Heart Failure Reviews

, Volume 10, Issue 3, pp 199–209 | Cite as

Thin Filament Remodeling in Failing Myocardium

Article

Abstract

While the remodeling process in myocardial failure involves changes in ventricular structure and performance, it is now appreciated that it is also associated with changes in thin filament composition and function. As is discussed, changes at the level thick filament may affect thin filament activation in heart failure. Alterations in actin, troponin and tropomyosin isoform composition do not appear to be significant factors in human heart failure. In contrast, proteolytic degradation of troponin subunits are likely to be playing a functional role in some forms of cardiomyopathy (e.g. ischemic). Finally, phosphorylation of troponin I and troponin T by kinases (most notably protein kinase C) substantially affect thin filament function in failing human myocardium. These findings indicate that functional deficits in thin filament function in failing myocardium are largely reversible and create the potential for future targeted therapies in the treatment of this deadly disease.

Key Words

thin filament troponin phosphorylation cardiac remodeling heart failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kobayashi T, Solaro RJ. Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol 2005;67:39–67.PubMedCrossRefGoogle Scholar
  2. 2.
    Gordon AM, Homsher E, Regnier M. Regulation of contraction in striated muscle. Physiological Reviews 2000;80:853–924.PubMedGoogle Scholar
  3. 3.
    Greenberg BH. Effects of angiotensin converting enzyme inhibitors on remodeling in clinical trials. J Card Fail 2002;8:S486–S490.PubMedGoogle Scholar
  4. 4.
    Swynghedauw B. Myocardial remodelling: Pharmacological targets. Expert Opin Investig Drugs 2002;11:661–674.PubMedCrossRefGoogle Scholar
  5. 5.
    Hiestand B, Abraham WT. Implications of heart failure drug trials: COMET, CHARM, EPHESUS. Rev Cardiovasc Med 2005;6 (Suppl 2):S4–S11.PubMedGoogle Scholar
  6. 6.
    Cohn JN. Remodeling as an end-point in heart failure therapy. Cardiovasc Drugs Ther 2004;18:7–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Kober L, Torp-Pedersen C, Carlsen JE, Bagger H, Eliasen P, Lyngborg K, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction. Trandolapril Cardiac Evaluation (TRACE) Study Group [see comments]. N Engl J Med 1995;333:1670–1676.PubMedCrossRefGoogle Scholar
  8. 8.
    St John SM, Pfeffer MA, Moye L, Plappert T, Rouleau JL, Lamas G, et al. Cardiovascular death and left ventricular remodeling two years after myocardial infarction: Baseline predictors and impact of long-term use of captopril: Information from the Survival and Ventricular Enlargement (SAVE) trial. Circulation 1997;96:3294–3299.Google Scholar
  9. 9.
    Anthonio RL, van Veldhuisen DJ, van Gilst WH. Left ventricular dilatation after myocardial infarction: ACE inhibitors, beta-blockers, or both? J Cardiovasc Pharmacol 1998;32 (Suppl) 1:S1–S8.Google Scholar
  10. 10.
    Vaturi M, Shapira Y, Rotstein M, Adler Y, Porter A, Birnbaum Y, et al. The effect of aortic valve replacement on left ventricular mass assessed by echocardiography. Eur J Echocardiogr 2000;1:116–121.PubMedCrossRefGoogle Scholar
  11. 11.
    Zile MR, Tomita M, Ishihara K, Nakano K, Lindroth J, Spinale F, et al. Changes in diastolic function during development and correction of chronic LV volume overload produced by mitral regurgitation. Circulation 1993;87:1378–1388.PubMedGoogle Scholar
  12. 12.
    Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;352:1539–1549.PubMedCrossRefGoogle Scholar
  13. 13.
    Alpert NR, Gordon MS. Myofibrillar adenosine triphosphatase activity in congestive heart failure. Am J Physiol 1962;202:940–946.PubMedGoogle Scholar
  14. 14.
    Pagani ED, Alousi AA, Grant AM, Older TM, Dziuban SWJ, Allen PD. Changes in myofibrillar content and Mg-ATPase activity in ventricular tissues from patients with heart failure caused by coronary artery disease, cardiomyopathy, or mitral valve insufficiency. Circ Res 1988;63:380–385.PubMedGoogle Scholar
  15. 15.
    Alousi AA, Grant AM, Etzler JR, Cofer BR, Van dB, Melvin D. Reduced cardiac myofibrillar Mg-ATPase activity without changes in myosin isozymes in patients with end-stage heart failure. Mol Cell Biochem 1990;96:79–88.PubMedCrossRefGoogle Scholar
  16. 16.
    Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. Troponin T Isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 1991;69:1226–1233.PubMedGoogle Scholar
  17. 17.
    Alpert NR, Mulieri LA. Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. A characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res 1982;50:491–500.PubMedGoogle Scholar
  18. 18.
    Holubarsch C, Goulette RP, Litten RZ, Martin BJ, Mulieri LA, Alpert NR. The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. Circ Res 1985;56:78–86.PubMedGoogle Scholar
  19. 19.
    VanBuren P, Harris DE, Alpert NR, Warshaw DM. Cardiac V1 and V3 myosins differ in their hydrolytic and mechanical activities in vitro. Circ Res 1995;77:439–444.PubMedGoogle Scholar
  20. 20.
    Kameyama T, Chen Z, Bell SP, VanBuren P, Maughan D, LeWinter MM. Mechanoenergetic alterations during the transition from cardiac hypertrophy to failure in Dahl salt-sensitive rats. Circulation 1998;98:2919–2929.PubMedGoogle Scholar
  21. 21.
    Metzger JM, Wahr PA, Michele DE, Albayya F, Westfall MV. Effects of myosin heavy chain isoform switching on Ca2+-activated tension development in single adult cardiac myocytes. Circ Res 1999;84:1310–1317.PubMedGoogle Scholar
  22. 22.
    Noguchi T, Camp P, Alix SL, Gorga JA, Begin KJ, Leavitt BJ, et al. Myosin from failing and non-failing human ventricles exhibit similar contractile properties. J Mol Cell Cardiol 2003;35:91–97.PubMedCrossRefGoogle Scholar
  23. 23.
    Fitzsimons DP, Patel JR, Moss RL. Role of myosin heavy chain composition in kinetics of force development and relaxation in rat myocardium. J Physiol (Lond) 1998;513 (Pt 1):171–183.Google Scholar
  24. 24.
    Miyata S, Minobe W, Bristow MR, Leinwand LA. Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 2000;86:386–390.PubMedGoogle Scholar
  25. 25.
    Reiser PJ, Portman MA, Ning XH, Schomisch MC. Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 2001;280:H1814–H1820.PubMedGoogle Scholar
  26. 26.
    Lowes BD, Minobe W, Abraham WT, Rizeq MN, Bohlmeyer TJ, Quaife RA, et al. Changes in gene expression in the intact human heart. Downregulation of alpha-myosin heavy chain in hypertrophied, failing ventricular myocardium. J Clin Invest 1997;100:2315–2324.PubMedGoogle Scholar
  27. 27.
    Nguyen TT, Hayes E, Mulieri LA, Leavitt BJ, ter Keurs H, Alpert NR, et al. Maximal actomyosin ATPase activity and in vitro myosin motility are unaltered in human mitral regurgitation heart failure. Circ Res 1996;79:222–226.PubMedGoogle Scholar
  28. 28.
    VanBuren P, Waller GS, Harris DE, Trybus KM, Warshaw DM, Lowey S. The essential light chain is required for full force production by skeletal muscle myosin. Proc Natl Acad Sci USA 1994;91:12403–12407.PubMedGoogle Scholar
  29. 29.
    Morano I, Hadicke K, Haase H, Bohm M, Erdmann E, Schaub MC. Changes in essential myosin light chain isoform expression provide a molecular basis for isometric force regulation in the failing human heart. J Mol Cell Cardiol 1997;29:1177–1187.PubMedCrossRefGoogle Scholar
  30. 30.
    Rarick HM, Opgenorth TJ, von GT, Wu-Wong JR, Solaro RJ. An essential myosin light chain peptide induces supramaximal stimulation of cardiac myofibrillar ATPase activity. J Biol Chem 1996;271:27039–27043.PubMedGoogle Scholar
  31. 31.
    Weisberg A, Winegrad S. Relation between crossbridge structure and actomyosin ATPase activity in rat heart. Circ Res 1998;83:60–72.PubMedGoogle Scholar
  32. 32.
    Kulikovskaya I, McClellan G, Flavigny J, Carrier L, Winegrad S. Effect of MyBP-C binding to actin on contractility in heart muscle. J Gen Physiol 2003;122:761–774.PubMedCrossRefGoogle Scholar
  33. 33.
    Squire JM, Luther PK, Knupp C. Structural evidence for the interaction of C-protein (MyBP-C) with actin and sequence identification of a possible actin-binding domain. J Mol Biol 2003;331:713–724.PubMedCrossRefGoogle Scholar
  34. 34.
    Harris SP, Rostkova E, Gautel M, Moss RL. Binding of myosin binding protein-C to myosin subfragment S2 affects contractility independent of a tether mechanism 1. Circ Res 2004;95:930–936.PubMedCrossRefGoogle Scholar
  35. 35.
    Levine R, Weisberg A, Kulikovskaya I, McClellan G, Winegrad S. Multiple structures of thick filaments in resting cardiac muscle and their influence on cross-bridge interactions. Biophys J 2001;81:1070–1082.PubMedGoogle Scholar
  36. 36.
    Hasenfuss G, Mulieri LA, Blanchard EM, Holubarsch C, Leavitt BJ, Ittleman F, et al. Energetics of isometric force development in control and volume- overload human myocardium. Comparison with animal species. Circ Res 1991;68:836–846.PubMedGoogle Scholar
  37. 37.
    Hasenfuss G, Mulieri LA, Leavitt BJ, Allen PD, Haeberle JR, Alpert NR. Alteration of contractile function and excitation-contraction coupling in dilated cardiomyopathy. Circ Res 1992;70:1225–1232.PubMedGoogle Scholar
  38. 38.
    Nakajima-Taniguchi C, Matsui H, Nagata S, Kishimoto T, Yamauchi-Takihara K. Novel missense mutation in alpha-tropomyosin gene found in Japanese patients with hypertrophic cardiomyopathy. J Mol Cell Cardiol 1995;27:2053–2058.PubMedGoogle Scholar
  39. 39.
    Zot AS, Potter JD. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu Rev Biophys Biophys Chem 1987;16:535–559.PubMedCrossRefGoogle Scholar
  40. 40.
    Brisson JR, Golosinska K, Smillie LB, Sykes BD. Interaction of tropomyosin and troponin T: A proton nuclear magnetic resonance study. Biochemistry 1986;25:4548–4555.PubMedCrossRefGoogle Scholar
  41. 41.
    Krumholz HM, Baker DW, Ashton CM, Dunbar SB, Friesinger GC, Havranek EP, et al. Evaluating quality of care for patients with heart failure [published erratum appears in Circulation 2000 Jun 27;101(25):2995]. Circulation 2000;101:E122–E140.PubMedGoogle Scholar
  42. 42.
    Inoko M, Kihara Y, Sasayama S. Neurohumoral factors during transition from left ventricular hypertrophy to failure in Dahl salt-sensitive rats. Biochem Biophys Res Commun 1995;206:814–820.PubMedCrossRefGoogle Scholar
  43. 43.
    Pearlstone JR, Smillie LB. Troponin T fragments: Physical properties and binding to troponin C. Can J Biochem 1978;56:521–527.PubMedGoogle Scholar
  44. 44.
    Chalovich JM. Actin mediated regulation of muscle contraction. Pharmacol Ther 1992;55:95–148.PubMedCrossRefGoogle Scholar
  45. 45.
    Arner A, Strauss JD, Svensson C, Ruegg JC. Effects of troponin-I extraction with vanadate and of the calcium sensitizer EMD 53998 on the rate of force generation in skinned cardiac muscle. J Mol Cell Cardiol 1995;27:615–623.PubMedGoogle Scholar
  46. 46.
    Vibert P, Craig R, Lehman W. Steric-model for activation of muscle thin filaments. J Mol Biol 1997;266:8–14.PubMedCrossRefGoogle Scholar
  47. 47.
    Kobayashi T, Kobayashi M, Gryczynski Z, Lakowicz JR, Collins JH. Inhibitory region of troponin I: Ca(2+)-dependent structural and environmental changes in the troponin-tropomyosin complex and in reconstituted thin filaments. Biochemistry 2000;39:86–91.PubMedGoogle Scholar
  48. 48.
    Narita A, Yasunaga T, Ishikawa T, Mayanagi K, Wakabayashi T. Ca(2+)-induced switching of troponin and tropomyosin on actin filaments as revealed by electron cryo-microscopy. J Mol Biol 2001;308:241–261.PubMedCrossRefGoogle Scholar
  49. 49.
    Kobayashi T, Kobayashi M, Collins JH. Ca(2+)-dependent, myosin subfragment 1-induced proximity changes between actin and the inhibitory region of troponin I. Biochim Biophys Acta 2001;1549:148–154.PubMedGoogle Scholar
  50. 50.
    Slupsky CM, Sykes BD. NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 1995;34:15953–15964.PubMedGoogle Scholar
  51. 51.
    Tao T, Gong BJ, Leavis PC. Calcium-induced movement of troponin-I relative to actin in skeletal muscle thin filaments. Science 1990;247:1339–1341.PubMedGoogle Scholar
  52. 52.
    VanBuren P, Palmiter KA, Warshaw DM. Tropomyosin directly modulates actomyosin mechanical performance at the level of a single actin filament. Proc Natl Acad Sci USA 1999;96:12488–12493.PubMedCrossRefGoogle Scholar
  53. 53.
    Grabarek Z, Grabarek J, Leavis PC, Gergely J. Cooperative binding to the Ca2+-specific sites of troponin C in regulated actin and actomyosin. J Biol Chem 1983;258:14098–14102.PubMedGoogle Scholar
  54. 54.
    Goldman YE, Hibberd MG, Trentham DR. Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5'-triphosphate. J Physiol (Lond) 1984;354:577–604.Google Scholar
  55. 55.
    Tobacman LS. Thin filament-mediated regulation of cardiac contraction. Annu Rev Physiol 1996;58:447–481.PubMedCrossRefGoogle Scholar
  56. 56.
    Millar NC, Homsher E. The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. A steady-state and transient kinetic study. J Biol Chem 1990;265:20234–20240.PubMedGoogle Scholar
  57. 57.
    Swartz DR, Moss RL, Greaser ML. Calcium alone does not fully activate the thin filament for S1 binding to rigor myofibrils. Biophys J 1996;71:1891–1904.PubMedGoogle Scholar
  58. 58.
    Gorga JA, Fishbaugher DE, VanBuren P. Activation of the calcium-regulated thin filament by myosin strong binding. Biophys J 2003;85:2484–2491.PubMedGoogle Scholar
  59. 59.
    Phillips GNJ, Fillers JP, Cohen C. Tropomyosin crystal structure and muscle regulation. J Mol Biol 1986;192:111–131.PubMedGoogle Scholar
  60. 60.
    McKillop DF, Geeves MA. Regulation of the interaction between actin and myosin subfragment 1: Evidence for three states of the thin filament. Biophys J 1993;65:693–701.PubMedGoogle Scholar
  61. 61.
    Brenner B. Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: Implications for regulation of muscle contraction. Proc Natl Acad Sci USA 1988;85:3265–3269.PubMedGoogle Scholar
  62. 62.
    Rosenfeld SS, Taylor EW. The dissociation of 1-N6-ethenoadenosine diphosphate from regulated actomyosin subfragment 1. J Biol Chem 1987;262:9994–9999.PubMedGoogle Scholar
  63. 63.
    Rosenfeld SS, Taylor EW. The mechanism of regulation of actomyosin subfragment 1 ATPase. J Biol Chem 1987;262:9984–9993.PubMedGoogle Scholar
  64. 64.
    Li P, Hofmann PA, Li B, Malhotra A, Cheng W, Sonnenblick EH, et al. Myocardial infarction alters myofilament calcium sensitivity and mechanical behavior of myocytes. Am J Physiol 1997;272:H360–H370.PubMedGoogle Scholar
  65. 65.
    Wolff MR, Buck SH, Stoker SW, Greaser ML, Mentzer RM. Myofibrillar calcium sensitivity of isometric tension is increased in human dilated cardiomyopathies: Role of altered beta-adrenergically mediated protein phosphorylation. J Clin Invest 1996;98:167–176.PubMedGoogle Scholar
  66. 66.
    Wolff MR, Whitesell LF, Moss RL. Calcium sensitivity of isometric tension is increased in canine experimental heart failure. Circ Res 1995;76:781–789.PubMedGoogle Scholar
  67. 67.
    Hajjar RJ, Grossman W, Gwathmey JK. Responsiveness of the myofilaments to Ca2+ in human heart failure: Implications for Ca2+ and force regulation. Basic Res Cardiol 1992;87 (Suppl 1):143–59:143–159.Google Scholar
  68. 68.
    Holubarsch C, Ruf T, Goldstein DJ, Ashton RC, Nickl W, Pieske B, et al. Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere levels. Circulation 1996;94:683–689.PubMedGoogle Scholar
  69. 69.
    Pieske B, Schlotthauer K, Schattmann J, Beyersdorf F, Martin J, Just H, et al. Ca(2+)-dependent and Ca(2+)-independent regulation of contractility in isolated human myocardium. Basic Res Cardiol 1997;92 (Suppl 1):75–86.PubMedGoogle Scholar
  70. 70.
    Boheler KR, Carrier L, de lB, Allen PD, Komajda M, Mercadier JJ, et al. Skeletal actin mRNA increases in the human heart during ontogenic development and is the major isoform of control and failing adult hearts. J Clin Invest 1991;88:323–330.PubMedGoogle Scholar
  71. 71.
    Meggs LG, Tillotson J, Huang H, Sonnenblick EH, Capasso JM, Anversa P. Noncoordinate regulation of alpha-1 adrenoreceptor coupling and reexpression of alpha skeletal actin in myocardial infarction-induced left ventricular failure in rats. J Clin Invest 1990;86:1451–1458.PubMedGoogle Scholar
  72. 72.
    Hanatani A, Yoshiyama M, Kim S, Omura T, Toda I, Akioka K, et al. Inhibition by angiotensin II type 1 receptor antagonist of cardiac phenotypic modulation after myocardial infarction. J Mol Cell Cardiol 1995;27:1905–1914.PubMedCrossRefGoogle Scholar
  73. 73.
    Schwartz K, Carrier L, Lompre AM, Mercadier JJ, Boheler KR. Contractile proteins and sarcoplasmic reticulum calcium-ATPase gene expression in the hypertrophied and failing heart. Basic Res Cardiol 1992;87 (Suppl 1):285–90:285–290.Google Scholar
  74. 74.
    Ausma J, Schaart G, Thone F, Shivalkar B, Flameng W, Depre C, et al. Chronic ischemic viable myocardium in man: Aspects of dedifferentiation. Cardiovascular Pathology 1995;4:29–37.CrossRefGoogle Scholar
  75. 75.
    Harris DE, Warshaw DM. Smooth and skeletal muscle actin are mechanically indistinguishable in the in vitro motility assay. Circ Res 1993;72:219–224.PubMedGoogle Scholar
  76. 76.
    Hewett TE, Grupp IL, Grupp G, Robbins J. Alpha-skeletal actin is associated with increased contractility in the mouse heart. Circ Res 1994;74:740–746.PubMedGoogle Scholar
  77. 77.
    Gao L, Kennedy JM, Solaro RJ. Differential expression of TnI and TnT isoforms in rabbit heart during the perinatal period and during cardiovascular stress. J Mol Cell Cardiol 1995;27:541–550.PubMedGoogle Scholar
  78. 78.
    McAuliffe JJ, Gao LZ, Solaro RJ. Changes in myofibrillar activation and troponin C Ca2+ binding associated with troponin T isoform switching in developing rabbit heart. Circ Res 1990;66:1204–1216.PubMedGoogle Scholar
  79. 79.
    Ausoni S, De NC, Moretti P, Gorza L, Schiaffino S. Developmental expression of rat cardiac troponin I mRNA. Development 1991;112:1041–1051.PubMedGoogle Scholar
  80. 80.
    Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M, et al. Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res 1993;72:932–938.PubMedGoogle Scholar
  81. 81.
    Hunkeler NM, Kullman J, Murphy AM. Troponin I isoform expression in human heart. Circ Res 1991;69:1409–1414.PubMedGoogle Scholar
  82. 82.
    Anderson PA, Greig A, Mark TM, Malouf NN, Oakeley AE, Ungerleider RM, et al. Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ Res 1995;76:681–686.PubMedGoogle Scholar
  83. 83.
    Harris DE, Warshaw DM. Smooth and skeletal muscle myosin both exhibit low duty cycles at zero load in vitro. J Biol Chem 1993;268:14764–14768.PubMedGoogle Scholar
  84. 84.
    Gulati J, Akella AB, Nikolic SD, Starc V, Siri F. Shifts in contractile regulatory protein subunits troponin T and troponin I in cardiac hypertrophy. Biochem Biophys Res Commun 1994;202:384–390.PubMedCrossRefGoogle Scholar
  85. 85.
    Chen Z, Higashiyama A, Yaku H, Bell S, Fabian J, Watkins MW, et al. Altered expression of troponin T isoforms in mild left ventricular hypertrophy in the rabbit. J Mol Cell Cardiol 1997;29:2345–2354.PubMedGoogle Scholar
  86. 86.
    Anderson PA, Malouf NN, Oakeley AE, Pagani ED, Allen PD. Troponin T isoform expression in the normal and failing human left ventricle: A correlation with myofibrillar ATPase activity. Basic Res Cardiol 1992;87 (Suppl 1):117–27.PubMedGoogle Scholar
  87. 87.
    Kihara Y, Sasayama S. Transition from compensatory hypertrophy to dilated failing left ventricle in Dahl-Iwai salt-sensitive rats. Am J Hypertens 1997;10:78S–82S.PubMedGoogle Scholar
  88. 88.
    Saba Z, Nassar R, Ungerleider RM, Oakeley AE, Anderson PA. Cardiac troponin T isoform expression correlates with pathophysiological descriptors in patients who underwent corrective surgery for congenital heart disease. Circulation 1996;94:472–476.PubMedGoogle Scholar
  89. 89.
    Molina MI, Kropp KE, Gulick J, Robbins J. The sequence of an embryonic myosin heavy chain gene and isolation of its corresponding cDNA. J Biol Chem 1987;262:6478–6488.PubMedGoogle Scholar
  90. 90.
    Greig A, Hirschberg Y, Anderson PA, Hainsworth C, Malouf NN, Oakeley AE, et al. Molecular basis of cardiac troponin T isoform heterogeneity in rabbit heart. Circ Res 1994;74:41–47.PubMedGoogle Scholar
  91. 91.
    Gautel M, Furst DO, Cocco A, Schiaffino S. Isoform transitions of the myosin binding protein C family in developing human and mouse muscles: Lack of isoform transcomplementation in cardiac muscle. Circ Res 1998;82:124–129.PubMedGoogle Scholar
  92. 92.
    Shao Q, Ren B, Zarain-Herzberg A, Ganguly PK, Dhalla NS. Captopril treatment improves the sarcoplasmic reticular Ca(2+) transport in heart failure due to myocardial infarction. J Mol Cell Cardiol 1999;31:1663–1672.PubMedGoogle Scholar
  93. 93.
    Solaro RJ, Powers FM, Gao L, Gwathmey JK. Control of myofilament activation in heart failure. Circulation 1993;87(Suppl VII):38–43.Google Scholar
  94. 94.
    VanBuren P, Alix SL, Gorga JA, Begin KJ, LeWinter MM, Alpert NR. Cardiac troponin T isoforms demonstrate similar effects on mechanical performance in a regulated contractile system. Am J Physiol Heart Circ Physiol 2002;282:H1665–H1671.PubMedGoogle Scholar
  95. 95.
    Gomes AV, Guzman G, Zhao J, Potter JD. Cardiac troponin T isoforms affect the Ca2+ sensitivity and inhibition of force development. Insights into the role of troponin T isoforms in the heart. J Biol Chem 2002;277:35341–35349.PubMedGoogle Scholar
  96. 96.
    Schwartz K, Chassagne C, Boheler KR. The molecular biology of heart failure. J Am Coll Cardiol 1993;22:30A–33A.PubMedGoogle Scholar
  97. 97.
    Antman EM, Tanasijevic MJ, Thompson B, Schactman M, McCabe CH, Cannon CP, et al. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med 1996;335:1342–1349.PubMedCrossRefGoogle Scholar
  98. 98.
    Murphy AM, Kogler H, Georgakopoulos D, McDonough JL, Kass DA, Van Eyk JE, et al. Transgenic mouse model of stunned myocardium. Science 2000;287:488–491.PubMedCrossRefGoogle Scholar
  99. 99.
    Foster DB, Noguchi T, VanBuren P, Murphy AM, Van Eyk JE. C-Terminal Truncation of Cardiac Troponin I Causes Divergent Effects on ATPase and Force: Implications for the Pathophysiology of Myocardial Stunning. Circ Res 2003;93:917–924.PubMedCrossRefGoogle Scholar
  100. 100.
    Missov E, Calzolari C, Pau B. Circulating cardiac troponin I in severe congestive heart failure. Circulation 1997;96:2953–2958.PubMedGoogle Scholar
  101. 101.
    Bodor GS, Oakeley AE, Allen PD, Crimmins DL, Ladenson JH, Anderson PA. Troponin I phosphorylation in the normal and failing adult human heart. Circulation 1997;96:1495–1500.PubMedGoogle Scholar
  102. 102.
    Garvey JL, Kranias EG, Solaro RJ. Phosphorylation of C-protein, troponin I and phospholamban in isolated rabbit hearts. Biochem J 1988;249:709–714.PubMedGoogle Scholar
  103. 103.
    Zhang R, Zhao J, Mandveno A, Potter JD. Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Circ Res 1995;76:1028–1035.PubMedGoogle Scholar
  104. 104.
    Holroyde MJ, Small DA, Howe E, Solaro RJ. Isolation of cardiac myofibrils and myosin light chains with in vivo levels of light chain phosphorylation. Biochim Biophys Acta 1979;587:628–637.PubMedGoogle Scholar
  105. 105.
    Wattanapermpool J, Guo X, Solaro RJ. The unique amino-terminal peptide of cardiac troponin I regulates myofibrillar activity only when it is phosphorylated. J Mol Cell Cardiol 1995;27:1383–1391.PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang R, Zhao J, Potter JD. Phosphorylation of both serine residues in cardiac troponin I is required to decrease the Ca2+ affinity of cardiac troponin C. J Biol Chem 1995;270:30773–30780.PubMedGoogle Scholar
  107. 107.
    Mope L, McClellan GB, Winegrad S. Calcium sensitivity of the contractile system and phosphorylation of troponin in hyperpermeable cardiac cells. J Gen Physiol 1980;75:271–282.PubMedCrossRefGoogle Scholar
  108. 108.
    Kentish JC, McCloskey DT, Layland J, Palmer S, Leiden JM, Martin AF, et al. Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Circ Res 2001;88:1059–1065.PubMedGoogle Scholar
  109. 109.
    Herron TJ, Korte FS, McDonald KS. Power output is increased after phosphorylation of myofibrillar proteins in rat skinned cardiac myocytes. Circ Res 2001;89:1184–1190.PubMedGoogle Scholar
  110. 110.
    Hunlich M, Begin KJ, Gorga JA, Fishbaugher DE, LeWinter MM, VanBuren P. Protein kinase A mediated modulation of acto-myosin kinetics. J Mol Cell Cardiol 2005;38:119–125.PubMedCrossRefGoogle Scholar
  111. 111.
    Zakhary DR, Moravec CS, Bond M. Regulation of PKA binding to AKAPs in the heart: Alterations in human heart failure. Circulation 2000;101:1459–1464.PubMedGoogle Scholar
  112. 112.
    Venema RC, Raynor RL, Noland TAJ, Kuo JF. Role of protein kinase C in the phosphorylation of cardiac myosin light chain 2. Biochem J 1993;294:401–406.PubMedGoogle Scholar
  113. 113.
    Noland TAJ, Kuo JF. Phosphorylation of cardiac myosin light chain 2 by protein kinase C and myosin light chain kinase increases Ca(2+)-stimulated actomyosin MgATPase activity. Biochem Biophys Res Commun 1993;193:254–260.PubMedCrossRefGoogle Scholar
  114. 114.
    Noland TAJ, Kuo JF. Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2(+)-stimulated actomyosin MgATPase activity. J Biol Chem 1991;266:4974–4978.PubMedGoogle Scholar
  115. 115.
    Noland TAJ, Raynor RL, Kuo JF. Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J Biol Chem 1989;264:20778–20785.PubMedGoogle Scholar
  116. 116.
    Clement O, Puceat M, Walsh MP, Vassort G. Protein kinase C enhances myosin light-chain kinase effects on force development and ATPase activity in rat single skinned cardiac cells. Biochem J 1992;285:311–317.PubMedGoogle Scholar
  117. 117.
    Venema RC, Kuo JF. Protein kinase C-mediated phosphorylation of troponin I and C-protein in isolated myocardial cells is associated with inhibition of myofibrillar actomyosin MgATPase. J Biol Chem 1993;268:2705–2711.PubMedGoogle Scholar
  118. 118.
    Jideama NM, Noland TAJ, Raynor RL, Blobe GC, Fabbro D, Kazanietz MG, et al. Phosphorylation specificities of protein kinase C isozymes for bovine cardiac troponin I and troponin T and sites within these proteins and regulation of myofilament properties. J Biol Chem 1996;271:23277–23283.PubMedGoogle Scholar
  119. 119.
    Sumandea MP, Pyle WG, Kobayashi T, de Tombe PP, Solaro RJ. Identification of a functionally critical protein kinase C phosphorylation residue of cardiac troponin T. J Biol Chem 2003;278:35135–35144.PubMedCrossRefGoogle Scholar
  120. 120.
    Noland TAJ, Kuo JF. Protein kinase C phosphorylation of cardiac troponin T decreases Ca(2+)-dependent actomyosin MgATPase activity and troponin T binding to tropomyosin-F-actin complex. Biochem J 1992;288:123–129.PubMedGoogle Scholar
  121. 121.
    Watson JE, Karmazyn M. Concentration-dependent effects of protein kinase C-activating and-nonactivating phorbol esters on myocardial contractility, coronary resistance, energy metabolism, prostacyclin synthesis, and ultrastructure in isolated rat hearts. Effects of amiloride. Circ Res 1991;69:1114–1131.PubMedGoogle Scholar
  122. 122.
    Endoh M, Blinks JR. Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: Reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through alpha- and beta-adrenoceptors. Circ Res 1988;62:247–265.PubMedGoogle Scholar
  123. 123.
    Noguchi T, Kihara Y, Begin KJ, Gorga JA, Palmiter KA, LeWinter MM, et al. Altered myocardial thin-filament function in the failing Dahl salt-sensitive rat heart: Amelioration by endothelin blockade. Circulation 2003;107:630–635.PubMedCrossRefGoogle Scholar
  124. 124.
    Noguchi T, Hunlich M, Camp PC, Begin KJ, El Zaru M, Patten R, et al. Thin filament-based modulation of contractile performance in human heart failure. Circulation 2004;110:982–987.PubMedCrossRefGoogle Scholar
  125. 125.
    Bowling N, Walsh RA, Song G, Estridge T, Sandusky GE, Fouts RL, et al. Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation 1999;99:384–391.PubMedGoogle Scholar
  126. 126.
    Dorn GW, Mochly-Rosen D. Intracellular transport mechanisms of signal transducers. Annu Rev Physiol 2002;64:407–429.PubMedCrossRefGoogle Scholar
  127. 127.
    Grey EM, Chan CK, Chen Y, Hofmann PA. Age-related functional effects linked to phosphatase activity in ventricular myocytes. Am J Physiol Heart Circ Physiol 2003;285:H90–H96.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Departments of Medicine and Molecular Physiology & Biophysics,College of MedicineUniversity of VermontUSA
  2. 2.College of MedicineUniversity of VermontBurlingtonUSA

Personalised recommendations