Physicochemical Biology and Knowledge Transfer: The Study of the Mechanism of Photosynthesis Between the Two World Wars

  • Kärin NickelsenEmail author


In the first decades of the twentieth century, the process of photosynthesis was still a mystery: Plant scientists were able to measure what entered and left a plant, but little was known about the intermediate biochemical and biophysical processes that took place. This state of affairs started to change between the two world wars, when a number of young scientists in Europe and the United States, all of whom identified with the methods and goals of physicochemical biology, selected photosynthesis as a topic of research. The protagonists had much in common: They had studied physics and chemistry (although not necessarily plant physiology) to a high level; they used physicochemical methods to study the basic processes of life; they believed these processes were the same, or very similar, in all life forms; and they were affiliated with institutions that fostered this kind of study. This set of cognitive, methodological, and material resources enabled these protagonists to transfer their knowledge of the concepts and techniques from microbiology and human biochemistry, for example, to the study of plant metabolism. These transfers of knowledge had a great influence on the way in which the biochemistry and biophysics of photosynthesis would be studied over the following decades. Through the use of four historical cases, this paper analyzes these knowledge transfers, as well as the investigative pathways that made them possible.


Interwar period General physiology Physicochemical biology Plant physiology Photosynthesis research  Transfer of knowledge 



I would first like to thank the editors, Jan Baedke and Christina Brandt, for proposing this thematic special issue and for including my contribution in this compilation, as well as the editors of the JHB for giving me the opportunity to do so. I am grateful to Robert Meunier, David Munns, Raphael Scholl, and Caterina Schürch for their helpful comments on earlier drafts of this paper, and to Margareta Simons, who carefully edited the final version. Finally, I would like to thank the two anonymous referees for their detailed reviews and valuable comments and suggestions. Although their widely divergent opinions made the task of incorporating their recommendations rather challenging, their observations certainly prompted me to rethink and rework the paper thoroughly—hopefully for the better.


  1. Allen, Garland E. 1978. Thomas H. Morgan: The Man and His Science. Princeton, NJ: Princeton University Press.Google Scholar
  2. Andersen, Olaf S. 2005. A Brief History of the Journal of General Physiology. Journal of General Physiology 125: 3–12.CrossRefGoogle Scholar
  3. Arnold, William. 1991. Experiments. Photosynthesis Research 27: 73–82.CrossRefGoogle Scholar
  4. Baedke, J. 2018. O Organism, Where Art Thou? Old and New Challenges for Organism-Centered Biology. Journal of the History of Biology. Scholar
  5. Bannister, Thomas T. 1972. The Careers and Contributions of Eugene Rabinowitch. Biophysical Journal 12: 707–718.CrossRefGoogle Scholar
  6. Bartha, Paul. 2016. Analogy and Analogical Reasoning. In The Stanford Encyclopedia of Philosophy (Winter 2016 Ed.), ed. Edward N. Zalta.
  7. Bechtel, William, and Robert C. Richardson. 1993. Discovering Complexity. Decomposition and Localization as Strategies in Scientific Research. Princeton, NJ: Princeton University Press.Google Scholar
  8. Bendall, Derek S. 1994. Robert Hill. Biographical Memoirs of Fellows of the Royal Society 40: 141–171.CrossRefGoogle Scholar
  9. Bernard, Claude. 1878. Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Paris: Ballière et Fils.CrossRefGoogle Scholar
  10. Beyler, Richard H. 2011. Exhuming the Three-Man Paper: Target-Theoretical Research in the 1930s and 1940s. In Creating a Physical Biology: The Three-Man Paper and the Origins of Molecular Biology, eds. Philip R. Sloan and Brandon Fogel, 99–142. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  11. Bohr, Nils. 1933. Light and Life. Nature 131: 421–423.CrossRefGoogle Scholar
  12. Cahan, David. 1989. An Institute For an Empire: The Physikalisch-Technische Reichsanstalt, 1871–1918. New York, NY: Cambridge University Press.Google Scholar
  13. Choules, Lucinda, and Govindjee. 2014. Stories and Photographs of William A. Arnold (1904–2001), A Pioneer of Photosynthesis and A Wonderful Friend. Photosynthesis Research 122: 87–95.CrossRefGoogle Scholar
  14. Clayton, Roderick K. 1965. Molecular Physics in Photosynthesis. New York, NY: Blaisdell.Google Scholar
  15. Craig, Patricia. 2005. Centennial History of the Carnegie Institution of Washington. Vol. 4: The Department of Plant Biology. Cambridge: Cambridge University Press.Google Scholar
  16. Creager, Angela, Elizabeth Lunbeck, and M. Norton Wise, eds. 2007. Science Without Laws: Model Systems, Cases, Exemplary Narratives. Durham, NC: Duke University Press.Google Scholar
  17. Czapek, Friedrich. 1913. Biochemie der Pflanzen. 2nd ed., rev. Jena: Fischer.Google Scholar
  18. de Chadarevian, Soraya, and Harmke Kamminga, eds. 1998. Molecularizing Biology and Medicine: New Practices and Alliances, 1910s–1970s. Amsterdam: Harwood Academic Publishers.Google Scholar
  19. Debru, Claude. 1994. La Photosynthèse: Victor Henri, Otto Warburg, René Wurmser. In Les Sciences Biologiques et Médicales en France 1920–1950, eds. Claude Debru, Jean Gayon, and Jean-Francois Picard, 27–40. Paris: CNRS Éditions.Google Scholar
  20. Delbrück, Max. 1978. Interview by Carolyn Harding. Pasadena, California, July 14 to September 11, 1978. Oral History Project, California Institute of Technology Archives. Accessed July 31, 2018.
  21. Emerson, Robert, and William Arnold. 1932a. A Separation of the Reactions of Photosynthesis by Means of Intermittent Light. Journal of General Physiology 15: 391–420.CrossRefGoogle Scholar
  22. Emerson, Robert, and William Arnold. 1932b. The Photochemical Reaction in Photosynthesis. Journal of General Physiology 16: 191–205.CrossRefGoogle Scholar
  23. Fangerau, Heiner. 2010. Spinning the Scientific Web. Jacques Loeb (1859–1924) und sein Programm einer internationalen biomedizinischen Grundlagenforschung. Berlin: Akademie Verlag.CrossRefGoogle Scholar
  24. Förster, Theodor. 1950. Fluoreszenz organischer Verbindungen. Göttingen: Vandenhoeck & Ruprecht.Google Scholar
  25. French, C Stacy. 1979. Fifty Years of Photosynthesis. Annual Review of Plant Physiology 30: 1–26.CrossRefGoogle Scholar
  26. Friedmann, Herbert C. 2004. From “Butyribacterium” to “E. coli”: An Essay on Unity in Biochemistry. Perspectives in Biology and Medicine 47: 47–66.CrossRefGoogle Scholar
  27. Fruton, Joseph S. 1972. Molecules and Life: Historical Essays on the Interplay of Chemistry and Biology. New York, NY: Wiley Interscience.Google Scholar
  28. Gaffron, Hans, and Kurt Wohl. 1936. Zur Theorie der Assimilation. Die Naturwissenschaften 24(81–90): 103–107.CrossRefGoogle Scholar
  29. Gaffron, Hans. 1969. Resistance to Knowledge. Plant Physiology 20: 1–40.CrossRefGoogle Scholar
  30. Gest, Harold, and Robert E. Blankenship. 2004. Time Line of Discoveries: Anoxygenic Bacterial Photosynthesis. Photosynthesis Research 80: 59–70.CrossRefGoogle Scholar
  31. Govindjee, 2004. Robert Emerson and Eugene Rabinowitch: Understanding Photosynthesis. In No Boundaries: University of Illinois Vignettes,ed. Lilian Hoddeson, 181–194. Urbana-Champaign, IL: University of Illinois Press.Google Scholar
  32. Govindjee, and David Krogmann. 2004. Discoveries in Oxygenic Photosynthesis (1727–2003): A Perspective. Photosynthesis Research 80: 15–27.CrossRefGoogle Scholar
  33. Govindjee, and David Fork. 2006. Charles Stacy French (1907–1995). Biographical Memoirs of the National Academy of Sciences 88: 1–29.Google Scholar
  34. Govindjee, Laras O. Björn, and Kärin Nickelsen. 2012. Evolution of the Z-Scheme of Electron Transport in Oxygenic Photosynthesis. In Research for Food, Fuel and Future: 15th International Conference on Photosynthesis, eds. Tingyun Kuang, Lu Congming, and Lixin Zhang, 835–841. Beijing: Zhejiang University Press.Google Scholar
  35. Groeben, Christiane. 2005. Catalysing Science: The Stazione Zoologica di Napoli as a Place for the Circulation of Scientific Ideas. In Places of Biological Research, eds. Christiane Groeben, Joachim Kaasch, and Michael Kaasch, 53–64. Berlin: Verlag für Wissenschaft und Bildung.Google Scholar
  36. Groeben, Christiane, and Irmgard Müller. 1975. The Naples Zoological Station at the Time of Anton Dohrn. Naples: Stazione Zoologica.Google Scholar
  37. Hall, Thomas S. 1969. Ideas of Life and Matter: Studies in the History of General Physiology, 600 B.C. to 1900 A.D. Chicago, IL: University of Chicago Press.Google Scholar
  38. Harris, Reginald G. 1935. Cold Spring Harbor Symposia on Quantitative Biology. New York, NY: The Biological Laboratory.Google Scholar
  39. Hill, Robin. 1933. Oxygen Affinity of Muscle Haemoglobin. Nature 132: 897–898.CrossRefGoogle Scholar
  40. Hill, Robin. 1936. Oxygen Dissociation Curves of Muscle Haemoglobin. Proceedings of the Royal Society of London Series B 120: 472–483.Google Scholar
  41. Hill, Robin. 1937. Oxygen Evolved by Isolated Chloroplasts. Nature 139: 881–882.CrossRefGoogle Scholar
  42. Hill, Robin. 1939. Oxygen Produced by Isolated Chloroplasts. Proceedings of the Royal Society of London Series B 127: 192–210.Google Scholar
  43. Hill, Robin, and Richard Scarisbrick. 1940. The Reduction of Ferric Oxalate by Isolated Chloroplasts. Proceedings of the Royal Society of London Series B 129: 233–255.Google Scholar
  44. Hill, Robin, and Fay Bendall. 1960. Function of the Two Cytochrome Components in Chloroplasts: A Working Hypothesis. Nature 186: 136–137.CrossRefGoogle Scholar
  45. Holmes, Frederick L. 1991. Hans Krebs: The Formation of a Scientific Life, 1900–1933. Oxford: Oxford University Press.Google Scholar
  46. Holmes, Frederick L. 1992. Between Biology and Medicine: The Formation of Intermediary Metabolism. Four Lectures Delivered at the Internat. Summer School in History of Science, Uppsala, July 1990. Berkeley, CA: Office for History of Science and Technology, University of California Press.Google Scholar
  47. Holmes, Frederick L. 2004. Investigative Pathways: Patterns and Stages in the Careers of Experimental Scientists. New Haven, CT: Yale University Press.Google Scholar
  48. Homann, Peter H. 2002. Hydrogen Metabolism of Green Algae: Discovery and Early Research—A Tribute to Hans Gaffron and His Coworkers. Photosynthesis Research 76: 93–103.CrossRefGoogle Scholar
  49. Höxtermann, Ekkehard. 1991. Photosynthese- und Stoffwechselforschung in der Geschichte der Botanik an der Berliner Universität (18101945). Berlin: Humboldt University (Beiträge zur Geschichte der Humboldt-Universität zu Berlin).Google Scholar
  50. Höxtermann, Ekkehard. 2001. Otto Heinrich Warburg (1883–1970). In Darwin & Co., Eine Geschichte der Biologie in Portraits, eds. Ilse Jahn and Michael Schmitt, vol. 2, 251–274. München:C. H. Beck.Google Scholar
  51. Höxtermann, Ekkehard. 2007. A Comment on Warburg’s Early Understanding of Biocatalysis. Photosynthesis Research 92: 121–127.CrossRefGoogle Scholar
  52. Huzisige, Hirosi, and Bacon Ke. 1993. Dynamics of the History of Photosynthesis Research. Photosynthesis Research 38: 185–209.CrossRefGoogle Scholar
  53. Joliot, Pierre. 1996. René Wurmser (1890–1993). Photosynthesis Research 48: 321–323.CrossRefGoogle Scholar
  54. Kamminga, Harmke. 1981. 50 Years Ago: van Niel and the Unity of Photosynthesis. Trends in Biochemical Sciences 6: 164–165.CrossRefGoogle Scholar
  55. Kamminga, Harmke. 1997. Frederick G. Hopkins and the Unification of Biochemistry. Trends in Biochemical Sciences 22: 184–187.CrossRefGoogle Scholar
  56. Kamp, A. F., J. W. M. la Rivière, and W. Verhoeven. 1959. Albert Jan Kluyver: His Life and Work. Biographical Memoranda, Selected Papers, Bibliography and Addenda. Amsterdam: North-Holland Publishing Company.Google Scholar
  57. Kay, and E. Lily. 1993. The Molecular Vision of Life: Caltech, the Rockefeller Foundation and the Rise of the New Biology. Oxford: Oxford University Press.Google Scholar
  58. Kingsland, Sharon. 2005. The Evolution of American Ecology, 1890–2000. Baltimore, MD: Johns Hopkins University Press.Google Scholar
  59. Kluyver, Albert J. 1924. Unity and Diversity in the Metabolism of Micro-Organisms. In Albert Jan Kluyver: His Life and Work, eds A. F. Kamp, J. W. M. la Rivière, and W. Verhoeven, 186–210. Amsterdam: North-Holland Publishing Company. (Translated reprint of: Eenheid en verscheidenhid in de stofwisseling der microben; Chemisch Weekblad 21: 266).Google Scholar
  60. Kluyver, Albert J. 1931. The Chemical Activities of Micro-Organisms. London: University of London Press.Google Scholar
  61. Kluyver, Albert J., and Hendrik J. L. Donker. 1926. Die Einheit in der Biochemie. Chemie der Zellen und Gewebe: Zeitschrift für die Probleme der Gärung, Atmung und Vitaminforschung 13: 134–139.Google Scholar
  62. Kohler, Robert E. 1973a. The Background to Otto Warburg’s Conception of the Atmungsferment. Journal of the History of Biology 6: 171–192.CrossRefGoogle Scholar
  63. Kohler, Robert E. 1973b. The Enzyme Theory of Life and the Origins of Biochemistry. Isis 64: 181–196.CrossRefGoogle Scholar
  64. Kohler, Robert E. 1982. From Medical Chemistry to Biochemistry: The Making of a Biomedical Discipline. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Kohler, Robert E. 1994. Lords of the Fly: Drosophila Genetics and the Experimental Life. Chicago, IL: University of Chicago Press.Google Scholar
  66. Kok, Bessel. 1960. Efficiency of Photosynthesis. In Handbuch der Pflanzenphysiologie, ed. André Pirson, pp. 566–633. Berlin: Springer.Google Scholar
  67. Krebs, Hans. 1928. Stoffwechsel der Zellen und Gewebe. In Methodik der wissenschaftlichen Biologie. Bd. II: Allgemeine Physiologie, eds. Tibor Péteri and Otto Arnbeck, 1048–1084. Berlin: Springer.Google Scholar
  68. Krebs, Hans. 1972. Otto Heinrich Warburg 1883–1970. Biographical Memoirs of Fellows of the Royal Society 18: 629–699.Google Scholar
  69. la Rivière, J. W. M. 1997. The Delft School of Microbiology in Historical Perspective. Antonie van Leeuwenhoek 71: 3–13.CrossRefGoogle Scholar
  70. Laubichler, Manfred. 2006. Allgemeine Biologie als selbständige Grundwissenschaft und die allgemeinen Grundlagen des Lebens. In Der Hochsitz des Wissens. Das Allgemeine als wissenschaftlicher Wert, eds. Michael Hagner and Manfred Laubichler, 185–205. Zürich: Diaphanes.Google Scholar
  71. Machamer, Peter, Lindley Darden, and Carl F. Craver. 2000. Thinking About Mechanisms. Philosophy of Science 67: 1–25.CrossRefGoogle Scholar
  72. Mann, T. 1964. David Keilin, 1887–1963. Biographical Memoirs of Fellows of the Royal Society 10: 183–205.CrossRefGoogle Scholar
  73. McElroy, William. 1976. Unity in Biochemistry. Trends in Biochemical Sciences 1: 93.CrossRefGoogle Scholar
  74. Myers, Jack. 1974. Conceptual Developments in Photosynthesis. Plant Physiology 54: 420–426.CrossRefGoogle Scholar
  75. Myers, Jack. 1994. The 1932 Experiments. Photosynthesis Research 40: 303–310.CrossRefGoogle Scholar
  76. Needham, Joseph, William Dunn, and Ernest Baldwin, eds. 1949. Hopkins and Biochemistry: 1861–1947. Cambridge: Hefner and Sons.Google Scholar
  77. Nickelsen, Kärin. 2007. Otto Warburg’s First Approach to Photosynthesis. Photosynthesis Research 92: 109–120.CrossRefGoogle Scholar
  78. Nickelsen, Kärin. 2009. The Construction of a Scientific Model: Otto Warburg and the Building Block Strategy. Studies in History and Philosophy of Biological and Biomedical Sciences 40: 73–86.CrossRefGoogle Scholar
  79. Nickelsen, Kärin. 2012. From the Red Drop to the Z-scheme of Photosynthesis. Annalen der Physik 524: A157–A160.CrossRefGoogle Scholar
  80. Nickelsen, Kärin. 2015. Explaining Photosynthesis: Models of Biochemical Mechanisms, 1840–1960. Dordrecht: Springer.CrossRefGoogle Scholar
  81. Nickelsen, Kärin. 2017. The Organism Strikes Back. Chlorella Algae and Their Impact on Photosynthesis Research, 1920s–1960s. History and Philosophy of the Life Sciences 39(9): 1–22.Google Scholar
  82. Nickelsen, Kärin, and Govindjee. 2011. The Maximum Quantum Yield Controversy: Otto Warburg and the “Mid West Gang.” Bern: Bern Studies in the History and Philosophy of Science.Google Scholar
  83. Pauly, Philip J. 1987a. Controlling Life: Jacques Loeb and the Engineering Ideal in Biology. Oxford: Oxford University Press.Google Scholar
  84. Pauly, Philip J. 1987b. General Physiology and the Discipline of Physiology, 1890–1935. In Physiology in the American Context, 1850–1940, ed. Gerald L. Geison, 195–207. New York, NY: Springer.CrossRefGoogle Scholar
  85. Pfeffer, Wilhelm. 1897. Pflanzenphysiologie. Ein Handbuch der Lehre vom Stoffwechsel und Kraftwechsel in der Pflanze. Leipzig: Engelmann.CrossRefGoogle Scholar
  86. Pirson, André. 1994. Sixty Years in Algal Physiology and Photosynthesis. Photosynthesis Research 40: 207–221.CrossRefGoogle Scholar
  87. Rabinowitch, Eugene I. 1961. Robert Emerson (1903–1959). Biographical Memoirs of the National Academy of Sciences 25: 112–131.Google Scholar
  88. Richmond, Marsha L. 2007. Muriel Wheldale Onslow and Early Biochemical Genetics. Journal of the History of Biology 40: 389–426.CrossRefGoogle Scholar
  89. Roll-Hansen, Nils. 2011. Niels Bohr and Max Delbrück: Balancing Autonomy and Reductionism in Biology. In Creating a Physical Biology: The Three-Man Paper and the Origins of Molecular Biology, eds. Philip R. Sloan and Brandon Fogel, 145–178. Chicago, IL: University of Chicago Press.Google Scholar
  90. Ruben, Samuel, Merle Randall, Martin D. Kamen, and James L. Hyde. 1941. Heavy Oxygen as a Tracer in the Study of Photosynthesis. Journal of the American Chemical Society 63: 877–879.CrossRefGoogle Scholar
  91. Rürup, Reinhart. 2008. Schicksale und Karrieren. Gedenkbuch für die von den Nationalsozialisten aus der Kaiser-Wilhelm-Gesellschaft vertriebenen Forscherinnen und Forscher. Göttingen: Wallstein.Google Scholar
  92. Schroeder, Heinrich. 1917. Die Hypothesen über die chemischen Vorgänge bei der Kohlensäure-Assimilation und ihre Grundlagen. Jena: Fischer.Google Scholar
  93. Schürch, Caterina. 2017. How Mechanisms Explain Interfield Cooperation: Biological-Chemical Study of Plant Growth Hormones in Utrecht and Pasadena, 1930–1938. History and Philosophy of the Life Sciences 39(3): 1–26.CrossRefGoogle Scholar
  94. Singleton, Rivers, Jr. 2000. From Bacteriology to Biochemistry: Albert Jan Kluyver and Chester Werkman at Iowa State. Journal of the History of Biology 33: 141–180.CrossRefGoogle Scholar
  95. Singleton, Rivers, Jr., and David R. Singleton. 2017. Remembering Our Forebears. Albert Jan Kluyver and the Unity of Life. Journal of the History of Biology 50: 169–218.CrossRefGoogle Scholar
  96. Sloan, Philip R. 2011. Biophysics in Berlin: The Delbrück Club. In Creating a Physical Biology: The Three-Man Paper and the Origins of Molecular Biology, eds. Philip R. Sloan and Brandon Fogel, 61–98. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
  97. Spath, Susan B. 1999. Cornelis B. van Niel and the Culture of Microbiology, 19201965. PhD thesis, University of California, Berkeley.Google Scholar
  98. Spoehr, Hermann A. 1919. The Development of Conceptions of Photosynthesis Since Ingen-Housz. The Scientific Monthly 9: 32–46.Google Scholar
  99. Spoehr, Hermann A. 1926. Photosynthesis. New York, NY: The Chemical Catalog Company Inc.Google Scholar
  100. Stiles, Walter. 1925. Photosynthesis. The Assimilation of Carbon by Green Plants. London: Longmans/Green.Google Scholar
  101. Stoltzenberg, Dietrich. 1998. Fritz Haber: Chemiker, Nobelpreisträger, Deutscher, Jude. Weinheim: Wiley-VCH.Google Scholar
  102. Sucker, Ulrich. 2002. Das Kaiser-Wilhelm-Institut für Biologie. Seine Gründungsgeschichte, seine problemgeschichtlichen und wissenschaftstheoretischen Voraussetzungen (19111916). Stuttgart: Steiner.Google Scholar
  103. Szöllösi-Janze, Margit. 1998. Fritz Haber 1868–1934: Eine Biographie. München: C. H. Beck.Google Scholar
  104. Timoféeff-Ressovsky, Nikolai W., and Max Delbrück. 1936. Strahlengenetische Versuche über sichtbare Mutationen und die Mutabilität einzelner Gene bei Drosophila melangoster. Zeitschrift für induktive Abstammungs- und Vererbungslehre 71: 322–334.Google Scholar
  105. Timoféeff-Ressovsky, Nikolai W., Karl G. Zimmer, and Max Delbrück. 1935. Über die Natur der Genmutation und der Genstruktur. Nachrichten der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1: 189–245.Google Scholar
  106. Timoféeff-Ressovsky, Nikolai W., Karl G. Zimmer, and Max Delbrück. 2011. On the Nature of Gene Mutation and Gene Structure. In Creating a Physical Biology: The Three-Man Paper and the Origins of Molecular Biology, ed. Philip R. Sloan, and Brandon Fogel, 222–305. Chicago, IL: University of Chicago Press.Google Scholar
  107. Tschirch, Alexander. 1921. Erlebtes und Erstrebtes. Lebenserinnerung. Bonn: Cohen.Google Scholar
  108. van Niel, Cornelis B. 1930. Photosynthesis in Bacteria. Contributions to Marine Biology 3: 161–169.Google Scholar
  109. van Niel, Cornelis B. 1935. Photosynthesis of Bacteria. In Cold Spring Harbor Symposia on Quantitative Biology, ed. Reginald G. Harris, vol. 3, 138–150. Long Island, NY: Cold Spring Harbor Laboratory..Google Scholar
  110. van Niel, Cornelis B. 1941. The Bacterial Photosyntheses and Their Importance for the General Problem of Photosynthesis. In Advances in Enzymology and Related Subjects, eds. F. F. Nord and C. H. Werkman, 263–328. New York, NY: Interscience Publishers.Google Scholar
  111. van Niel, Cornelis B. 1949. The “Delft School” and the Rise of General Microbiology. Bacteriological Reviews 13: 161–174.Google Scholar
  112. van Niel, Cornelis B. 1967. The Education of a Microbiologist: Some Reflections. Annual Review of Microbiology 21: 1–30.CrossRefGoogle Scholar
  113. Warburg, Emil. 1920. Quantentheoretische Grundlagen der Photochemie. Zeitschrift für Elektrochemie 26: 54–59.Google Scholar
  114. Warburg, Otto H. 1908. Beobachtungen über die Oxydationsprozesse im Seeigelei. Hoppe-Seyler’s Zeitschrift für physiologische Chemie 57: 1–16.CrossRefGoogle Scholar
  115. Warburg, Otto H. 1911. Untersuchungen über die Oxydationsprozesse in lebenden Zellen nach Versuchen am Seeigelei. Münchner Medizinische Wochenschrift 58: 289–293.Google Scholar
  116. Warburg, Otto H. 1914a. Über die Rolle des Eisens in der Atmung des Seeigeleis nebst Bemerkungen über einige durch Eisen beschleunigte Oxydationen am Seeigelei. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie 92: 231–256.Google Scholar
  117. Warburg, Otto H. 1914b. Beiträge zur Physiologie der Zelle, insbesondere über die Oxydationsgeschwindigkeit in Zellen. Ergebnisse der Physiologie 14: 253–337.CrossRefGoogle Scholar
  118. Warburg, Otto H. 1919. Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen I. Biochemische Zeitschrift 100: 230–270.Google Scholar
  119. Warburg, Otto H. 1920b. Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen II. Biochemische Zeitschrift 103: 188–217.Google Scholar
  120. Warburg, Otto H. 1926. Über den Stoffwechsel der Tumore. Berlin: Springer.Google Scholar
  121. Warburg, Otto H., and Erwin Negelein. 1922. Über den Energieumsatz bei der Kohlensäureassimilation. Zeitschrift für Physikalische Chemie 102: 235–266.Google Scholar
  122. Warburg, Otto H., and Erwin Negelein. 1923. Über den Einfluss der Wellenlänge auf den Energieumsatz bei der Kohlensäureassimilation. Zeitschrift für Physikalische Chemie 106: 191–218.Google Scholar
  123. Went, Frits W. 1958. Fifty Years of Plant Physiology in the U.S.A. In Fifty Years of Botany: Golden Jubilee Volume of the Botanical Society of America, ed. William C. Steere, 615–628. New York, NY: McGraw-Hill Book Company.Google Scholar
  124. Werner, Petra. 1991. Ein Genie irrt seltener. Otto Heinrich Warburg, ein Lebensbild in Dokumenten. Berlin: Akademie Verlag.Google Scholar
  125. Werner, Petra. 1996a. Otto Warburg, Jacques Loeb und die Entstehung der Institutsidee des Kaiser-Wilhelm-Instituts für Zellphysiologie. In Die Kaiser-Wilhelm-/Max-Planck-Gesellschaft und ihre Institute, eds. Bernhard vom Brocke and Hubert Laitko, 319–330. Berlin: De Gruyter.Google Scholar
  126. Werner, Petra. 1996b. Otto Warburg und das Problem der Sauerstoffaktivierung. Marburg: Basiliskenpresse.Google Scholar
  127. Werner, Petra. 1997. Learning from an Adversary? Warburg Against Wieland. Historical Studies in the Physical and Biological Sciences 28: 173–196.CrossRefGoogle Scholar
  128. Willstätter, Richard, and Arthur Stoll. 1913. Untersuchungen über Chlorophyll. Methoden und Ergebnisse. Berlin: Springer.CrossRefGoogle Scholar
  129. Willstätter, Richard, and Arthur Stoll. 1918. Untersuchungen über die Assimilation der Kohlensäure. Sieben Abhandlungen. Berlin: Springer.Google Scholar
  130. Wohl, Kurt. 1940. The Mechanism of Photosynthesis in Green Plants. New Phytologist 39: 33–64.CrossRefGoogle Scholar
  131. Woods, Donald D. 1957. Albert Jan Kluyver (1888–1956). Biographical Memoirs of Fellows of the Royal Society 3: 109–128.CrossRefGoogle Scholar
  132. Wurmser, René. 1921. Recherches sur l´assimilation chlorophyllienne. Archives des Physique Biologique 1: 33–141.Google Scholar
  133. Zallen, Doris T. 1992. The Rockefeller Foundation and Spectroscopy Research: The Programs at Chicago and Utrecht. Journal of the History of Biology 25: 67–89.CrossRefGoogle Scholar
  134. Zallen, Doris T. 1993a. Redrawing the Boundaries of Molecular Biology: The Case of Photosynthesis. Journal of the History of Biology 26: 65–87.CrossRefGoogle Scholar
  135. Zallen, Doris T. 1993b. The “Light” Organism for the Job: Green Algae and Photosynthesis Research. Journal of the History of Biology 26: 269–279.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.History of ScienceLudwigs Maximilians University MunichMunichGermany

Personalised recommendations