muscle. J Physiol 2003;553(Pt 1):147–154.PubMedGoogle Scholar
  56. 56.
    Cazorla O, Wu Y, Irving TC, Granzier H. Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 2001;88(10):1028–1035.PubMedGoogle Scholar
  57. 57.
    Muhle-Goll C, Habeck M, Cazorla O, Nilges M, Labeit S, Granzier H. Structural and functional studies of titin's fn3 modules reveal conserved surface patterns and binding to myosin S1–a possible role in the Frank-Starling mechanism of the heart. J Mol Biol 2001;313(2):431–447.CrossRefPubMedGoogle Scholar
  58. 58.
    Helmes M, Lim CC, Liao R, Bharti A, Cui L, Sawyer DB. Titin determines the Frank-Starling relation in early diastole. J Gen Physiol 2003;121(2):97–110.CrossRefPubMedGoogle Scholar
  59. 59.
    Mues A, van der Ven PF, Young P, Furst DO, Gautel M. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett 1998;428(1/2):111–114.PubMedGoogle Scholar
  60. 60.
    Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayr F, Herrmann B, Granzier H, Sorimachi H, Labeit S. The NH2 terminus of titin spans the Z-disc: Its interaction with a novel 19-kD ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 1998;143(4):1013–1027.CrossRefPubMedGoogle Scholar
  61. 61.
    Furukawa T, Ono Y, Tsuchiya H, Katayama Y, Bang ML, Labeit D, Labeit S, Inagaki N, Gregorio CC. Specific interaction of the potassium channel beta-subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system. J Mol Biol 2001;313(4):775–784.CrossRefPubMedGoogle Scholar
  62. 62.
    Kontrogianni-Konstantopoulos A, Bloch RJ. The hydrophilic domain of small ankyrin-1 interacts with the two N-terminal immunoglobulin domains of titin. J Biol Chem 2003;278(6):3985–3991.CrossRefPubMedGoogle Scholar
  63. 63.
    Young P, Ehler E, Gautel M. Obscurin, a giant sarcomeric Rho guanine nucleotide exchange factor protein involved in sarcomere assembly. J Cell Biol 2001;154(1):123–136.CrossRefPubMedGoogle Scholar
  64. 64.
    Russell MW, Raeker MO, Korytkowski KA, Sonneman KJ. Identification, tissue expression and chromosomal localization of human Obscurin-MLCK, a member of the titin and Dbl families of myosin light chain kinases. Gene 2002;282(1–2):237–246.PubMedGoogle Scholar
  65. 65.
    Bagnato P, Barone V, Giacomello E, Rossi D, Sorrentino V. Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. J Cell Biol 2003;160(2):245–253.CrossRefPubMedGoogle Scholar
  66. 66.
    Arber S, Halder G, Caroni P. Muscle LIM protein, a novel essential regulator of myogenesis, promotes myogenic differentiation. Cell 1994;79(2):221–231.CrossRefPubMedGoogle Scholar
  67. 67.
    Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 2002;111(7):943–955.CrossRefPubMedGoogle Scholar
  68. 68.
    Lange S, Auerbach D, McLoughlin P, Perriard E, Schafer BW, Perriard JC, Ehler E. Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci 2002;115(Pt 24):4925–4936.PubMedGoogle Scholar
  69. 69.
    Bullard B, Ferguson C, Minajeva A, Leake MC, Gautel M, Labeit D, Ding L, Labeit S, Horwitz J, Leonard KR, Linke WA. Association of the chaperone alphaB-crystallin with titin in heart muscle. J Biol Chem 2004;279(9):7917–7924.PubMedGoogle Scholar
  70. 70.
    Ono Y, Kakinuma K, Torii F, Irie A, Nakagawa K, Labeit S, Abe K, Suzuki K, Sorimachi H. Possible regulation of the conventional calpain system by skeletal muscle-specific calpain, p94. J Biol Chem 2003. Epub ahead of publication.Google Scholar
  71. 71.
    Miller MK, Bang ML, Witt C, Labeit D, Trombitas K, Watanabe K, Granzier H, McElhinny AS, Gregorio CC, Labeit S. The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament based stress response molecules. J Mol Biol 2003;333:951–964.CrossRefPubMedGoogle Scholar
  72. 72.
    Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 2001;153(2):413–427.CrossRefPubMedGoogle Scholar
  73. 73.
    Nakada C, Oka A, Nonaka I, Sato K, Mori S, Ito H, Moriyama M. Cardiac ankyrin repeat protein is preferentially induced in atrophic myofibers of congenital myopathy and spinal muscular atrophy. Pathol Int 2003;53(10):653–658.CrossRefPubMedGoogle Scholar
  74. 74.
    Tsukamoto Y, Senda T, Nakano T, Nakada C, Hida T, Ishiguro N, Kondo G, Baba T, Sato K, Osaki M, Mori S, Ito H, Moriyama M. Arpp, a new homolog of carp, is preferentially expressed in type 1 skeletal muscle fibers and is markedly induced by denervation. Lab Invest 2002;82(5):645–655.CrossRefPubMedGoogle Scholar
  75. 75.
    Kuo H, Chen J, Ruiz-Lozano P, Zou Y, Nemer M, Chien KR. Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development 1999;126(19):4223–4234.PubMedGoogle Scholar
  76. 76.
    Kemp TJ, Sadusky TJ, Saltisi F, Carey N, Moss J, Yang SY, Sassoon DA, Goldspink G, Coulton GR. Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein. Genomics 2000;66(3):229–241.CrossRefPubMedGoogle Scholar
  77. 77.
    Ikeda K, Emoto N, Matsuo M, Yokoyama M. Molecular identification and characterization of a novel nuclear protein whose expression is up-regulated in insulin-resistant animals. J Biol Chem 2003;278(6):3514–3520.CrossRefPubMedGoogle Scholar
  78. 78.
    Nagueh SF, Shah G, Wu Y, Guillermo TA, King NMP, Lahmers S, Witt C, Becker K, Labeit S, Granzier H. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 2004;110:115–162.CrossRefGoogle Scholar
  79. 79.
    Witt CC, Ono Y, Puschmann E, McNabb M, Wu Y, Gotthardt M, Witt SH, Haak M, Labeit D, Gregorio CC, Sorimachi H, Granzier H, Labeit S. Induction and myofibrillar targeting of CARP, and suppression of the Nkx2.5 pathway in the MDM mouse with impaired titin-based signaling. J Mol Biol 2004;336(1):145–154.CrossRefPubMedGoogle Scholar
  80. 80.
    Garvey SM, Rajan C, Lerner AP, Frankel WN, Cox GA. The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics 2002;79(2):146–149.CrossRefPubMedGoogle Scholar
  81. 81.
    Gautel M, Leonard K, Labeit S. Phosphorylation of KSP motifs in the C-terminal region of titin in differentiating myoblasts. Embo J 1993;12(10):3827–3834.PubMedGoogle Scholar
  82. 82.
    Kinbara K, Sorimachi H, Ishiura S, Suzuki K. Muscle-specific calpain, p94, interacts with the extreme C-terminal region of connectin, a unique region flanked by two immunoglobulin C2 motifs. Arch Biochem Biophys 1997;342(1):99–107.CrossRefPubMedGoogle Scholar
  83. 83.
    Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Furst, DO, Wilmanns M, Gautel M. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 1998;395(6705):863–869.PubMedGoogle Scholar
  84. 84.
    Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 2001;306(4):717–726.CrossRefPubMedGoogle Scholar
  85. 85.
    Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, Brandmeier B, Franzen G, Hedberg B, Gunnarsson LG, Hughes SM, Marchand S, Sejersen T, Richard I, Edstrom L, Ehler E, Udd B, Gautel M. The Kinase Domain of Titin Controls Muscle Gene Expression and Protein Turnover. Science 2005.Google Scholar
  86. 86.
    Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001;294(5547):1704–1708.CrossRefPubMedGoogle Scholar
  87. 87.
    Witt SH, Granzier H, Witt CC, Labeit S. MURF-1 and MURF-2 Target a Specific Subset of Myofibrillar Proteins Redundantly: Towards Understanding MURF-dependent Muscle Ubiquitination. J Mol Biol 2005;350(4):713–722.CrossRefPubMedGoogle Scholar
  88. 88.
    Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C. Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci USA 2004;101(52):18135–18140.CrossRefPubMedGoogle Scholar
  89. 89.
    Nikawa T, Ishidoh K, Hirasaka K, Ishihara I, Ikemoto M, Kano M, Kominami E, Nonaka I, Ogawa T, Adams GR, Baldwin KM, Yasui N, Kishi K, Takeda S. Skeletal muscle gene expression in space-flown rats. Faseb J 2004;18(3):522–524.PubMedGoogle Scholar
  90. 90.
    Bell SP, Nyland L, Tischler MD, McNabb M, Granzier H, LeWinter MM. Alterations in the determinants of diastolic suction during pacing tachycardia. Circ Res 2000;87(3):235–240.PubMedGoogle Scholar
  91. 91.
    Wu Y, Bell SP, Trombitas K, Witt CC, Labeit S, LeWinter MM, Granzier H. Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness. Circulation 2002;106(11):1384–1389.CrossRefPubMedGoogle Scholar
  92. 92.
    Warren CM, Jordan MC, Roos KP, Krzesinski PR, Greaser ML. Titin isoform expression in normal and hypertensive myocardium. Cardiovasc Res 2003;59(1):86–94.CrossRefPubMedGoogle Scholar
  93. 93.
    Neagoe C, Kulke M, del Monte F, Gwathmey JK, de Tombe PP, Hajjar RJ, Linke WA. Titin isoform switch in ischemic human heart disease. Circulation 2002;106(11):1333–1341.CrossRefPubMedGoogle Scholar
  94. 94.
    Makarenko I, Opitz CA, Leake MC, Neagoe C, Kulke M, Gwathmey JK, del Monte F, Hajjar RJ, Linke WA. Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res 2004;95(7):708–716.CrossRefPubMedGoogle Scholar
  95. 95.
    Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 2004;110(2):155–162.CrossRefPubMedGoogle Scholar
  96. 96.
    Colucci WS. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997;80(11A):15L–25L.PubMedGoogle Scholar
  97. 97.
    Borbely A, van der Velden J, Papp Z, Bronzwaer JG, Edes I, Stienen GJ, Paulus WJ. Cardiomyocyte stiffness in diastolic heart failure. Circulation 2005;111(6):774–781.CrossRefPubMedGoogle Scholar
  98. 98.
    Hein S, Scholz D, Fujitani N, Rennollet H, Brand T, Friedl A, Schaper J. Altered expression of titin and contractile proteins in failing human myocardium. J Mol Cell Cardiol 1994;26(10):1291–1306.CrossRefPubMedGoogle Scholar
  99. 99.
    Morano I, Hadicke K, Grom S, Koch A, Schwinger RH, Bohm M, Bartel S, Erdmann E, Krause EG. Titin, myosin light chains and C-protein in the developing and failing human heart. J Mol Cell Cardiol 1994;26(3):361–368.CrossRefPubMedGoogle Scholar
  100. 100.
    Shusterman S, Meadows AT. Long term survivors of childhood leukemia. Curr Opin Hematol 2000;7(4):217–222.CrossRefPubMedGoogle Scholar
  101. 101.
    Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, Suter TM, Liao R, Sawyer DB. Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem 2004;279(9):8290–8299.PubMedGoogle Scholar
  102. 102.
    Siu BL, Niimura H, Osborne JA, Fatkin D, MacRae C, Solomon S, Benson DW, Seidman JG, Seidman CE. Familial dilated cardiomyopathy locus maps to chromosome 2q31. Circulation 1999;99(8):1022–1026.PubMedGoogle Scholar
  103. 103.
    Udd B, Haravuori H, Kalimo H, Partanen J, Pulkkinen L, Paetau A, Peltonen L, Somer H. Tibial muscular dystrophy–from clinical description to linkage on chromosome 2q31. Neuromuscul Disord 1998;8(5):327–332.PubMedGoogle Scholar
  104. 104.
    Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, Seidman JG, Seidman C, Granzier H, Labeit S, Frenneaux M, Thierfelder L. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 2002;30(2):201–204.CrossRefPubMedGoogle Scholar
  105. 105.
    Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S, Witt C, Peltonen L, Richard I, Udd B. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet 2002;71(3):492–500.CrossRefPubMedGoogle Scholar
  106. 106.
    Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Koyanagi T, Takahashi M, Hohda S, Ueda K, Nouchi T, Hiroe M, Marumo F, Imaizumi T, Yasunami M, Kimura A. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 2002;291(2):385–393.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Henk Granzier
    • 1
    • 4
  • Yiming Wu
    • 1
  • Labeit Siegfried
    • 2
  • Martin LeWinter
    • 3
  1. 1.Dept. of Veterinary and Comparative Anatomy, Pharmacology, and PhysiologyWashington State UniversityPullmanUSA
  2. 2.Institut für Anästhesiologie und Operative IntensivmedizinUniversitätsklinikum MannheimMannheimGermany
  3. 3.Fletcher Allen Health CareBurlingtonUSA
  4. 4.Washington State UniversityPullmanUSA

Personalised recommendations