High Temperature

, Volume 44, Issue 1, pp 67–82

A new equation of state for rubidium vapors at temperatures up to 1600 K and pressures up to 4 MPa

  • A. G. Mozgovoi
  • V. N. Popov
  • L. R. Fokin
Thermophysical Properties of Materials

Abstract

Statistical matching is performed of a wide range of diverse experimental data on the thermodynamic properties of saturated and superheated rubidium vapors at temperatures up to 1650 K. The parametric models used in the matching of data include the equation of state in the virial form and equations in the form of group expansions in terms of degrees of activity. Values of the second virial and group coefficients are obtained using new spectroscopic data on the singlet potential of rubidium atoms in the ground electron state. The equation of state in the form of expansion of density in terms of degrees of activity is used to calculate the tables of thermodynamic functions and estimate their confidence errors at temperatures up to 1600 K and pressures up to 4 MPa.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tepper, F., Zelenak, J., Roehlich, F, and May, V., Thermophysical and Transport Properties of Liquid Metals, Report AFML-TR-65-99, Ohio: Air Force Materials Lab., 1965.Google Scholar
  2. 2.
    Achener, P.Y., Mackewicz, W.V., Fisher, D.L., and Camp, D.C., Thermophysical and Heat Transfer Properties of Alkali Metals, Report AGN-8195, vol. 1, San Ramon, Cal.: Aerojet-General Corp., 1968.Google Scholar
  3. 3.
    Stone, J.P., Ewing, C.T., Karp, R.L., et al., J. Chem. Eng. Data, 1967, vol. 12, no. 3, p. 352.CrossRefGoogle Scholar
  4. 4.
    Tepper, F., Murchinson, A., Zelenak, J., and Roehlich, F, Thermophysical Properties of Rubidium, Report ASD-TDR-63-133, Ohio: Air Force Materials Lab., 1963.Google Scholar
  5. 5.
    Lee, C.S., Lee, D.I., and Bonilla, C.F., Nucl. Eng. Des., 1969, vol. 10, no. 1, p. 83.Google Scholar
  6. 6.
    Shpil’rain, E.E., Yakimovich, K.A., Totskii, E.E., et al., Teplofizicheskie svoistva shchelochnykh metallov (The Thermophysical Properties of Alkali Metals), Moscow: Izd. Standartov, 1970.Google Scholar
  7. 7.
    Handbook of Thermodynamic and Transport Properties of Alkali Metals, Ohse, R.W., Ed., Oxford: Blackwell Science Publ., 1985.Google Scholar
  8. 8.
    Bystrov, P.I., Kagan, D.N., Krechetova, G.A., and Shpil’rain, E.E., Zhidkometallicheskie teplonositeli teplovykh trub i energeticheskikh ustanovok (Liquid-Metal Heat-Transfer Agents of Heat Pipes and Power Plants), Moscow: Nauka, 1988.Google Scholar
  9. 9.
    Gurvich, L.V., Veits, I.V., Medvedev, V.A., et al., Termodinamicheskie svoistva individual’nykh veshchestv (The Thermodynamic Properties of Individual Substances), vol. 4, books 1 and 2, Moscow: Nauka, 1982.Google Scholar
  10. 10.
    Vargaftik, N.B., Nikitin, A.N., Stepanov, V.G., and Abakumov, A.I., Rubidii. Termodinamicheskie svoistva peregretogo para v oblasti parametrov sostoyaniya po davleniyu 0.1–50 MPa i temperature 975–2150 K. Tablitsy standartnykh spravochnykh dannykh (proyekt) (Rubidium. The Thermodynamic Properties of Superheated Vapor in the Region of Parameters of State of 0.1–50 MPa for Pressure and 975–2150 K for Temperature. Tables of Standard Reference Data (project)), Moscow: Izd. Standartov, 1992.Google Scholar
  11. 11.
    Voljak, L.D., Nikitin, A.N., and Stepanov, V.G., Int. J. Thermophys., 1987, vol. 8, no. 2, p. 239.CrossRefGoogle Scholar
  12. 12.
    Nikitin, A.N., Experimental Investigation of Specific Volumes of Potassium and Rubidium in the Gas Phase at High Parameters of State, Cand. Sci. (Tech.) Dissertation, Moscow: MAI (Moscow Aviation Inst.), 1987.Google Scholar
  13. 13.
    Mozgovoi, A.G., Novikov, I.I., Pokrasin, M.A., et al., The Pressure of Saturated Vapors of Alkali Metals, in Obzory po teplofizicheskim svoistvam veshchestv (Reviews in Thermophysical Properties of Substances), Moscow: IVTAN, 1985, no. 1 (51), p. 1.Google Scholar
  14. 14.
    Mozgovoi, A.G., Novikov, I.I., Pokrasin, M.A., and Roshchupkin, V.V., High Temp. High Pressures, 1987, vol. 19, no. 4, p. 425.Google Scholar
  15. 15.
    Mozgovoi, A.G., Roshchupkin, V.V., Pokrasin, M.A., et al., Litii, kalii, rubidii, tsezii. Davlenie nasyshchennykh parov pri vysokikh temperaturakh. Tablitsy standartnykh spravochnykh dannykh no. 112-87 (Lithium, Potassium, Rubidium, Cesium. The Pressure of Saturated Vapors at High Temperatures. Tables of Standard Reference Data no. 112-87), Moscow: Izd. Standartov, 1988.Google Scholar
  16. 16.
    Trelin, Yu.S., Teryaev, V.V., and Egorov, Yu.V., Vopr. Teplofiz. Yad. Reakt., 1974, issue 4, p. 54.Google Scholar
  17. 17.
    Trelin, Yu.S., Teryaev, V.V., and Fokin, L.R., The Acoustic Properties of Vapors of Alkali Metals, in Obzory po teplofizicheskim svoistvam veshchestv (Reviews in Thermophysical Properties of Substances), Moscow: IVTAN, 1981, no. 1 (27), p. 3.Google Scholar
  18. 18.
    Amiot, C., J. Chem. Phys., 1990, vol. 93, no. 12, p. 8591.CrossRefADSGoogle Scholar
  19. 19.
    Tsai, C.C., Freeland, R.S., Vogels, J.M., et al., Phys. Rev. Lett., 1997, vol. 79, no. 7, p. 1245.CrossRefADSGoogle Scholar
  20. 20.
    Seto, J.Y., Le Roy, R.J., Verge, J., and Amiot, C., J. Chem. Phys., 2000, vol. 113, no. 8, p. 3067.CrossRefADSGoogle Scholar
  21. 21.
    Mozgovoi, A.G., Popov, V.N., and Fokin, L.R., The Thermodynamic Properties of Cesium Vapors at Temperatures up to 1700 K and Pressures up to 5.2 MPa, Preprint of Inst. of High Temperatures, Russ. Acad. Sci., Moscow, 2002, no. 1-463.Google Scholar
  22. 22.
    Mozgovoi, A.G., Popov, V.N., and Fokin, L.R., New Equations of State and Tables of the Thermodynamic Properties of Cesium Vapors at Temperatures of <1700 K and Pressures of <5.2 MPa, in Materialy X Vserossiiskoi konferentsii po teplofizicheskim svoistvam veshchestv (Proceedings of X All-Russia Conference on Thermophysical Properties of Materials), Kazan: KGTU (Kazan State Technical Univ.), 2002, p. 35.Google Scholar
  23. 23.
    Varandas, A.J.C. and Brandao, J.A., Mol. Phys., 1982, vol. 45, no. 4, p. 857.Google Scholar
  24. 24.
    Spiegelmann, F., Pavolini, D., and Daudey, J.-P., J. Phys. B, 1989, vol. 22, no. 16, p. 2465.CrossRefADSGoogle Scholar
  25. 25.
    Krauss, M. and Stevens, W.J., J. Chem. Phys., 1990, vol. 93, no. 6, p. 4236.CrossRefADSGoogle Scholar
  26. 26.
    Foucrault, M., Millie, Ph., Daudley, J.-P., J. Chem. Phys., 1992, vol. 96, no. 2, p. 1257.CrossRefADSGoogle Scholar
  27. 27.
    Derevianko, A., Johnson, W.R., Safronova, M.S., and Babb, J.F., Phys. Rev. Lett., 1999, vol. 82, no. 18, p. 3589.CrossRefADSGoogle Scholar
  28. 28.
    Fioretti, A., Amoir, C., Dion, O., et al., Eur. Phys. J. D, 2001, vol. 15, p. 180.CrossRefGoogle Scholar
  29. 29.
    Soldan, P., Cvitas, T., and Hutson, J.M., Three-Body Non-Additive Forces between Spin-Polarized Alkali Atoms, arXiv:cond-mat/0211065. vo1.1. 2002.Google Scholar
  30. 30.
    Vukalovich, M.P., Ivanov, A.I., Fokin, L.R., and Yakovlev, A.G., Teplofizicheskie svoistva rtuti (The Thermophysical Properties of Mercury), Moscow: Izd. Standartov, 1971.Google Scholar
  31. 31.
    Nieto de Castro, C.A., Fareleira, J.M.N.A., Matias, P.M., and Ramires, M.L.V., Ber. Bunsenges. Phys. Chem., 1990, vol. 94, p. 53.Google Scholar
  32. 32.
    Achener, P.Y., Miller, R.A., Fisher, D., and Olbrantz, M., Alkali Metals Evaluation Program. Thermodynamic and Transport Properties of Cesium and Rubidium. PVT-Properties, Report AGN-8192, vol. 1, San Ramon, Cal.: Aerojet-General Corp., 1967.Google Scholar
  33. 33.
    Achener, P.Y., The Determination of Latent Heat of Vaporization, Vapor Pressure, Enthalpy, Specific Heat, and Density of Liquid Rubidium and Cesium up to 1800 F, Report AGN-8090, San Ramon, Cal.: Aerojet-General Nucleonics, 1964.Google Scholar
  34. 34.
    Bohdansky, J. and Schins, H.E.J., J. Phys. Chem., 1967, vol. 71, no. 2, p. 215.CrossRefGoogle Scholar
  35. 35.
    Volyak, L.D., Vinogradov, Yu.K., and Anisimov, V.M., Teplofiz. Vys. Temp., 1968, vol. 6, no. 4, p. 754.Google Scholar
  36. 36.
    Kiriyanenko, A.A., Experimental Investigation of Surface Tension of Alkali Metal Melts Using a Combination Method, in Issledovaniya teplofizicheskikh svoistv veshchestv (Investigation of Thermophysical Properties of Materials), Novosibirsk: Nauka, 1970, p. 124.Google Scholar
  37. 37.
    Shpil’rain, E.E. and Nikanorov, E.V., Teplofiz. Vys. Temp., 1971, vol. 9, no. 2, p. 434.Google Scholar
  38. 38.
    Spielrein, E.E. and Nikanorov, E.V., Boiling Points Technique for Study of Alkali Metal Vapor Pressure, Proc. 5 th Symp. on Thermophysical Properties, New York: ASME, 1970, p. 450.Google Scholar
  39. 39.
    Schins, H.E.J., Van Wijk, R.W.M., and Dorpema, B., Z. Metallkd., 1971, vol. 62, no. 4, p. 330.Google Scholar
  40. 40.
    Cherneeva, L.I. and Proskurin, V.N., Teplofiz. Vys. Temp., 1972, vol. 10, no. 4, p. 765.Google Scholar
  41. 41.
    Bhise, V.S. and Bonilla, C.F., The Vapor Pressure and Critical Point of Rubidium, Proc. 6 th Symp. on Thermophysical Properties, New York: ASME, 1973, p. 362.Google Scholar
  42. 42.
    Tepper, F., Murchinson, A., Zelenak, J.S., and Roehlich, F., Thermophysical Properties of Rubidium and Cesium, Report ML-TDR-64-42, Ohio: Air Force Materials Lab., 1964.Google Scholar
  43. 43.
    Dillon, I.G., Nelson, P.A., and Swanson, B.S., J. Chem. Phys., 1966, vol. 44, no. 11, p. 4229.CrossRefGoogle Scholar
  44. 44.
    Jungst, S., Knuth, B., and Hensel, F., Phys. Rev. Lett., 1985, vol. 55, no. 11, p. 2160.ADSGoogle Scholar
  45. 45.
    Stone, J.P., Ewing, C.T., Spann, J.R., et al., J. Chem. Eng. Data, 1966, vol. 11, no. 3, p. 309.Google Scholar
  46. 46.
    Fokin, L.R., Teryaev, V.V., Trelin, Yu.S., and Mozgovoi, A.G., The Thermodynamic Properties of Sodium and Potassium Vapors, in Obzory po teplofizicheskim svoistvam veshchestv (Reviews in Thermophysical Properties of Substances), Moscow: IVTAN, 1983, no. 4 (42), p. 44.Google Scholar
  47. 47.
    Semenov, A.M., The Method of Initial Atoms in Statistical Thermodynamics of Nonideal Chemically Reacting Gases, Doctoral (Phys.-Math.) Dissertation, Moscow: IVTAN (Inst. of High Temperatures, USSR Acad. Sci.), 1985.Google Scholar
  48. 48.
    Popov, V.N., TSVM, 1985, issue 22, p. 22.Google Scholar
  49. 49.
    Sokolov, S.N. and Silin, I.N., Finding the Minima of Functionals by Linearization, Preprint of Joint Institute for Nuclear Research, Dubna, Moscow oblast, 1961, no. D-810.Google Scholar
  50. 50.
    Vukalovich, M.P., Teplofizicheskie svoistva vody i vodyanogo para (The Thermophysical Properties of Water and Steam) Moscow: Mashinostroenie, 1967.Google Scholar
  51. 51.
    Kuznetsova, O.D. and Semenov, A.M., Teplofiz. Vys. Temp., 2000, vol. 38, no. 1, p. 30 (High Temp. (Engl. transl.), vol. 38, no. 1, p. 26).Google Scholar
  52. 52.
    Fokin, L.R., Problems Associated with the Estimation of the Reliability of Reference Data on the Thermophysical Properties of Materials, in Neformal’nye matematicheskie modeli v khimicheskoi termodinamike (Informal Mathematical Models in Chemical Thermodynamics), Novosibirsk: Nauka, 1991, p. 100.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. G. Mozgovoi
    • 1
  • V. N. Popov
    • 1
  • L. R. Fokin
    • 1
  1. 1.Joint Institute of High TemperaturesRussian Academy of Sciences (IVTAN)MoscowRussia

Personalised recommendations